Spaces:
Running
on
T4
Running
on
T4
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import subprocess | |
from typing import Union | |
import numpy as np | |
import requests | |
from ..utils import add_end_docstrings, is_torch_available, is_torchaudio_available, logging | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_torch_available(): | |
from ..models.auto.modeling_auto import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES | |
logger = logging.get_logger(__name__) | |
def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array: | |
""" | |
Helper function to read an audio file through ffmpeg. | |
""" | |
ar = f"{sampling_rate}" | |
ac = "1" | |
format_for_conversion = "f32le" | |
ffmpeg_command = [ | |
"ffmpeg", | |
"-i", | |
"pipe:0", | |
"-ac", | |
ac, | |
"-ar", | |
ar, | |
"-f", | |
format_for_conversion, | |
"-hide_banner", | |
"-loglevel", | |
"quiet", | |
"pipe:1", | |
] | |
try: | |
ffmpeg_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) | |
except FileNotFoundError: | |
raise ValueError("ffmpeg was not found but is required to load audio files from filename") | |
output_stream = ffmpeg_process.communicate(bpayload) | |
out_bytes = output_stream[0] | |
audio = np.frombuffer(out_bytes, np.float32) | |
if audio.shape[0] == 0: | |
raise ValueError("Malformed soundfile") | |
return audio | |
class AudioClassificationPipeline(Pipeline): | |
""" | |
Audio classification pipeline using any `AutoModelForAudioClassification`. This pipeline predicts the class of a | |
raw waveform or an audio file. In case of an audio file, ffmpeg should be installed to support multiple audio | |
formats. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> classifier = pipeline(model="superb/wav2vec2-base-superb-ks") | |
>>> classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac") | |
[{'score': 0.997, 'label': '_unknown_'}, {'score': 0.002, 'label': 'left'}, {'score': 0.0, 'label': 'yes'}, {'score': 0.0, 'label': 'down'}, {'score': 0.0, 'label': 'stop'}] | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"audio-classification"`. | |
See the list of available models on | |
[huggingface.co/models](https://huggingface.co/models?filter=audio-classification). | |
""" | |
def __init__(self, *args, **kwargs): | |
# Default, might be overriden by the model.config. | |
kwargs["top_k"] = 5 | |
super().__init__(*args, **kwargs) | |
if self.framework != "pt": | |
raise ValueError(f"The {self.__class__} is only available in PyTorch.") | |
self.check_model_type(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES) | |
def __call__( | |
self, | |
inputs: Union[np.ndarray, bytes, str], | |
**kwargs, | |
): | |
""" | |
Classify the sequence(s) given as inputs. See the [`AutomaticSpeechRecognitionPipeline`] documentation for more | |
information. | |
Args: | |
inputs (`np.ndarray` or `bytes` or `str` or `dict`): | |
The inputs is either : | |
- `str` that is the filename of the audio file, the file will be read at the correct sampling rate | |
to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system. | |
- `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the | |
same way. | |
- (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`) | |
Raw audio at the correct sampling rate (no further check will be done) | |
- `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this | |
pipeline do the resampling. The dict must be either be in the format `{"sampling_rate": int, | |
"raw": np.array}`, or `{"sampling_rate": int, "array": np.array}`, where the key `"raw"` or | |
`"array"` is used to denote the raw audio waveform. | |
top_k (`int`, *optional*, defaults to None): | |
The number of top labels that will be returned by the pipeline. If the provided number is `None` or | |
higher than the number of labels available in the model configuration, it will default to the number of | |
labels. | |
Return: | |
A list of `dict` with the following keys: | |
- **label** (`str`) -- The label predicted. | |
- **score** (`float`) -- The corresponding probability. | |
""" | |
return super().__call__(inputs, **kwargs) | |
def _sanitize_parameters(self, top_k=None, **kwargs): | |
# No parameters on this pipeline right now | |
postprocess_params = {} | |
if top_k is not None: | |
if top_k > self.model.config.num_labels: | |
top_k = self.model.config.num_labels | |
postprocess_params["top_k"] = top_k | |
return {}, {}, postprocess_params | |
def preprocess(self, inputs): | |
if isinstance(inputs, str): | |
if inputs.startswith("http://") or inputs.startswith("https://"): | |
# We need to actually check for a real protocol, otherwise it's impossible to use a local file | |
# like http_huggingface_co.png | |
inputs = requests.get(inputs).content | |
else: | |
with open(inputs, "rb") as f: | |
inputs = f.read() | |
if isinstance(inputs, bytes): | |
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) | |
if isinstance(inputs, dict): | |
# Accepting `"array"` which is the key defined in `datasets` for | |
# better integration | |
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)): | |
raise ValueError( | |
"When passing a dictionary to AudioClassificationPipeline, the dict needs to contain a " | |
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, ' | |
"containing the sampling_rate associated with that array" | |
) | |
_inputs = inputs.pop("raw", None) | |
if _inputs is None: | |
# Remove path which will not be used from `datasets`. | |
inputs.pop("path", None) | |
_inputs = inputs.pop("array", None) | |
in_sampling_rate = inputs.pop("sampling_rate") | |
inputs = _inputs | |
if in_sampling_rate != self.feature_extractor.sampling_rate: | |
import torch | |
if is_torchaudio_available(): | |
from torchaudio import functional as F | |
else: | |
raise ImportError( | |
"torchaudio is required to resample audio samples in AudioClassificationPipeline. " | |
"The torchaudio package can be installed through: `pip install torchaudio`." | |
) | |
inputs = F.resample( | |
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate | |
).numpy() | |
if not isinstance(inputs, np.ndarray): | |
raise ValueError("We expect a numpy ndarray as input") | |
if len(inputs.shape) != 1: | |
raise ValueError("We expect a single channel audio input for AudioClassificationPipeline") | |
processed = self.feature_extractor( | |
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" | |
) | |
return processed | |
def _forward(self, model_inputs): | |
model_outputs = self.model(**model_inputs) | |
return model_outputs | |
def postprocess(self, model_outputs, top_k=5): | |
probs = model_outputs.logits[0].softmax(-1) | |
scores, ids = probs.topk(top_k) | |
scores = scores.tolist() | |
ids = ids.tolist() | |
labels = [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] | |
return labels | |