Spaces:
Running
on
T4
Running
on
T4
from io import BytesIO | |
from typing import List, Union | |
import requests | |
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_decord_available(): | |
import numpy as np | |
from decord import VideoReader | |
if is_torch_available(): | |
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES | |
logger = logging.get_logger(__name__) | |
class VideoClassificationPipeline(Pipeline): | |
""" | |
Video classification pipeline using any `AutoModelForVideoClassification`. This pipeline predicts the class of a | |
video. | |
This video classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"video-classification"`. | |
See the list of available models on | |
[huggingface.co/models](https://huggingface.co/models?filter=video-classification). | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
requires_backends(self, "decord") | |
self.check_model_type(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES) | |
def _sanitize_parameters(self, top_k=None, num_frames=None, frame_sampling_rate=None): | |
preprocess_params = {} | |
if frame_sampling_rate is not None: | |
preprocess_params["frame_sampling_rate"] = frame_sampling_rate | |
if num_frames is not None: | |
preprocess_params["num_frames"] = num_frames | |
postprocess_params = {} | |
if top_k is not None: | |
postprocess_params["top_k"] = top_k | |
return preprocess_params, {}, postprocess_params | |
def __call__(self, videos: Union[str, List[str]], **kwargs): | |
""" | |
Assign labels to the video(s) passed as inputs. | |
Args: | |
videos (`str`, `List[str]`): | |
The pipeline handles three types of videos: | |
- A string containing a http link pointing to a video | |
- A string containing a local path to a video | |
The pipeline accepts either a single video or a batch of videos, which must then be passed as a string. | |
Videos in a batch must all be in the same format: all as http links or all as local paths. | |
top_k (`int`, *optional*, defaults to 5): | |
The number of top labels that will be returned by the pipeline. If the provided number is higher than | |
the number of labels available in the model configuration, it will default to the number of labels. | |
num_frames (`int`, *optional*, defaults to `self.model.config.num_frames`): | |
The number of frames sampled from the video to run the classification on. If not provided, will default | |
to the number of frames specified in the model configuration. | |
frame_sampling_rate (`int`, *optional*, defaults to 1): | |
The sampling rate used to select frames from the video. If not provided, will default to 1, i.e. every | |
frame will be used. | |
Return: | |
A dictionary or a list of dictionaries containing result. If the input is a single video, will return a | |
dictionary, if the input is a list of several videos, will return a list of dictionaries corresponding to | |
the videos. | |
The dictionaries contain the following keys: | |
- **label** (`str`) -- The label identified by the model. | |
- **score** (`int`) -- The score attributed by the model for that label. | |
""" | |
return super().__call__(videos, **kwargs) | |
def preprocess(self, video, num_frames=None, frame_sampling_rate=1): | |
if num_frames is None: | |
num_frames = self.model.config.num_frames | |
if video.startswith("http://") or video.startswith("https://"): | |
video = BytesIO(requests.get(video).content) | |
videoreader = VideoReader(video) | |
videoreader.seek(0) | |
start_idx = 0 | |
end_idx = num_frames * frame_sampling_rate - 1 | |
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64) | |
video = videoreader.get_batch(indices).asnumpy() | |
video = list(video) | |
model_inputs = self.image_processor(video, return_tensors=self.framework) | |
return model_inputs | |
def _forward(self, model_inputs): | |
model_outputs = self.model(**model_inputs) | |
return model_outputs | |
def postprocess(self, model_outputs, top_k=5): | |
if top_k > self.model.config.num_labels: | |
top_k = self.model.config.num_labels | |
if self.framework == "pt": | |
probs = model_outputs.logits.softmax(-1)[0] | |
scores, ids = probs.topk(top_k) | |
else: | |
raise ValueError(f"Unsupported framework: {self.framework}") | |
scores = scores.tolist() | |
ids = ids.tolist() | |
return [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] | |