Spaces:
Running
Running
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Generate style mixing image matrix using pretrained network pickle.""" | |
import os | |
import re | |
from typing import List | |
import click | |
import dnnlib | |
import numpy as np | |
import PIL.Image | |
import torch | |
import legacy | |
#---------------------------------------------------------------------------- | |
def num_range(s: str) -> List[int]: | |
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' | |
range_re = re.compile(r'^(\d+)-(\d+)$') | |
m = range_re.match(s) | |
if m: | |
return list(range(int(m.group(1)), int(m.group(2))+1)) | |
vals = s.split(',') | |
return [int(x) for x in vals] | |
#---------------------------------------------------------------------------- | |
def generate_style_mix( | |
network_pkl: str, | |
row_seeds: List[int], | |
col_seeds: List[int], | |
col_styles: List[int], | |
truncation_psi: float, | |
noise_mode: str, | |
outdir: str | |
): | |
"""Generate images using pretrained network pickle. | |
Examples: | |
\b | |
python style_mixing.py --outdir=out --rows=85,100,75,458,1500 --cols=55,821,1789,293 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl | |
""" | |
print('Loading networks from "%s"...' % network_pkl) | |
device = torch.device('cuda') | |
with dnnlib.util.open_url(network_pkl) as f: | |
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore | |
os.makedirs(outdir, exist_ok=True) | |
print('Generating W vectors...') | |
all_seeds = list(set(row_seeds + col_seeds)) | |
all_z = np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds]) | |
all_w = G.mapping(torch.from_numpy(all_z).to(device), None) | |
w_avg = G.mapping.w_avg | |
all_w = w_avg + (all_w - w_avg) * truncation_psi | |
w_dict = {seed: w for seed, w in zip(all_seeds, list(all_w))} | |
print('Generating images...') | |
all_images = G.synthesis(all_w, noise_mode=noise_mode) | |
all_images = (all_images.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu().numpy() | |
image_dict = {(seed, seed): image for seed, image in zip(all_seeds, list(all_images))} | |
print('Generating style-mixed images...') | |
for row_seed in row_seeds: | |
for col_seed in col_seeds: | |
w = w_dict[row_seed].clone() | |
w[col_styles] = w_dict[col_seed][col_styles] | |
image = G.synthesis(w[np.newaxis], noise_mode=noise_mode) | |
image = (image.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
image_dict[(row_seed, col_seed)] = image[0].cpu().numpy() | |
print('Saving images...') | |
os.makedirs(outdir, exist_ok=True) | |
for (row_seed, col_seed), image in image_dict.items(): | |
PIL.Image.fromarray(image, 'RGB').save(f'{outdir}/{row_seed}-{col_seed}.png') | |
print('Saving image grid...') | |
W = G.img_resolution | |
H = G.img_resolution | |
canvas = PIL.Image.new('RGB', (W * (len(col_seeds) + 1), H * (len(row_seeds) + 1)), 'black') | |
for row_idx, row_seed in enumerate([0] + row_seeds): | |
for col_idx, col_seed in enumerate([0] + col_seeds): | |
if row_idx == 0 and col_idx == 0: | |
continue | |
key = (row_seed, col_seed) | |
if row_idx == 0: | |
key = (col_seed, col_seed) | |
if col_idx == 0: | |
key = (row_seed, row_seed) | |
canvas.paste(PIL.Image.fromarray(image_dict[key], 'RGB'), (W * col_idx, H * row_idx)) | |
canvas.save(f'{outdir}/grid.png') | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
generate_style_mix() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |