Spaces:
Running
on
T4
Running
on
T4
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer | |
from .base import PipelineTool | |
class TextSummarizationTool(PipelineTool): | |
""" | |
Example: | |
```py | |
from transformers.tools import TextSummarizationTool | |
summarizer = TextSummarizationTool() | |
summarizer(long_text) | |
``` | |
""" | |
default_checkpoint = "philschmid/bart-large-cnn-samsum" | |
description = ( | |
"This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " | |
"and returns a summary of the text." | |
) | |
name = "summarizer" | |
pre_processor_class = AutoTokenizer | |
model_class = AutoModelForSeq2SeqLM | |
inputs = ["text"] | |
outputs = ["text"] | |
def encode(self, text): | |
return self.pre_processor(text, return_tensors="pt", truncation=True) | |
def forward(self, inputs): | |
return self.model.generate(**inputs)[0] | |
def decode(self, outputs): | |
return self.pre_processor.decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |