Spaces:
Running
on
T4
Running
on
T4
from transformers import PretrainedConfig | |
class ChatGLMConfig(PretrainedConfig): | |
model_type = "chatglm" | |
def __init__( | |
self, | |
num_layers=28, | |
padded_vocab_size=65024, | |
hidden_size=4096, | |
ffn_hidden_size=13696, | |
kv_channels=128, | |
num_attention_heads=32, | |
seq_length=2048, | |
hidden_dropout=0.0, | |
classifier_dropout=None, | |
attention_dropout=0.0, | |
layernorm_epsilon=1e-5, | |
rmsnorm=True, | |
apply_residual_connection_post_layernorm=False, | |
post_layer_norm=True, | |
add_bias_linear=False, | |
add_qkv_bias=False, | |
bias_dropout_fusion=True, | |
multi_query_attention=False, | |
multi_query_group_num=1, | |
apply_query_key_layer_scaling=True, | |
attention_softmax_in_fp32=True, | |
fp32_residual_connection=False, | |
quantization_bit=0, | |
pre_seq_len=None, | |
prefix_projection=False, | |
**kwargs | |
): | |
self.num_layers = num_layers | |
self.vocab_size = padded_vocab_size | |
self.padded_vocab_size = padded_vocab_size | |
self.hidden_size = hidden_size | |
self.ffn_hidden_size = ffn_hidden_size | |
self.kv_channels = kv_channels | |
self.num_attention_heads = num_attention_heads | |
self.seq_length = seq_length | |
self.hidden_dropout = hidden_dropout | |
self.classifier_dropout = classifier_dropout | |
self.attention_dropout = attention_dropout | |
self.layernorm_epsilon = layernorm_epsilon | |
self.rmsnorm = rmsnorm | |
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm | |
self.post_layer_norm = post_layer_norm | |
self.add_bias_linear = add_bias_linear | |
self.add_qkv_bias = add_qkv_bias | |
self.bias_dropout_fusion = bias_dropout_fusion | |
self.multi_query_attention = multi_query_attention | |
self.multi_query_group_num = multi_query_group_num | |
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling | |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32 | |
self.fp32_residual_connection = fp32_residual_connection | |
self.quantization_bit = quantization_bit | |
self.pre_seq_len = pre_seq_len | |
self.prefix_projection = prefix_projection | |
super().__init__(**kwargs) | |