Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" CvT model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
CVT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", | |
# See all Cvt models at https://huggingface.co/models?filter=cvt | |
} | |
class CvtConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the CvT | |
[microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`): | |
The kernel size of each encoder's patch embedding. | |
patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`): | |
The stride size of each encoder's patch embedding. | |
patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`): | |
The padding size of each encoder's patch embedding. | |
embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`): | |
Dimension of each of the encoder blocks. | |
num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`): | |
Number of attention heads for each attention layer in each block of the Transformer encoder. | |
depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`): | |
The number of layers in each encoder block. | |
mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`): | |
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the | |
encoder blocks. | |
attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): | |
The dropout ratio for the attention probabilities. | |
drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): | |
The dropout ratio for the patch embeddings probabilities. | |
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`): | |
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. | |
qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`): | |
The bias bool for query, key and value in attentions | |
cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`): | |
Whether or not to add a classification token to the output of each of the last 3 stages. | |
qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`): | |
The projection method for query, key and value Default is depth-wise convolutions with batch norm. For | |
Linear projection use "avg". | |
kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`): | |
The kernel size for query, key and value in attention layer | |
padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`): | |
The padding size for key and value in attention layer | |
stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`): | |
The stride size for key and value in attention layer | |
padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): | |
The padding size for query in attention layer | |
stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): | |
The stride size for query in attention layer | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-6): | |
The epsilon used by the layer normalization layers. | |
Example: | |
```python | |
>>> from transformers import CvtConfig, CvtModel | |
>>> # Initializing a Cvt msft/cvt style configuration | |
>>> configuration = CvtConfig() | |
>>> # Initializing a model (with random weights) from the msft/cvt style configuration | |
>>> model = CvtModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "cvt" | |
def __init__( | |
self, | |
num_channels=3, | |
patch_sizes=[7, 3, 3], | |
patch_stride=[4, 2, 2], | |
patch_padding=[2, 1, 1], | |
embed_dim=[64, 192, 384], | |
num_heads=[1, 3, 6], | |
depth=[1, 2, 10], | |
mlp_ratio=[4.0, 4.0, 4.0], | |
attention_drop_rate=[0.0, 0.0, 0.0], | |
drop_rate=[0.0, 0.0, 0.0], | |
drop_path_rate=[0.0, 0.0, 0.1], | |
qkv_bias=[True, True, True], | |
cls_token=[False, False, True], | |
qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"], | |
kernel_qkv=[3, 3, 3], | |
padding_kv=[1, 1, 1], | |
stride_kv=[2, 2, 2], | |
padding_q=[1, 1, 1], | |
stride_q=[1, 1, 1], | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.num_channels = num_channels | |
self.patch_sizes = patch_sizes | |
self.patch_stride = patch_stride | |
self.patch_padding = patch_padding | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.depth = depth | |
self.mlp_ratio = mlp_ratio | |
self.attention_drop_rate = attention_drop_rate | |
self.drop_rate = drop_rate | |
self.drop_path_rate = drop_path_rate | |
self.qkv_bias = qkv_bias | |
self.cls_token = cls_token | |
self.qkv_projection_method = qkv_projection_method | |
self.kernel_qkv = kernel_qkv | |
self.padding_kv = padding_kv | |
self.stride_kv = stride_kv | |
self.padding_q = padding_q | |
self.stride_q = stride_q | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |