Spaces:
Running
Running
Usage: train.py [OPTIONS] | |
Train a GAN using the techniques described in the paper "Training | |
Generative Adversarial Networks with Limited Data". | |
Examples: | |
# Train with custom images using 1 GPU. | |
python train.py --outdir=~/training-runs --data=~/my-image-folder | |
# Train class-conditional CIFAR-10 using 2 GPUs. | |
python train.py --outdir=~/training-runs --data=~/datasets/cifar10.zip \ | |
--gpus=2 --cfg=cifar --cond=1 | |
# Transfer learn MetFaces from FFHQ using 4 GPUs. | |
python train.py --outdir=~/training-runs --data=~/datasets/metfaces.zip \ | |
--gpus=4 --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 | |
# Reproduce original StyleGAN2 config F. | |
python train.py --outdir=~/training-runs --data=~/datasets/ffhq.zip \ | |
--gpus=8 --cfg=stylegan2 --mirror=1 --aug=noaug | |
Base configs (--cfg): | |
auto Automatically select reasonable defaults based on resolution | |
and GPU count. Good starting point for new datasets. | |
stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024. | |
paper256 Reproduce results for FFHQ and LSUN Cat at 256x256. | |
paper512 Reproduce results for BreCaHAD and AFHQ at 512x512. | |
paper1024 Reproduce results for MetFaces at 1024x1024. | |
cifar Reproduce results for CIFAR-10 at 32x32. | |
Transfer learning source networks (--resume): | |
ffhq256 FFHQ trained at 256x256 resolution. | |
ffhq512 FFHQ trained at 512x512 resolution. | |
ffhq1024 FFHQ trained at 1024x1024 resolution. | |
celebahq256 CelebA-HQ trained at 256x256 resolution. | |
lsundog256 LSUN Dog trained at 256x256 resolution. | |
<PATH or URL> Custom network pickle. | |
Options: | |
--outdir DIR Where to save the results [required] | |
--gpus INT Number of GPUs to use [default: 1] | |
--snap INT Snapshot interval [default: 50 ticks] | |
--metrics LIST Comma-separated list or "none" [default: | |
fid50k_full] | |
--seed INT Random seed [default: 0] | |
-n, --dry-run Print training options and exit | |
--data PATH Training data (directory or zip) [required] | |
--cond BOOL Train conditional model based on dataset | |
labels [default: false] | |
--subset INT Train with only N images [default: all] | |
--mirror BOOL Enable dataset x-flips [default: false] | |
--cfg [auto|stylegan2|paper256|paper512|paper1024|cifar] | |
Base config [default: auto] | |
--gamma FLOAT Override R1 gamma | |
--kimg INT Override training duration | |
--batch INT Override batch size | |
--aug [noaug|ada|fixed] Augmentation mode [default: ada] | |
--p FLOAT Augmentation probability for --aug=fixed | |
--target FLOAT ADA target value for --aug=ada | |
--augpipe [blit|geom|color|filter|noise|cutout|bg|bgc|bgcf|bgcfn|bgcfnc] | |
Augmentation pipeline [default: bgc] | |
--resume PKL Resume training [default: noresume] | |
--freezed INT Freeze-D [default: 0 layers] | |
--fp32 BOOL Disable mixed-precision training | |
--nhwc BOOL Use NHWC memory format with FP16 | |
--nobench BOOL Disable cuDNN benchmarking | |
--allow-tf32 BOOL Allow PyTorch to use TF32 internally | |
--workers INT Override number of DataLoader workers | |
--help Show this message and exit. | |