Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Optional, Tuple, Type | |
from .common import LayerNorm2d, MLPBlock | |
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa | |
class ImageEncoderViT(nn.Module): | |
def __init__( | |
self, | |
img_size: int = 1024, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
depth: int = 12, | |
num_heads: int = 12, | |
mlp_ratio: float = 4.0, | |
out_chans: int = 256, | |
qkv_bias: bool = True, | |
norm_layer: Type[nn.Module] = nn.LayerNorm, | |
act_layer: Type[nn.Module] = nn.GELU, | |
use_abs_pos: bool = True, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
window_size: int = 0, | |
global_attn_indexes: Tuple[int, ...] = (), | |
) -> None: | |
""" | |
Args: | |
img_size (int): Input image size. | |
patch_size (int): Patch size. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
depth (int): Depth of ViT. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_abs_pos (bool): If True, use absolute positional embeddings. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. | |
global_attn_indexes (list): Indexes for blocks using global attention. | |
""" | |
super().__init__() | |
self.img_size = img_size | |
self.patch_embed = PatchEmbed( | |
kernel_size=(patch_size, patch_size), | |
stride=(patch_size, patch_size), | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
self.pos_embed: Optional[nn.Parameter] = None | |
if use_abs_pos: | |
# Initialize absolute positional embedding with pretrain image size. | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) | |
) | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
block = Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
window_size=window_size if i not in global_attn_indexes else 0, | |
input_size=(img_size // patch_size, img_size // patch_size), | |
) | |
self.blocks.append(block) | |
self.neck = nn.Sequential( | |
nn.Conv2d( | |
embed_dim, | |
out_chans, | |
kernel_size=1, | |
bias=False, | |
), | |
LayerNorm2d(out_chans), | |
nn.Conv2d( | |
out_chans, | |
out_chans, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
LayerNorm2d(out_chans), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.patch_embed(x) | |
if self.pos_embed is not None: | |
x = x + self.pos_embed | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.neck(x.permute(0, 3, 1, 2)) | |
return x | |
class Block(nn.Module): | |
"""Transformer blocks with support of window attention and residual propagation blocks""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = True, | |
norm_layer: Type[nn.Module] = nn.LayerNorm, | |
act_layer: Type[nn.Module] = nn.GELU, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
window_size: int = 0, | |
input_size: Optional[Tuple[int, int]] = None, | |
) -> None: | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. If it equals 0, then | |
use global attention. | |
input_size (int or None): Input resolution for calculating the relative positional | |
parameter size. | |
""" | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
input_size=input_size if window_size == 0 else (window_size, window_size), | |
) | |
self.norm2 = norm_layer(dim) | |
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) | |
self.window_size = window_size | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = x | |
x = self.norm1(x) | |
# Window partition | |
if self.window_size > 0: | |
H, W = x.shape[1], x.shape[2] | |
x, pad_hw = window_partition(x, self.window_size) | |
x = self.attn(x) | |
# Reverse window partition | |
if self.window_size > 0: | |
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
x = shortcut + x | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class Attention(nn.Module): | |
"""Multi-head Attention block with relative position embeddings.""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = True, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
input_size: Optional[Tuple[int, int]] = None, | |
) -> None: | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
input_size (int or None): Input resolution for calculating the relative positional | |
parameter size. | |
""" | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.use_rel_pos = use_rel_pos | |
if self.use_rel_pos: | |
assert ( | |
input_size is not None | |
), "Input size must be provided if using relative positional encoding." | |
# initialize relative positional embeddings | |
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, H, W, _ = x.shape | |
# qkv with shape (3, B, nHead, H * W, C) | |
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
# q, k, v with shape (B * nHead, H * W, C) | |
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
