Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Utilities to dynamically load objects from the Hub.""" | |
import filecmp | |
import importlib | |
import os | |
import re | |
import shutil | |
import signal | |
import sys | |
import typing | |
import warnings | |
from pathlib import Path | |
from typing import Any, Dict, List, Optional, Union | |
from .utils import ( | |
HF_MODULES_CACHE, | |
TRANSFORMERS_DYNAMIC_MODULE_NAME, | |
cached_file, | |
extract_commit_hash, | |
is_offline_mode, | |
logging, | |
try_to_load_from_cache, | |
) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def init_hf_modules(): | |
""" | |
Creates the cache directory for modules with an init, and adds it to the Python path. | |
""" | |
# This function has already been executed if HF_MODULES_CACHE already is in the Python path. | |
if HF_MODULES_CACHE in sys.path: | |
return | |
sys.path.append(HF_MODULES_CACHE) | |
os.makedirs(HF_MODULES_CACHE, exist_ok=True) | |
init_path = Path(HF_MODULES_CACHE) / "__init__.py" | |
if not init_path.exists(): | |
init_path.touch() | |
importlib.invalidate_caches() | |
def create_dynamic_module(name: Union[str, os.PathLike]): | |
""" | |
Creates a dynamic module in the cache directory for modules. | |
Args: | |
name (`str` or `os.PathLike`): | |
The name of the dynamic module to create. | |
""" | |
init_hf_modules() | |
dynamic_module_path = (Path(HF_MODULES_CACHE) / name).resolve() | |
# If the parent module does not exist yet, recursively create it. | |
if not dynamic_module_path.parent.exists(): | |
create_dynamic_module(dynamic_module_path.parent) | |
os.makedirs(dynamic_module_path, exist_ok=True) | |
init_path = dynamic_module_path / "__init__.py" | |
if not init_path.exists(): | |
init_path.touch() | |
# It is extremely important to invalidate the cache when we change stuff in those modules, or users end up | |
# with errors about module that do not exist. Same for all other `invalidate_caches` in this file. | |
importlib.invalidate_caches() | |
def get_relative_imports(module_file: Union[str, os.PathLike]) -> List[str]: | |
""" | |
Get the list of modules that are relatively imported in a module file. | |
Args: | |
module_file (`str` or `os.PathLike`): The module file to inspect. | |
Returns: | |
`List[str]`: The list of relative imports in the module. | |
""" | |
with open(module_file, "r", encoding="utf-8") as f: | |
content = f.read() | |
# Imports of the form `import .xxx` | |
relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE) | |
# Imports of the form `from .xxx import yyy` | |
relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE) | |
# Unique-ify | |
return list(set(relative_imports)) | |
def get_relative_import_files(module_file: Union[str, os.PathLike]) -> List[str]: | |
""" | |
Get the list of all files that are needed for a given module. Note that this function recurses through the relative | |
imports (if a imports b and b imports c, it will return module files for b and c). | |
Args: | |
module_file (`str` or `os.PathLike`): The module file to inspect. | |
Returns: | |
`List[str]`: The list of all relative imports a given module needs (recursively), which will give us the list | |
of module files a given module needs. | |
""" | |
no_change = False | |
files_to_check = [module_file] | |
all_relative_imports = [] | |
# Let's recurse through all relative imports | |
while not no_change: | |
new_imports = [] | |
for f in files_to_check: | |
new_imports.extend(get_relative_imports(f)) | |
module_path = Path(module_file).parent | |
new_import_files = [str(module_path / m) for m in new_imports] | |
new_import_files = [f for f in new_import_files if f not in all_relative_imports] | |
files_to_check = [f"{f}.py" for f in new_import_files] | |
no_change = len(new_import_files) == 0 | |
all_relative_imports.extend(files_to_check) | |
return all_relative_imports | |
def get_imports(filename: Union[str, os.PathLike]) -> List[str]: | |
""" | |
Extracts all the libraries (not relative imports this time) that are imported in a file. | |
Args: | |
filename (`str` or `os.PathLike`): The module file to inspect. | |
Returns: | |
`List[str]`: The list of all packages required to use the input module. | |
""" | |
with open(filename, "r", encoding="utf-8") as f: | |
content = f.read() | |
# filter out try/except block so in custom code we can have try/except imports | |
content = re.sub(r"\s*try\s*:\s*.*?\s*except\s*.*?:", "", content, flags=re.MULTILINE | re.DOTALL) | |
# Imports of the form `import xxx` | |
imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE) | |
# Imports of the form `from xxx import yyy` | |
imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE) | |
# Only keep the top-level module | |
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")] | |
return list(set(imports)) | |
def check_imports(filename: Union[str, os.PathLike]) -> List[str]: | |
""" | |
