Spaces:
Running
on
T4
Running
on
T4
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Union | |
import numpy as np | |
from ..utils import ( | |
add_end_docstrings, | |
is_torch_available, | |
is_vision_available, | |
logging, | |
requires_backends, | |
) | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_vision_available(): | |
from PIL import Image | |
from ..image_utils import load_image | |
if is_torch_available(): | |
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES | |
logger = logging.get_logger(__name__) | |
class ImageToImagePipeline(Pipeline): | |
""" | |
Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous | |
image input. | |
Example: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import pipeline | |
>>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64") | |
>>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) | |
>>> img = img.resize((64, 64)) | |
>>> upscaled_img = upscaler(img) | |
>>> img.size | |
(64, 64) | |
>>> upscaled_img.size | |
(144, 144) | |
``` | |
This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"image-to-image"`. | |
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image). | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
requires_backends(self, "vision") | |
self.check_model_type(MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES) | |
def _sanitize_parameters(self, **kwargs): | |
preprocess_params = {} | |
postprocess_params = {} | |
forward_params = {} | |
if "timeout" in kwargs: | |
preprocess_params["timeout"] = kwargs["timeout"] | |
if "head_mask" in kwargs: | |
forward_params["head_mask"] = kwargs["head_mask"] | |
return preprocess_params, forward_params, postprocess_params | |
def __call__( | |
self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs | |
) -> Union["Image.Image", List["Image.Image"]]: | |
""" | |
Transform the image(s) passed as inputs. | |
Args: | |
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): | |
The pipeline handles three types of images: | |
- A string containing a http link pointing to an image | |
- A string containing a local path to an image | |
- An image loaded in PIL directly | |
The pipeline accepts either a single image or a batch of images, which must then be passed as a string. | |
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL | |
images. | |
timeout (`float`, *optional*, defaults to None): | |
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and | |
the call may block forever. | |
Return: | |
An image (Image.Image) or a list of images (List["Image.Image"]) containing result(s). If the input is a | |
single image, the return will be also a single image, if the input is a list of several images, it will | |
return a list of transformed images. | |
""" | |
return super().__call__(images, **kwargs) | |
def _forward(self, model_inputs): | |
model_outputs = self.model(**model_inputs) | |
return model_outputs | |
def preprocess(self, image, timeout=None): | |
image = load_image(image, timeout=timeout) | |
inputs = self.image_processor(images=[image], return_tensors="pt") | |
return inputs | |
def postprocess(self, model_outputs): | |
images = [] | |
if "reconstruction" in model_outputs.keys(): | |
outputs = model_outputs.reconstruction | |
for output in outputs: | |
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
output = np.moveaxis(output, source=0, destination=-1) | |
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
images.append(Image.fromarray(output)) | |
return images if len(images) > 1 else images[0] | |