attn = (q * self.scale) @ k.transpose(-2, -1) | |
if self.use_rel_pos: | |
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
x = self.proj(x) | |
return x | |
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: | |
""" | |
Partition into non-overlapping windows with padding if needed. | |
Args: | |
x (tensor): input tokens with [B, H, W, C]. | |
window_size (int): window size. | |
Returns: | |
windows: windows after partition with [B * num_windows, window_size, window_size, C]. | |
(Hp, Wp): padded height and width before partition | |
""" | |
B, H, W, C = x.shape | |
pad_h = (window_size - H % window_size) % window_size | |
pad_w = (window_size - W % window_size) % window_size | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | |
Hp, Wp = H + pad_h, W + pad_w | |
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows, (Hp, Wp) | |
def window_unpartition( | |
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] | |
) -> torch.Tensor: | |
""" | |
Window unpartition into original sequences and removing padding. | |
Args: | |
x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. | |
window_size (int): window size. | |
pad_hw (Tuple): padded height and width (Hp, Wp). | |
hw (Tuple): original height and width (H, W) before padding. | |
Returns: | |
x: unpartitioned sequences with [B, H, W, C]. | |
""" | |
Hp, Wp = pad_hw | |
H, W = hw | |
B = windows.shape[0] // (Hp * Wp // window_size // window_size) | |
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) | |
if Hp > H or Wp > W: | |
x = x[:, :H, :W, :].contiguous() | |
return x | |
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: | |
""" | |
Get relative positional embeddings according to the relative positions of | |
query and key sizes. | |
Args: | |
q_size (int): size of query q. | |
k_size (int): size of key k. | |
rel_pos (Tensor): relative position embeddings (L, C). | |
Returns: | |
Extracted positional embeddings according to relative positions. | |
""" | |
max_rel_dist = int(2 * max(q_size, k_size) - 1) | |
# Interpolate rel pos if needed. | |
if rel_pos.shape[0] != max_rel_dist: | |
# Interpolate rel pos. | |
rel_pos_resized = F.interpolate( | |
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), | |
size=max_rel_dist, | |
mode="linear", | |
) | |
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) | |
else: | |
rel_pos_resized = rel_pos | |
# Scale the coords with short length if shapes for q and k are different. | |
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) | |
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) | |
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) | |
return rel_pos_resized[relative_coords.long()] | |
def add_decomposed_rel_pos( | |
attn: torch.Tensor, | |
q: torch.Tensor, | |
rel_pos_h: torch.Tensor, | |
rel_pos_w: torch.Tensor, | |
q_size: Tuple[int, int], | |
k_size: Tuple[int, int], | |
) -> torch.Tensor: | |
""" | |
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. | |
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 | |
Args: | |
attn (Tensor): attention map. | |
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). | |
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. | |
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. | |
q_size (Tuple): spatial sequence size of query q with (q_h, q_w). | |
k_size (Tuple): spatial sequence size of key k with (k_h, k_w). | |
Returns: | |
attn (Tensor): attention map with added relative positional embeddings. | |
""" | |
q_h, q_w = q_size | |
k_h, k_w = k_size | |
Rh = get_rel_pos(q_h, k_h, rel_pos_h) | |
Rw = get_rel_pos(q_w, k_w, rel_pos_w) | |
B, _, dim = q.shape | |
r_q = q.reshape(B, q_h, q_w, dim) | |
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) | |
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) | |
attn = ( | |
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] | |
).view(B, q_h * q_w, k_h * k_w) | |
return attn | |
class PatchEmbed(nn.Module): | |
""" | |
Image to Patch Embedding. | |
""" | |
def __init__( | |
self, | |
kernel_size: Tuple[int, int] = (16, 16), | |
stride: Tuple[int, int] = (16, 16), | |
padding: Tuple[int, int] = (0, 0), | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
) -> None: | |
""" | |
Args: | |
kernel_size (Tuple): kernel size of the projection layer. | |
stride (Tuple): stride of the projection layer. | |
padding (Tuple): padding size of the projection layer. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): embed_dim (int): Patch embedding dimension. | |
""" | |
super().__init__() | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.proj(x) | |
# B C H W -> B H W C | |
x = x.permute(0, 2, 3, 1) | |
return x | |