Check if the current Python environment contains all the libraries that are imported in a file. Will raise if a | |
library is missing. | |
Args: | |
filename (`str` or `os.PathLike`): The module file to check. | |
Returns: | |
`List[str]`: The list of relative imports in the file. | |
""" | |
imports = get_imports(filename) | |
missing_packages = [] | |
for imp in imports: | |
try: | |
importlib.import_module(imp) | |
except ImportError: | |
missing_packages.append(imp) | |
if len(missing_packages) > 0: | |
raise ImportError( | |
"This modeling file requires the following packages that were not found in your environment: " | |
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`" | |
) | |
return get_relative_imports(filename) | |
def get_class_in_module(class_name: str, module_path: Union[str, os.PathLike]) -> typing.Type: | |
""" | |
Import a module on the cache directory for modules and extract a class from it. | |
Args: | |
class_name (`str`): The name of the class to import. | |
module_path (`str` or `os.PathLike`): The path to the module to import. | |
Returns: | |
`typing.Type`: The class looked for. | |
""" | |
module_path = module_path.replace(os.path.sep, ".") | |
module = importlib.import_module(module_path) | |
return getattr(module, class_name) | |
def get_cached_module_file( | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
module_file: str, | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
resume_download: bool = False, | |
proxies: Optional[Dict[str, str]] = None, | |
token: Optional[Union[bool, str]] = None, | |
revision: Optional[str] = None, | |
local_files_only: bool = False, | |
repo_type: Optional[str] = None, | |
_commit_hash: Optional[str] = None, | |
**deprecated_kwargs, | |
) -> str: | |
""" | |
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached | |
Transformers module. | |
Args: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on | |
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced | |
under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
- a path to a *directory* containing a configuration file saved using the | |
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
module_file (`str`): | |
The name of the module file containing the class to look for. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
If `True`, will only try to load the tokenizer configuration from local files. | |
repo_type (`str`, *optional*): | |
Specify the repo type (useful when downloading from a space for instance). | |
<Tip> | |
Passing `token=True` is required when you want to use a private model. | |
</Tip> | |
Returns: | |
`str`: The path to the module inside the cache. | |
""" | |
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
token = use_auth_token | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file. | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if is_local: | |
submodule = os.path.basename(pretrained_model_name_or_path) | |
else: | |
submodule = pretrained_model_name_or_path.replace("/", os.path.sep) | |
cached_module = try_to_load_from_cache( | |
pretrained_model_name_or_path, module_file, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type | |
) | |
new_files = [] | |
try: | |
# Load from URL or cache if already cached | |
resolved_module_file = cached_file( | |
pretrained_model_name_or_path, | |
module_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
repo_type=repo_type, | |
_commit_hash=_commit_hash, | |
) | |
if not is_local and cached_module != resolved_module_file: | |
new_files.append(module_file) | |
except EnvironmentError: | |
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.") | |
raise | |
# Check we have all the requirements in our environment | |
modules_needed = check_imports(resolved_module_file) | |
# Now we move the module inside our cached dynamic modules. | |
full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule | |
create_dynamic_module(full_submodule) | |
submodule_path = Path(HF_MODULES_CACHE) / full_submodule | |
if submodule == os.path.basename(pretrained_model_name_or_path): | |
# We copy local files to avoid putting too many folders in sys.path. This copy is done when the file is new or | |
# has changed since last copy. | |
if not (submodule_path / module_file).exists() or not filecmp.cmp( | |
resolved_module_file, str(submodule_path / module_file) | |
): | |
shutil.copy(resolved_module_file, submodule_path / module_file) | |
importlib.invalidate_caches() | |
for module_needed in modules_needed: | |
module_needed = f"{module_needed}.py" | |
module_needed_file = os.path.join(pretrained_model_name_or_path, module_needed) | |
if not (submodule_path / module_needed).exists() or not filecmp.cmp( | |
module_needed_file, str(submodule_path / module_needed) | |
): | |
shutil.copy(module_needed_file, submodule_path / module_needed) | |
importlib.invalidate_caches() | |
else: | |
# Get the commit hash | |
commit_hash = extract_commit_hash(resolved_module_file, _commit_hash) | |
