MoMA_demo / model_lib /attention_processor.py
Kunpeng Song
recreate
8a4a948
raw
history blame
11.3 kB
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import math
from torchvision.utils import save_image
import torchvision.transforms as T
def get_mask_from_cross(attn_processors):
reference_masks = []
for attn_processor in attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
reference_masks.append(attn_processor.mask_i)
mask = torch.cat(reference_masks,dim=1).mean(dim=1)
mask = (mask-mask.min())/(mask.max()-mask.min())
mask = (mask>0.2).to(torch.float32)*mask
mask = (mask-mask.min())/(mask.max()-mask.min())
return mask.unsqueeze(1)
class IPAttnProcessor(nn.Module):
r"""
Attention processor for IP-Adapater.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.store_attn = None
self.enabled = True
self.mode = 'inject'
self.subject_idxs = None
self.mask_i = None
self.mask_ig_prev = None
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# for ip-adapter
if self.enabled:
if self.mode == 'inject' or self.mode == 'masked_generation':
ip_key = self.to_k_ip(ip_hidden_states.to(torch.float16))
ip_value = self.to_v_ip(ip_hidden_states.to(torch.float16))
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
ip_attention_probs = attn.get_attention_scores(query, ip_key.to(torch.float32), None)
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value.to(torch.float32))
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
if (self.mask_ig_prev is not None) and self.mode == 'masked_generation':
mask_ig_prev = rearrange(F.interpolate(self.mask_ig_prev,size=int(math.sqrt(query.shape[1]))),"b c h w -> b (h w) c")
if not mask_ig_prev.shape[0]==ip_hidden_states.shape[0]: mask_ig_prev = mask_ig_prev.repeat(2,1,1)
ip_hidden_states = ip_hidden_states * mask_ig_prev
hidden_states = hidden_states + self.scale * ip_hidden_states
if self.mode == 'extract' or self.mode == 'masked_generation':
subject_idxs = self.subject_idxs*2 if not (hidden_states.shape[0] == len(self.subject_idxs)) else self.subject_idxs
assert (hidden_states.shape[0] == len(subject_idxs))
attentions = rearrange(attention_probs, '(b h) n d -> b h n d', h=8).mean(1)
attn_extracted = [attentions[i, :, subject_idxs[i]].sum(-1) for i in range(hidden_states.shape[0])]
attn_extracted = [(atn-atn.min())/(atn.max()-atn.min()) for atn in attn_extracted]
attn_extracted = torch.stack(attn_extracted, dim=0)
attn_extracted = rearrange(attn_extracted, 'b (h w) -> b h w', h=int(math.sqrt(attention_probs.shape[1])))
attn_extracted = torch.clamp(F.interpolate(attn_extracted.unsqueeze(1),size=512),min=0,max=1)
self.mask_i = attn_extracted
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
return hidden_states
### added for self attention
class IPAttnProcessor_Self(nn.Module):
r"""
Attention processor for IP-Adapater. (But for self attention)
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(hidden_size, hidden_size, bias=False)
self.scale_learnable = torch.nn.Parameter(torch.zeros(1),requires_grad=True)
self.enabled = True
self.mode = 'extract'
self.store_ks, self.store_vs = [], []
self.mask_id, self.mask_ig = None, None
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key_0 = attn.to_k(encoder_hidden_states)
value_0 = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key_0)
value = attn.head_to_batch_dim(value_0)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
if self.enabled:
if self.mode == 'extract':
ks, vs = attn.head_to_batch_dim(self.to_k_ip(key_0)), attn.head_to_batch_dim(self.to_v_ip(value_0))
self.store_ks, self.store_vs = self.store_ks+[ks], self.store_vs+[vs]
self.store_ks, self.store_vs = torch.cat(self.store_ks,dim=0), torch.cat(self.store_vs,dim=0)
if self.mode == 'masked_generation':
if not self.store_ks.shape[0]==query.shape[0]: self.store_ks,self.store_vs = self.store_ks.repeat(2,1,1), self.store_vs.repeat(2,1,1)
mask_id = self.mask_id.clone()
mask_id.masked_fill_(self.mask_id==False, -torch.finfo(mask_id.dtype).max)
mask_id = rearrange(F.interpolate(mask_id,size=int(math.sqrt(query.shape[1]))),"b c h w -> b c (h w)").repeat(1,query.shape[1],1)
mask_id = mask_id.repeat(8,1,1) # 8 is head dim
if not mask_id.shape[0]==int(query.shape[0]): mask_id = mask_id.repeat(2,1,1)
attention_probs_ref = attn.get_attention_scores(query, self.store_ks, mask_id.to(query.dtype))
hidden_states_ref = torch.bmm(attention_probs_ref, self.store_vs)
hidden_states_ref = attn.batch_to_head_dim(hidden_states_ref)
scale = self.scale.repeat(int(batch_size/self.scale.shape[0])).unsqueeze(-1).unsqueeze(-1) if type(self.scale)==torch.Tensor else self.scale
if self.mask_ig == None:
hidden_states = hidden_states + scale * hidden_states_ref * self.scale_learnable
else:
mask_ig = rearrange(F.interpolate(self.mask_ig,size=int(math.sqrt(query.shape[1]))),"b c h w -> b (h w) c")
if not mask_ig.shape[0]==hidden_states_ref.shape[0]: mask_ig = mask_ig.repeat(2,1,1)
hidden_states = hidden_states + scale * hidden_states_ref * mask_ig * self.scale_learnable
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
return hidden_states