Spaces:
Starting
on
T4
Starting
on
T4
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import base64 | |
import importlib | |
import inspect | |
import io | |
import json | |
import os | |
import tempfile | |
from typing import Any, Dict, List, Optional, Union | |
from huggingface_hub import create_repo, hf_hub_download, metadata_update, upload_folder | |
from huggingface_hub.utils import RepositoryNotFoundError, build_hf_headers, get_session | |
from ..dynamic_module_utils import custom_object_save, get_class_from_dynamic_module, get_imports | |
from ..image_utils import is_pil_image | |
from ..models.auto import AutoProcessor | |
from ..utils import ( | |
CONFIG_NAME, | |
cached_file, | |
is_accelerate_available, | |
is_torch_available, | |
is_vision_available, | |
logging, | |
) | |
from .agent_types import handle_agent_inputs, handle_agent_outputs | |
logger = logging.get_logger(__name__) | |
if is_torch_available(): | |
import torch | |
if is_accelerate_available(): | |
from accelerate.utils import send_to_device | |
TOOL_CONFIG_FILE = "tool_config.json" | |
def get_repo_type(repo_id, repo_type=None, **hub_kwargs): | |
if repo_type is not None: | |
return repo_type | |
try: | |
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs) | |
return "space" | |
except RepositoryNotFoundError: | |
try: | |
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs) | |
return "model" | |
except RepositoryNotFoundError: | |
raise EnvironmentError(f"`{repo_id}` does not seem to be a valid repo identifier on the Hub.") | |
except Exception: | |
return "model" | |
except Exception: | |
return "space" | |
# docstyle-ignore | |
APP_FILE_TEMPLATE = """from transformers import launch_gradio_demo | |
from {module_name} import {class_name} | |
launch_gradio_demo({class_name}) | |
""" | |
class Tool: | |
""" | |
A base class for the functions used by the agent. Subclass this and implement the `__call__` method as well as the | |
following class attributes: | |
- **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it | |
will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and | |
returns the text contained in the file'. | |
- **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance | |
`"text-classifier"` or `"image_generator"`. | |
- **inputs** (`List[str]`) -- The list of modalities expected for the inputs (in the same order as in the call). | |
Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` or to make a | |
nice space from your tool. | |
- **outputs** (`List[str]`) -- The list of modalities returned but the tool (in the same order as the return of the | |
call method). Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` | |
or to make a nice space from your tool. | |
You can also override the method [`~Tool.setup`] if your tool as an expensive operation to perform before being | |
usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at | |
instantiation. | |
""" | |
description: str = "This is a tool that ..." | |
name: str = "" | |
inputs: List[str] | |
outputs: List[str] | |
def __init__(self, *args, **kwargs): | |
self.is_initialized = False | |
def __call__(self, *args, **kwargs): | |
return NotImplemented("Write this method in your subclass of `Tool`.") | |
def setup(self): | |
""" | |
Overwrite this method here for any operation that is expensive and needs to be executed before you start using | |
your tool. Such as loading a big model. | |
""" | |
self.is_initialized = True | |
def save(self, output_dir): | |
""" | |
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your | |
tool in `output_dir` as well as autogenerate: | |
- a config file named `tool_config.json` | |
- an `app.py` file so that your tool can be converted to a space | |
- a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its | |
code) | |
You should only use this method to save tools that are defined in a separate module (not `__main__`). | |
Args: | |
output_dir (`str`): The folder in which you want to save your tool. | |
""" | |
os.makedirs(output_dir, exist_ok=True) | |
# Save module file | |
if self.__module__ == "__main__": | |
raise ValueError( | |
f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You " | |
"have to put this code in a separate module so we can include it in the saved folder." | |
) | |
module_files = custom_object_save(self, output_dir) | |
module_name = self.__class__.__module__ | |
last_module = module_name.split(".")[-1] | |
full_name = f"{last_module}.{self.__class__.__name__}" | |
# Save config file | |
config_file = os.path.join(output_dir, "tool_config.json") | |
if os.path.isfile(config_file): | |
with open(config_file, "r", encoding="utf-8") as f: | |
tool_config = json.load(f) | |
else: | |
tool_config = {} | |
tool_config = {"tool_class": full_name, "description": self.description, "name": self.name} | |
with open(config_file, "w", encoding="utf-8") as f: | |
f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n") | |
# Save app file | |
app_file = os.path.join(output_dir, "app.py") | |
with open(app_file, "w", encoding="utf-8") as f: | |
f.write(APP_FILE_TEMPLATE.format(module_name=last_module, class_name=self.__class__.__name__)) | |
# Save requirements file | |
requirements_file = os.path.join(output_dir, "requirements.txt") | |
imports = [] | |
for module in module_files: | |
imports.extend(get_imports(module)) | |
imports = list(set(imports)) | |
with open(requirements_file, "w", encoding="utf-8") as f: | |
f.write("\n".join(imports) + "\n") | |
def from_hub( | |
cls, | |
repo_id: str, | |
model_repo_id: Optional[str] = None, | |
token: Optional[str] = None, | |
remote: bool = False, | |
**kwargs, | |
): | |
""" | |
Loads a tool defined on the Hub. | |
Args: | |
repo_id (`str`): | |
The name of the repo on the Hub where your tool is defined. | |
model_repo_id (`str`, *optional*): | |
If your tool uses a model and you want to use a different model than the default, you can pass a second | |
repo ID or an endpoint url to this argument. | |
token (`str`, *optional*): | |
The token to identify you on hf.co. If unset, will use the token generated when running | |
`huggingface-cli login` (stored in `~/.huggingface`). | |
remote (`bool`, *optional*, defaults to `False`): | |
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint. | |
kwargs (additional keyword arguments, *optional*): | |
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as | |
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the | |
others will be passed along to its init. | |
""" | |
if remote and model_repo_id is None: | |
endpoints = get_default_endpoints() | |
if repo_id not in endpoints: | |
raise ValueError( | |
f"Could not infer a default endpoint for {repo_id}, you need to pass one using the " | |
"`model_repo_id` argument." | |
) | |
model_repo_id = endpoints[repo_id] | |
hub_kwargs_names = [ | |
"cache_dir", | |
"force_download", | |
"resume_download", | |
"proxies", | |
"revision", | |
"repo_type", | |
"subfolder", | |
"local_files_only", | |
] | |
hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names} | |
# Try to get the tool config first. | |
hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs) | |
resolved_config_file = cached_file( | |
repo_id, | |
TOOL_CONFIG_FILE, | |
use_auth_token=token, | |
**hub_kwargs, | |
_raise_exceptions_for_missing_entries=False, | |
_raise_exceptions_for_connection_errors=False, | |
) | |
is_tool_config = resolved_config_file is not None | |
if resolved_config_file is None: | |
resolved_config_file = cached_file( | |
repo_id, | |
CONFIG_NAME, | |
use_auth_token=token, | |
**hub_kwargs, | |
_raise_exceptions_for_missing_entries=False, | |
_raise_exceptions_for_connection_errors=False, | |
) | |
if resolved_config_file is None: | |
raise EnvironmentError( | |
f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`." | |
) | |
with open(resolved_config_file, encoding="utf-8") as reader: | |
config = json.load(reader) | |
if not is_tool_config: | |
if "custom_tool" not in config: | |
raise EnvironmentError( | |
f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`." | |
) | |
custom_tool = config["custom_tool"] | |
else: | |
custom_tool = config | |
tool_class = custom_tool["tool_class"] | |
tool_class = get_class_from_dynamic_module(tool_class, repo_id, use_auth_token=token, **hub_kwargs) | |
if len(tool_class.name) == 0: | |
tool_class.name = custom_tool["name"] | |
if tool_class.name != custom_tool["name"]: | |
logger.warning( | |
f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool " | |
"configuration name." | |
) | |
tool_class.name = custom_tool["name"] | |
if len(tool_class.description) == 0: | |
tool_class.description = custom_tool["description"] | |
if tool_class.description != custom_tool["description"]: | |
logger.warning( | |
f"{tool_class.__name__} implements a different description in its configuration and class. Using the " | |
"tool configuration description." | |
) | |
tool_class.description = custom_tool["description"] | |
if remote: | |
return RemoteTool(model_repo_id, token=token, tool_class=tool_class) | |
return tool_class(model_repo_id, token=token, **kwargs) | |
def push_to_hub( | |
self, | |
repo_id: str, | |
commit_message: str = "Upload tool", | |
private: Optional[bool] = None, | |
token: Optional[Union[bool, str]] = None, | |
create_pr: bool = False, | |
) -> str: | |
""" | |
Upload the tool to the Hub. | |
Parameters: | |
repo_id (`str`): | |
The name of the repository you want to push your tool to. It should contain your organization name when | |
pushing to a given organization. | |
commit_message (`str`, *optional*, defaults to `"Upload tool"`): | |
Message to commit while pushing. | |
private (`bool`, *optional*): | |
Whether or not the repository created should be private. | |
token (`bool` or `str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
create_pr (`bool`, *optional*, defaults to `False`): | |
Whether or not to create a PR with the uploaded files or directly commit. | |
""" | |
repo_url = create_repo( | |
repo_id=repo_id, token=token, private=private, exist_ok=True, repo_type="space", space_sdk="gradio" | |
) | |
repo_id = repo_url.repo_id | |
metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space") | |
with tempfile.TemporaryDirectory() as work_dir: | |
# Save all files. | |
self.save(work_dir) | |
logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}") | |
return upload_folder( | |
repo_id=repo_id, | |
commit_message=commit_message, | |
folder_path=work_dir, | |
token=token, | |
create_pr=create_pr, | |
repo_type="space", | |
) | |
def from_gradio(gradio_tool): | |
""" | |
Creates a [`Tool`] from a gradio tool. | |
""" | |
class GradioToolWrapper(Tool): | |
def __init__(self, _gradio_tool): | |
super().__init__() | |
self.name = _gradio_tool.name | |
self.description = _gradio_tool.description | |
GradioToolWrapper.__call__ = gradio_tool.run | |
return GradioToolWrapper(gradio_tool) | |
class RemoteTool(Tool): | |
""" | |
A [`Tool`] that will make requests to an inference endpoint. | |
Args: | |
endpoint_url (`str`, *optional*): | |
The url of the endpoint to use. | |
token (`str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when | |
running `huggingface-cli login` (stored in `~/.huggingface`). | |
tool_class (`type`, *optional*): | |
The corresponding `tool_class` if this is a remote version of an existing tool. Will help determine when | |
the output should be converted to another type (like images). | |
""" | |
def __init__(self, endpoint_url=None, token=None, tool_class=None): | |
self.endpoint_url = endpoint_url | |
self.client = EndpointClient(endpoint_url, token=token) | |
self.tool_class = tool_class | |
def prepare_inputs(self, *args, **kwargs): | |
""" | |
Prepare the inputs received for the HTTP client sending data to the endpoint. Positional arguments will be | |
matched with the signature of the `tool_class` if it was provided at instantation. Images will be encoded into | |
bytes. | |
You can override this method in your custom class of [`RemoteTool`]. | |
""" | |
inputs = kwargs.copy() | |
if len(args) > 0: | |
if self.tool_class is not None: | |
# Match args with the signature | |
if issubclass(self.tool_class, PipelineTool): | |
call_method = self.tool_class.encode | |
else: | |
call_method = self.tool_class.__call__ | |
signature = inspect.signature(call_method).parameters | |
parameters = [ | |
k | |
for k, p in signature.items() | |
if p.kind not in [inspect._ParameterKind.VAR_POSITIONAL, inspect._ParameterKind.VAR_KEYWORD] | |
] | |
if parameters[0] == "self": | |
parameters = parameters[1:] | |
if len(args) > len(parameters): | |
raise ValueError( | |
f"{self.tool_class} only accepts {len(parameters)} arguments but {len(args)} were given." | |
) | |
for arg, name in zip(args, parameters): | |
inputs[name] = arg | |
elif len(args) > 1: | |
raise ValueError("A `RemoteTool` can only accept one positional input.") | |
elif len(args) == 1: | |
if is_pil_image(args[0]): | |
return {"inputs": self.client.encode_image(args[0])} | |
return {"inputs": args[0]} | |
for key, value in inputs.items(): | |
if is_pil_image(value): | |
inputs[key] = self.client.encode_image(value) | |
return {"inputs": inputs} | |
def extract_outputs(self, outputs): | |
""" | |
You can override this method in your custom class of [`RemoteTool`] to apply some custom post-processing of the | |
outputs of the endpoint. | |
""" | |
return outputs | |
def __call__(self, *args, **kwargs): | |
args, kwargs = handle_agent_inputs(*args, **kwargs) | |
output_image = self.tool_class is not None and self.tool_class.outputs == ["image"] | |
inputs = self.prepare_inputs(*args, **kwargs) | |
if isinstance(inputs, dict): | |
outputs = self.client(**inputs, output_image=output_image) | |
else: | |
outputs = self.client(inputs, output_image=output_image) | |
if isinstance(outputs, list) and len(outputs) == 1 and isinstance(outputs[0], list): | |
outputs = outputs[0] | |
outputs = handle_agent_outputs(outputs, self.tool_class.outputs if self.tool_class is not None else None) | |
return self.extract_outputs(outputs) | |
class PipelineTool(Tool): | |
""" | |
A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will | |
need to specify: | |
- **model_class** (`type`) -- The class to use to load the model in this tool. | |
- **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one. | |
- **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the | |
pre-processor | |
- **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the | |
post-processor (when different from the pre-processor). | |
Args: | |
model (`str` or [`PreTrainedModel`], *optional*): | |
The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the | |
value of the class attribute `default_checkpoint`. | |
pre_processor (`str` or `Any`, *optional*): | |
The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a | |
tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if | |
unset. | |
post_processor (`str` or `Any`, *optional*): | |
The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a | |
tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if | |
unset. | |
device (`int`, `str` or `torch.device`, *optional*): | |
The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the | |
CPU otherwise. | |
device_map (`str` or `dict`, *optional*): | |
If passed along, will be used to instantiate the model. | |
model_kwargs (`dict`, *optional*): | |
Any keyword argument to send to the model instantiation. | |
token (`str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when | |
running `huggingface-cli login` (stored in `~/.huggingface`). | |
hub_kwargs (additional keyword arguments, *optional*): | |
Any additional keyword argument to send to the methods that will load the data from the Hub. | |
""" | |
pre_processor_class = AutoProcessor | |
model_class = None | |
post_processor_class = AutoProcessor | |
default_checkpoint = None | |
def __init__( | |
self, | |
model=None, | |
pre_processor=None, | |
post_processor=None, | |
device=None, | |
device_map=None, | |
model_kwargs=None, | |
token=None, | |
**hub_kwargs, | |
): | |
if not is_torch_available(): | |
raise ImportError("Please install torch in order to use this tool.") | |
if not is_accelerate_available(): | |
raise ImportError("Please install accelerate in order to use this tool.") | |
if model is None: | |
if self.default_checkpoint is None: | |
raise ValueError("This tool does not implement a default checkpoint, you need to pass one.") | |
model = self.default_checkpoint | |
if pre_processor is None: | |
pre_processor = model | |
self.model = model | |
self.pre_processor = pre_processor | |
self.post_processor = post_processor | |
self.device = device | |
self.device_map = device_map | |
self.model_kwargs = {} if model_kwargs is None else model_kwargs | |
if device_map is not None: | |
self.model_kwargs["device_map"] = device_map | |
self.hub_kwargs = hub_kwargs | |
self.hub_kwargs["token"] = token | |
super().__init__() | |
def setup(self): | |
""" | |
Instantiates the `pre_processor`, `model` and `post_processor` if necessary. | |
""" | |
if isinstance(self.pre_processor, str): | |
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs) | |
if isinstance(self.model, str): | |
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs) | |
if self.post_processor is None: | |
self.post_processor = self.pre_processor | |
elif isinstance(self.post_processor, str): | |
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs) | |
if self.device is None: | |
if self.device_map is not None: | |
self.device = list(self.model.hf_device_map.values())[0] | |
else: | |
self.device = get_default_device() | |
if self.device_map is None: | |
self.model.to(self.device) | |
super().setup() | |
def encode(self, raw_inputs): | |
""" | |
Uses the `pre_processor` to prepare the inputs for the `model`. | |
""" | |
return self.pre_processor(raw_inputs) | |
def forward(self, inputs): | |
""" | |
Sends the inputs through the `model`. | |
""" | |
with torch.no_grad(): | |
return self.model(**inputs) | |
def decode(self, outputs): | |
""" | |
Uses the `post_processor` to decode the model output. | |
""" | |
return self.post_processor(outputs) | |
def __call__(self, *args, **kwargs): | |
args, kwargs = handle_agent_inputs(*args, **kwargs) | |
if not self.is_initialized: | |
self.setup() | |
encoded_inputs = self.encode(*args, **kwargs) | |
encoded_inputs = send_to_device(encoded_inputs, self.device) | |
outputs = self.forward(encoded_inputs) | |
outputs = send_to_device(outputs, "cpu") | |
decoded_outputs = self.decode(outputs) | |
return handle_agent_outputs(decoded_outputs, self.outputs) | |
def launch_gradio_demo(tool_class: Tool): | |
""" | |
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes | |
`inputs` and `outputs`. | |
Args: | |
tool_class (`type`): The class of the tool for which to launch the demo. | |
""" | |
try: | |
import gradio as gr | |
except ImportError: | |
raise ImportError("Gradio should be installed in order to launch a gradio demo.") | |
tool = tool_class() | |
def fn(*args, **kwargs): | |
return tool(*args, **kwargs) | |
gr.Interface( | |
fn=fn, | |
inputs=tool_class.inputs, | |
outputs=tool_class.outputs, | |
title=tool_class.__name__, | |
article=tool.description, | |
).launch() | |
# TODO: Migrate to Accelerate for this once `PartialState.default_device` makes its way into a release. | |
def get_default_device(): | |
if not is_torch_available(): | |
raise ImportError("Please install torch in order to use this tool.") | |
if torch.backends.mps.is_available() and torch.backends.mps.is_built(): | |
return torch.device("mps") | |
elif torch.cuda.is_available(): | |
return torch.device("cuda") | |
else: | |
return torch.device("cpu") | |
TASK_MAPPING = { | |
"document-question-answering": "DocumentQuestionAnsweringTool", | |
"image-captioning": "ImageCaptioningTool", | |
"image-question-answering": "ImageQuestionAnsweringTool", | |
"image-segmentation": "ImageSegmentationTool", | |
"speech-to-text": "SpeechToTextTool", | |
"summarization": "TextSummarizationTool", | |
"text-classification": "TextClassificationTool", | |
"text-question-answering": "TextQuestionAnsweringTool", | |
"text-to-speech": "TextToSpeechTool", | |
"translation": "TranslationTool", | |
} | |
def get_default_endpoints(): | |
endpoints_file = cached_file("huggingface-tools/default-endpoints", "default_endpoints.json", repo_type="dataset") | |
with open(endpoints_file, "r", encoding="utf-8") as f: | |
endpoints = json.load(f) | |
return endpoints | |
def supports_remote(task_or_repo_id): | |
endpoints = get_default_endpoints() | |
return task_or_repo_id in endpoints | |
def load_tool(task_or_repo_id, model_repo_id=None, remote=False, token=None, **kwargs): | |
""" | |
Main function to quickly load a tool, be it on the Hub or in the Transformers library. | |
Args: | |
task_or_repo_id (`str`): | |
The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers | |
are: | |
- `"document-question-answering"` | |
- `"image-captioning"` | |
- `"image-question-answering"` | |
- `"image-segmentation"` | |
- `"speech-to-text"` | |
- `"summarization"` | |
- `"text-classification"` | |
- `"text-question-answering"` | |
- `"text-to-speech"` | |
- `"translation"` | |
model_repo_id (`str`, *optional*): | |
Use this argument to use a different model than the default one for the tool you selected. | |
remote (`bool`, *optional*, defaults to `False`): | |
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint. | |
token (`str`, *optional*): | |
The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli | |
login` (stored in `~/.huggingface`). | |
kwargs (additional keyword arguments, *optional*): | |
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as | |
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others | |
will be passed along to its init. | |
""" | |
if task_or_repo_id in TASK_MAPPING: | |
tool_class_name = TASK_MAPPING[task_or_repo_id] | |
main_module = importlib.import_module("transformers") | |
tools_module = main_module.tools | |
tool_class = getattr(tools_module, tool_class_name) | |
if remote: | |
if model_repo_id is None: | |
endpoints = get_default_endpoints() | |
if task_or_repo_id not in endpoints: | |
raise ValueError( | |
f"Could not infer a default endpoint for {task_or_repo_id}, you need to pass one using the " | |
"`model_repo_id` argument." | |
) | |
model_repo_id = endpoints[task_or_repo_id] | |
return RemoteTool(model_repo_id, token=token, tool_class=tool_class) | |
else: | |
return tool_class(model_repo_id, token=token, **kwargs) | |
else: | |
return Tool.from_hub(task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs) | |
def add_description(description): | |
""" | |
A decorator that adds a description to a function. | |
""" | |
def inner(func): | |
func.description = description | |
func.name = func.__name__ | |
return func | |
return inner | |
## Will move to the Hub | |
class EndpointClient: | |
def __init__(self, endpoint_url: str, token: Optional[str] = None): | |
self.headers = {**build_hf_headers(token=token), "Content-Type": "application/json"} | |
self.endpoint_url = endpoint_url | |
def encode_image(image): | |
_bytes = io.BytesIO() | |
image.save(_bytes, format="PNG") | |
b64 = base64.b64encode(_bytes.getvalue()) | |
return b64.decode("utf-8") | |
def decode_image(raw_image): | |
if not is_vision_available(): | |
raise ImportError( | |
"This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)." | |
) | |
from PIL import Image | |
b64 = base64.b64decode(raw_image) | |
_bytes = io.BytesIO(b64) | |
return Image.open(_bytes) | |
def __call__( | |
self, | |
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, | |
params: Optional[Dict] = None, | |
data: Optional[bytes] = None, | |
output_image: bool = False, | |
) -> Any: | |
# Build payload | |
payload = {} | |
if inputs: | |
payload["inputs"] = inputs | |
if params: | |
payload["parameters"] = params | |
# Make API call | |
response = get_session().post(self.endpoint_url, headers=self.headers, json=payload, data=data) | |
# By default, parse the response for the user. | |
if output_image: | |
return self.decode_image(response.content) | |
else: | |
return response.json() | |