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the | |
# benefit of versioning. | |
submodule_path = submodule_path / commit_hash | |
full_submodule = full_submodule + os.path.sep + commit_hash | |
create_dynamic_module(full_submodule) | |
if not (submodule_path / module_file).exists(): | |
shutil.copy(resolved_module_file, submodule_path / module_file) | |
importlib.invalidate_caches() | |
# Make sure we also have every file with relative | |
for module_needed in modules_needed: | |
if not (submodule_path / f"{module_needed}.py").exists(): | |
get_cached_module_file( | |
pretrained_model_name_or_path, | |
f"{module_needed}.py", | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
local_files_only=local_files_only, | |
_commit_hash=commit_hash, | |
) | |
new_files.append(f"{module_needed}.py") | |
if len(new_files) > 0 and revision is None: | |
new_files = "\n".join([f"- {f}" for f in new_files]) | |
repo_type_str = "" if repo_type is None else f"{repo_type}s/" | |
url = f"https://huggingface.co/{repo_type_str}{pretrained_model_name_or_path}" | |
logger.warning( | |
f"A new version of the following files was downloaded from {url}:\n{new_files}" | |
"\n. Make sure to double-check they do not contain any added malicious code. To avoid downloading new " | |
"versions of the code file, you can pin a revision." | |
) | |
return os.path.join(full_submodule, module_file) | |
def get_class_from_dynamic_module( | |
class_reference: str, | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
resume_download: bool = False, | |
proxies: Optional[Dict[str, str]] = None, | |
token: Optional[Union[bool, str]] = None, | |
revision: Optional[str] = None, | |
local_files_only: bool = False, | |
repo_type: Optional[str] = None, | |
code_revision: Optional[str] = None, | |
**kwargs, | |
) -> typing.Type: | |
""" | |
Extracts a class from a module file, present in the local folder or repository of a model. | |
<Tip warning={true}> | |
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should | |
therefore only be called on trusted repos. | |
</Tip> | |
Args: | |
class_reference (`str`): | |
The full name of the class to load, including its module and optionally its repo. | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on | |
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced | |
under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
- a path to a *directory* containing a configuration file saved using the | |
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
This is used when `class_reference` does not specify another repo. | |
module_file (`str`): | |
The name of the module file containing the class to look for. | |
class_name (`str`): | |
The name of the class to import in the module. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
token (`str` or `bool`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
If `True`, will only try to load the tokenizer configuration from local files. | |
repo_type (`str`, *optional*): | |
Specify the repo type (useful when downloading from a space for instance). | |
code_revision (`str`, *optional*, defaults to `"main"`): | |
The specific revision to use for the code on the Hub, if the code leaves in a different repository than the | |
rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for | |
storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. | |
<Tip> | |
Passing `token=True` is required when you want to use a private model. | |
</Tip> | |
Returns: | |
`typing.Type`: The class, dynamically imported from the module. | |
Examples: | |
```python | |
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this | |
# module. | |
cls = get_class_from_dynamic_module("modeling.MyBertModel", "sgugger/my-bert-model") | |
# Download module `modeling.py` from a given repo and cache then extract the class `MyBertModel` from this | |
# module. | |
cls = get_class_from_dynamic_module("sgugger/my-bert-model--modeling.MyBertModel", "sgugger/another-bert-model") | |
```""" | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
token = use_auth_token | |
# Catch the name of the repo if it's specified in `class_reference` | |
if "--" in class_reference: | |
repo_id, class_reference = class_reference.split("--") | |
else: | |
repo_id = pretrained_model_name_or_path | |
module_file, class_name = class_reference.split(".") | |
if code_revision is None and pretrained_model_name_or_path == repo_id: | |
code_revision = revision | |
# And lastly we get the class inside our newly created module | |
final_module = get_cached_module_file( | |
repo_id, | |
module_file + ".py", | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
token=token, | |
revision=code_revision, | |
local_files_only=local_files_only, | |
repo_type=repo_type, | |
) | |
return get_class_in_module(class_name, final_module.replace(".py", "")) | |
