liuyizhang
commited on
Commit
•
59d64d3
1
Parent(s):
1de504b
update app.py
Browse files- Grounding_DINO/groundingdino/transforms.py +0 -311
- app.py +2 -2
Grounding_DINO/groundingdino/transforms.py
DELETED
@@ -1,311 +0,0 @@
|
|
1 |
-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
-
"""
|
3 |
-
Transforms and data augmentation for both image + bbox.
|
4 |
-
"""
|
5 |
-
import os
|
6 |
-
import random
|
7 |
-
|
8 |
-
import PIL
|
9 |
-
import torch
|
10 |
-
import torchvision.transforms as T
|
11 |
-
import torchvision.transforms.functional as F
|
12 |
-
|
13 |
-
from .util.box_ops import box_xyxy_to_cxcywh
|
14 |
-
from .util.misc import interpolate
|
15 |
-
|
16 |
-
|
17 |
-
def crop(image, target, region):
|
18 |
-
cropped_image = F.crop(image, *region)
|
19 |
-
|
20 |
-
target = target.copy()
|
21 |
-
i, j, h, w = region
|
22 |
-
|
23 |
-
# should we do something wrt the original size?
|
24 |
-
target["size"] = torch.tensor([h, w])
|
25 |
-
|
26 |
-
fields = ["labels", "area", "iscrowd", "positive_map"]
|
27 |
-
|
28 |
-
if "boxes" in target:
|
29 |
-
boxes = target["boxes"]
|
30 |
-
max_size = torch.as_tensor([w, h], dtype=torch.float32)
|
31 |
-
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
|
32 |
-
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
|
33 |
-
cropped_boxes = cropped_boxes.clamp(min=0)
|
34 |
-
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
|
35 |
-
target["boxes"] = cropped_boxes.reshape(-1, 4)
|
36 |
-
target["area"] = area
|
37 |
-
fields.append("boxes")
|
38 |
-
|
39 |
-
if "masks" in target:
|
40 |
-
# FIXME should we update the area here if there are no boxes?
|
41 |
-
target["masks"] = target["masks"][:, i : i + h, j : j + w]
|
42 |
-
fields.append("masks")
|
43 |
-
|
44 |
-
# remove elements for which the boxes or masks that have zero area
|
45 |
-
if "boxes" in target or "masks" in target:
|
46 |
-
# favor boxes selection when defining which elements to keep
|
47 |
-
# this is compatible with previous implementation
|
48 |
-
if "boxes" in target:
|
49 |
-
cropped_boxes = target["boxes"].reshape(-1, 2, 2)
|
50 |
-
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
|
51 |
-
else:
|
52 |
-
keep = target["masks"].flatten(1).any(1)
|
53 |
-
|
54 |
-
for field in fields:
|
55 |
-
if field in target:
|
56 |
-
target[field] = target[field][keep]
|
57 |
-
|
58 |
-
if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO":
|
59 |
-
# for debug and visualization only.
|
60 |
-
if "strings_positive" in target:
|
61 |
-
target["strings_positive"] = [
|
62 |
-
_i for _i, _j in zip(target["strings_positive"], keep) if _j
|
63 |
-
]
|
64 |
-
|
65 |
-
return cropped_image, target
|
66 |
-
|
67 |
-
|
68 |
-
def hflip(image, target):
|
69 |
-
flipped_image = F.hflip(image)
|
70 |
-
|
71 |
-
w, h = image.size
|
72 |
-
|
73 |
-
target = target.copy()
|
74 |
-
if "boxes" in target:
|
75 |
-
boxes = target["boxes"]
|
76 |
-
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor(
|
77 |
-
[w, 0, w, 0]
|
78 |
-
)
|
79 |
-
target["boxes"] = boxes
|
80 |
-
|
81 |
-
if "masks" in target:
|
82 |
-
target["masks"] = target["masks"].flip(-1)
|
83 |
-
|
84 |
-
return flipped_image, target
|
85 |
-
|
86 |
-
|
87 |
-
def resize(image, target, size, max_size=None):
|
88 |
-
# size can be min_size (scalar) or (w, h) tuple
|
89 |
-
|
90 |
-
def get_size_with_aspect_ratio(image_size, size, max_size=None):
|
91 |
-
w, h = image_size
|
92 |
-
if max_size is not None:
|
93 |
-
min_original_size = float(min((w, h)))
|
94 |
-
max_original_size = float(max((w, h)))
|
95 |
-
if max_original_size / min_original_size * size > max_size:
|
96 |
-
size = int(round(max_size * min_original_size / max_original_size))
|
97 |
-
|
98 |
-
if (w <= h and w == size) or (h <= w and h == size):
|
99 |
-
return (h, w)
|
100 |
-
|
101 |
-
if w < h:
|
102 |
-
ow = size
|
103 |
-
oh = int(size * h / w)
|
104 |
-
else:
|
105 |
-
oh = size
|
106 |
-
ow = int(size * w / h)
|
107 |
-
|
108 |
-
return (oh, ow)
|
109 |
-
|
110 |
-
def get_size(image_size, size, max_size=None):
|
111 |
-
if isinstance(size, (list, tuple)):
|
112 |
-
return size[::-1]
|
113 |
-
else:
|
114 |
-
return get_size_with_aspect_ratio(image_size, size, max_size)
|
115 |
-
|
116 |
-
size = get_size(image.size, size, max_size)
|
117 |
-
rescaled_image = F.resize(image, size)
|
118 |
-
|
119 |
-
if target is None:
|
120 |
-
return rescaled_image, None
|
121 |
-
|
122 |
-
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
|
123 |
-
ratio_width, ratio_height = ratios
|
124 |
-
|
125 |
-
target = target.copy()
|
126 |
-
if "boxes" in target:
|
127 |
-
boxes = target["boxes"]
|
128 |
-
scaled_boxes = boxes * torch.as_tensor(
|
129 |
-
[ratio_width, ratio_height, ratio_width, ratio_height]
|
130 |
-
)
|
131 |
-
target["boxes"] = scaled_boxes
|
132 |
-
|
133 |
-
if "area" in target:
|
134 |
-
area = target["area"]
|
135 |
-
scaled_area = area * (ratio_width * ratio_height)
|
136 |
-
target["area"] = scaled_area
|
137 |
-
|
138 |
-
h, w = size
|
139 |
-
target["size"] = torch.tensor([h, w])
|
140 |
-
|
141 |
-
if "masks" in target:
|
142 |
-
target["masks"] = (
|
143 |
-
interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5
|
144 |
-
)
|
145 |
-
|
146 |
-
return rescaled_image, target
|
147 |
-
|
148 |
-
|
149 |
-
def pad(image, target, padding):
|
150 |
-
# assumes that we only pad on the bottom right corners
|
151 |
-
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
|
152 |
-
if target is None:
|
153 |
-
return padded_image, None
|
154 |
-
target = target.copy()
|
155 |
-
# should we do something wrt the original size?
|
156 |
-
target["size"] = torch.tensor(padded_image.size[::-1])
|
157 |
-
if "masks" in target:
|
158 |
-
target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1]))
|
159 |
-
return padded_image, target
|
160 |
-
|
161 |
-
|
162 |
-
class ResizeDebug(object):
|
163 |
-
def __init__(self, size):
|
164 |
-
self.size = size
|
165 |
-
|
166 |
-
def __call__(self, img, target):
|
167 |
-
return resize(img, target, self.size)
|
168 |
-
|
169 |
-
|
170 |
-
class RandomCrop(object):
|
171 |
-
def __init__(self, size):
|
172 |
-
self.size = size
|
173 |
-
|
174 |
-
def __call__(self, img, target):
|
175 |
-
region = T.RandomCrop.get_params(img, self.size)
|
176 |
-
return crop(img, target, region)
|
177 |
-
|
178 |
-
|
179 |
-
class RandomSizeCrop(object):
|
180 |
-
def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
|
181 |
-
# respect_boxes: True to keep all boxes
|
182 |
-
# False to tolerence box filter
|
183 |
-
self.min_size = min_size
|
184 |
-
self.max_size = max_size
|
185 |
-
self.respect_boxes = respect_boxes
|
186 |
-
|
187 |
-
def __call__(self, img: PIL.Image.Image, target: dict):
|
188 |
-
init_boxes = len(target["boxes"])
|
189 |
-
max_patience = 10
|
190 |
-
for i in range(max_patience):
|
191 |
-
w = random.randint(self.min_size, min(img.width, self.max_size))
|
192 |
-
h = random.randint(self.min_size, min(img.height, self.max_size))
|
193 |
-
region = T.RandomCrop.get_params(img, [h, w])
|
194 |
-
result_img, result_target = crop(img, target, region)
|
195 |
-
if (
|
196 |
-
not self.respect_boxes
|
197 |
-
or len(result_target["boxes"]) == init_boxes
|
198 |
-
or i == max_patience - 1
|
199 |
-
):
|
200 |
-
return result_img, result_target
|
201 |
-
return result_img, result_target
|
202 |
-
|
203 |
-
|
204 |
-
class CenterCrop(object):
|
205 |
-
def __init__(self, size):
|
206 |
-
self.size = size
|
207 |
-
|
208 |
-
def __call__(self, img, target):
|
209 |
-
image_width, image_height = img.size
|
210 |
-
crop_height, crop_width = self.size
|
211 |
-
crop_top = int(round((image_height - crop_height) / 2.0))
|
212 |
-
crop_left = int(round((image_width - crop_width) / 2.0))
|
213 |
-
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
|
214 |
-
|
215 |
-
|
216 |
-
class RandomHorizontalFlip(object):
|
217 |
-
def __init__(self, p=0.5):
|
218 |
-
self.p = p
|
219 |
-
|
220 |
-
def __call__(self, img, target):
|
221 |
-
if random.random() < self.p:
|
222 |
-
return hflip(img, target)
|
223 |
-
return img, target
|
224 |
-
|
225 |
-
|
226 |
-
class RandomResize(object):
|
227 |
-
def __init__(self, sizes, max_size=None):
|
228 |
-
assert isinstance(sizes, (list, tuple))
|
229 |
-
self.sizes = sizes
|
230 |
-
self.max_size = max_size
|
231 |
-
|
232 |
-
def __call__(self, img, target=None):
|
233 |
-
size = random.choice(self.sizes)
|
234 |
-
return resize(img, target, size, self.max_size)
|
235 |
-
|
236 |
-
|
237 |
-
class RandomPad(object):
|
238 |
-
def __init__(self, max_pad):
|
239 |
-
self.max_pad = max_pad
|
240 |
-
|
241 |
-
def __call__(self, img, target):
|
242 |
-
pad_x = random.randint(0, self.max_pad)
|
243 |
-
pad_y = random.randint(0, self.max_pad)
|
244 |
-
return pad(img, target, (pad_x, pad_y))
|
245 |
-
|
246 |
-
|
247 |
-
class RandomSelect(object):
|
248 |
-
"""
|
249 |
-
Randomly selects between transforms1 and transforms2,
|
250 |
-
with probability p for transforms1 and (1 - p) for transforms2
|
251 |
-
"""
|
252 |
-
|
253 |
-
def __init__(self, transforms1, transforms2, p=0.5):
|
254 |
-
self.transforms1 = transforms1
|
255 |
-
self.transforms2 = transforms2
|
256 |
-
self.p = p
|
257 |
-
|
258 |
-
def __call__(self, img, target):
|
259 |
-
if random.random() < self.p:
|
260 |
-
return self.transforms1(img, target)
|
261 |
-
return self.transforms2(img, target)
|
262 |
-
|
263 |
-
|
264 |
-
class ToTensor(object):
|
265 |
-
def __call__(self, img, target):
|
266 |
-
return F.to_tensor(img), target
|
267 |
-
|
268 |
-
|
269 |
-
class RandomErasing(object):
|
270 |
-
def __init__(self, *args, **kwargs):
|
271 |
-
self.eraser = T.RandomErasing(*args, **kwargs)
|
272 |
-
|
273 |
-
def __call__(self, img, target):
|
274 |
-
return self.eraser(img), target
|
275 |
-
|
276 |
-
|
277 |
-
class Normalize(object):
|
278 |
-
def __init__(self, mean, std):
|
279 |
-
self.mean = mean
|
280 |
-
self.std = std
|
281 |
-
|
282 |
-
def __call__(self, image, target=None):
|
283 |
-
image = F.normalize(image, mean=self.mean, std=self.std)
|
284 |
-
if target is None:
|
285 |
-
return image, None
|
286 |
-
target = target.copy()
|
287 |
-
h, w = image.shape[-2:]
|
288 |
-
if "boxes" in target:
|
289 |
-
boxes = target["boxes"]
|
290 |
-
boxes = box_xyxy_to_cxcywh(boxes)
|
291 |
-
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
|
292 |
-
target["boxes"] = boxes
|
293 |
-
return image, target
|
294 |
-
|
295 |
-
|
296 |
-
class Compose(object):
|
297 |
-
def __init__(self, transforms):
|
298 |
-
self.transforms = transforms
|
299 |
-
|
300 |
-
def __call__(self, image, target):
|
301 |
-
for t in self.transforms:
|
302 |
-
image, target = t(image, target)
|
303 |
-
return image, target
|
304 |
-
|
305 |
-
def __repr__(self):
|
306 |
-
format_string = self.__class__.__name__ + "("
|
307 |
-
for t in self.transforms:
|
308 |
-
format_string += "\n"
|
309 |
-
format_string += " {0}".format(t)
|
310 |
-
format_string += "\n)"
|
311 |
-
return format_string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -3,8 +3,8 @@ import subprocess
|
|
3 |
|
4 |
result = subprocess.run(['pip', 'install', '-e', 'segment_anything'], check=True)
|
5 |
print(f'liuyz_install segment_anything result = {result}')
|
6 |
-
result = subprocess.run(['pip', 'install', '-e', '
|
7 |
-
print(f'liuyz_install
|
8 |
|
9 |
result = subprocess.run(['pip', 'list'], check=True)
|
10 |
print(f'liuyz_pip list result = {result}')
|
|
|
3 |
|
4 |
result = subprocess.run(['pip', 'install', '-e', 'segment_anything'], check=True)
|
5 |
print(f'liuyz_install segment_anything result = {result}')
|
6 |
+
result = subprocess.run(['pip', 'install', '-e', 'Grounding_DINO'], check=True)
|
7 |
+
print(f'liuyz_install Grounding_DINO result = {result}')
|
8 |
|
9 |
result = subprocess.run(['pip', 'list'], check=True)
|
10 |
print(f'liuyz_pip list result = {result}')
|