def custom_object_save(obj: Any, folder: Union[str, os.PathLike], config: Optional[Dict] = None) -> List[str]: | |
""" | |
Save the modeling files corresponding to a custom model/configuration/tokenizer etc. in a given folder. Optionally | |
adds the proper fields in a config. | |
Args: | |
obj (`Any`): The object for which to save the module files. | |
folder (`str` or `os.PathLike`): The folder where to save. | |
config (`PretrainedConfig` or dictionary, `optional`): | |
A config in which to register the auto_map corresponding to this custom object. | |
Returns: | |
`List[str]`: The list of files saved. | |
""" | |
if obj.__module__ == "__main__": | |
logger.warning( | |
f"We can't save the code defining {obj} in {folder} as it's been defined in __main__. You should put " | |
"this code in a separate module so we can include it in the saved folder and make it easier to share via " | |
"the Hub." | |
) | |
return | |
def _set_auto_map_in_config(_config): | |
module_name = obj.__class__.__module__ | |
last_module = module_name.split(".")[-1] | |
full_name = f"{last_module}.{obj.__class__.__name__}" | |
# Special handling for tokenizers | |
if "Tokenizer" in full_name: | |
slow_tokenizer_class = None | |
fast_tokenizer_class = None | |
if obj.__class__.__name__.endswith("Fast"): | |
# Fast tokenizer: we have the fast tokenizer class and we may have the slow one has an attribute. | |
fast_tokenizer_class = f"{last_module}.{obj.__class__.__name__}" | |
if getattr(obj, "slow_tokenizer_class", None) is not None: | |
slow_tokenizer = getattr(obj, "slow_tokenizer_class") | |
slow_tok_module_name = slow_tokenizer.__module__ | |
last_slow_tok_module = slow_tok_module_name.split(".")[-1] | |
slow_tokenizer_class = f"{last_slow_tok_module}.{slow_tokenizer.__name__}" | |
else: | |
# Slow tokenizer: no way to have the fast class | |
slow_tokenizer_class = f"{last_module}.{obj.__class__.__name__}" | |
full_name = (slow_tokenizer_class, fast_tokenizer_class) | |
if isinstance(_config, dict): | |
auto_map = _config.get("auto_map", {}) | |
auto_map[obj._auto_class] = full_name | |
_config["auto_map"] = auto_map | |
elif getattr(_config, "auto_map", None) is not None: | |
_config.auto_map[obj._auto_class] = full_name | |
else: | |
_config.auto_map = {obj._auto_class: full_name} | |
# Add object class to the config auto_map | |
if isinstance(config, (list, tuple)): | |
for cfg in config: | |
_set_auto_map_in_config(cfg) | |
elif config is not None: | |
_set_auto_map_in_config(config) | |
result = [] | |
# Copy module file to the output folder. | |
object_file = sys.modules[obj.__module__].__file__ | |
dest_file = Path(folder) / (Path(object_file).name) | |
shutil.copy(object_file, dest_file) | |
result.append(dest_file) | |
# Gather all relative imports recursively and make sure they are copied as well. | |
for needed_file in get_relative_import_files(object_file): | |
dest_file = Path(folder) / (Path(needed_file).name) | |
shutil.copy(needed_file, dest_file) | |
result.append(dest_file) | |
return result | |
def _raise_timeout_error(signum, frame): | |
raise ValueError( | |
"Loading this model requires you to execute custom code contained in the model repository on your local" | |
"machine. Please set the option `trust_remote_code=True` to permit loading of this model." | |
) | |
TIME_OUT_REMOTE_CODE = 15 | |
def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code): | |
if trust_remote_code is None: | |
if has_local_code: | |
trust_remote_code = False | |
elif has_remote_code and TIME_OUT_REMOTE_CODE > 0: | |
try: | |
signal.signal(signal.SIGALRM, _raise_timeout_error) | |
signal.alarm(TIME_OUT_REMOTE_CODE) | |
while trust_remote_code is None: | |
answer = input( | |
f"The repository for {model_name} contains custom code which must be executed to correctly" | |
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n" | |
f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n" | |
f"Do you wish to run the custom code? [y/N] " | |
) | |
if answer.lower() in ["yes", "y", "1"]: | |
trust_remote_code = True | |
elif answer.lower() in ["no", "n", "0", ""]: | |
trust_remote_code = False | |
signal.alarm(0) | |
except Exception: | |
# OS which does not support signal.SIGALRM | |
raise ValueError( | |
f"The repository for {model_name} contains custom code which must be executed to correctly" | |
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n" | |
f"Please pass the argument `trust_remote_code=True` to allow custom code to be run." | |
) | |
elif has_remote_code: | |
# For the CI which puts the timeout at 0 | |
_raise_timeout_error(None, None) | |
if has_remote_code and not has_local_code and not trust_remote_code: | |
raise ValueError( | |
f"Loading {model_name} requires you to execute the configuration file in that" | |
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then" | |
" set the option `trust_remote_code=True` to remove this error." | |
) | |
return trust_remote_code | |