Spaces:
Runtime error
Runtime error
ymzhang319
commited on
Commit
•
7f2690b
1
Parent(s):
8c104ce
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +276 -0
- configs/auffusion/vocoder/config.json +37 -0
- configs/train/train_semantic_adapter.yaml +54 -0
- configs/train/train_temporal_adapter.yaml +48 -0
- environment.yaml +24 -0
- foleycrafter/data/dataset.py +175 -0
- foleycrafter/data/video_transforms.py +400 -0
- foleycrafter/models/adapters/attention_processor.py +653 -0
- foleycrafter/models/adapters/ip_adapter.py +217 -0
- foleycrafter/models/adapters/resampler.py +158 -0
- foleycrafter/models/adapters/transformer.py +327 -0
- foleycrafter/models/adapters/utils.py +81 -0
- foleycrafter/models/auffusion/attention.py +669 -0
- foleycrafter/models/auffusion/attention_processor.py +0 -0
- foleycrafter/models/auffusion/dual_transformer_2d.py +156 -0
- foleycrafter/models/auffusion/loaders/ip_adapter.py +520 -0
- foleycrafter/models/auffusion/loaders/unet.py +1100 -0
- foleycrafter/models/auffusion/resnet.py +685 -0
- foleycrafter/models/auffusion/transformer_2d.py +460 -0
- foleycrafter/models/auffusion/unet_2d_blocks.py +0 -0
- foleycrafter/models/auffusion_unet.py +1260 -0
- foleycrafter/models/specvqgan/data/greatesthit.py +993 -0
- foleycrafter/models/specvqgan/data/impactset.py +778 -0
- foleycrafter/models/specvqgan/data/transforms.py +685 -0
- foleycrafter/models/specvqgan/data/utils.py +265 -0
- foleycrafter/models/specvqgan/models/av_cond_transformer.py +528 -0
- foleycrafter/models/specvqgan/models/cond_transformer.py +455 -0
- foleycrafter/models/specvqgan/models/vqgan.py +397 -0
- foleycrafter/models/specvqgan/modules/diffusionmodules/model.py +999 -0
- foleycrafter/models/specvqgan/modules/discriminator/model.py +295 -0
- foleycrafter/models/specvqgan/modules/losses/__init__.py +7 -0
- foleycrafter/models/specvqgan/modules/losses/lpaps.py +152 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/configs/melception.yaml +24 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish.yaml +34 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish_gh.yaml +25 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish_gh_action.yaml +25 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish_gh_material.yaml +25 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/dataset.py +295 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/logger.py +90 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/loss.py +41 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/metrics.py +69 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/model.py +77 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/predict.py +90 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/predict_gh.py +66 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/train_melception.py +241 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/train_vggishish.py +199 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/train_vggishish_gh.py +218 -0
- foleycrafter/models/specvqgan/modules/losses/vggishish/transforms.py +98 -0
- foleycrafter/models/specvqgan/modules/losses/vqperceptual.py +209 -0
- foleycrafter/models/specvqgan/modules/misc/class_cond.py +21 -0
app.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
import os
|
5 |
+
import os.path as osp
|
6 |
+
import random
|
7 |
+
from argparse import ArgumentParser
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
from foleycrafter.utils.util import build_foleycrafter, read_frames_with_moviepy
|
13 |
+
from foleycrafter.pipelines.auffusion_pipeline import denormalize_spectrogram
|
14 |
+
from foleycrafter.pipelines.auffusion_pipeline import Generator
|
15 |
+
from foleycrafter.models.time_detector.model import VideoOnsetNet
|
16 |
+
from foleycrafter.models.specvqgan.onset_baseline.utils import torch_utils
|
17 |
+
|
18 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
19 |
+
from huggingface_hub import snapshot_download
|
20 |
+
from diffusers import DDIMScheduler, EulerDiscreteScheduler, PNDMScheduler
|
21 |
+
|
22 |
+
import soundfile as sf
|
23 |
+
from moviepy.editor import AudioFileClip, VideoFileClip
|
24 |
+
os.environ['GRADIO_TEMP_DIR'] = './tmp'
|
25 |
+
|
26 |
+
sample_idx = 0
|
27 |
+
scheduler_dict = {
|
28 |
+
"DDIM": DDIMScheduler,
|
29 |
+
"Euler": EulerDiscreteScheduler,
|
30 |
+
"PNDM": PNDMScheduler,
|
31 |
+
}
|
32 |
+
|
33 |
+
css = """
|
34 |
+
.toolbutton {
|
35 |
+
margin-buttom: 0em 0em 0em 0em;
|
36 |
+
max-width: 2.5em;
|
37 |
+
min-width: 2.5em !important;
|
38 |
+
height: 2.5em;
|
39 |
+
}
|
40 |
+
"""
|
41 |
+
|
42 |
+
parser = ArgumentParser()
|
43 |
+
parser.add_argument("--config", type=str, default="example/config/base.yaml")
|
44 |
+
parser.add_argument("--server-name", type=str, default="0.0.0.0")
|
45 |
+
parser.add_argument("--port", type=int, default=11451)
|
46 |
+
parser.add_argument("--share", action="store_true")
|
47 |
+
|
48 |
+
parser.add_argument("--save-path", default="samples")
|
49 |
+
|
50 |
+
args = parser.parse_args()
|
51 |
+
|
52 |
+
|
53 |
+
N_PROMPT = (
|
54 |
+
""
|
55 |
+
)
|
56 |
+
|
57 |
+
class FoleyController:
|
58 |
+
def __init__(self):
|
59 |
+
# config dirs
|
60 |
+
self.basedir = os.getcwd()
|
61 |
+
self.model_dir = os.path.join(self.basedir, "models")
|
62 |
+
self.savedir = os.path.join(self.basedir, args.save_path, datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
|
63 |
+
self.savedir_sample = os.path.join(self.savedir, "sample")
|
64 |
+
os.makedirs(self.savedir, exist_ok=True)
|
65 |
+
|
66 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
67 |
+
|
68 |
+
self.pipeline = None
|
69 |
+
|
70 |
+
self.loaded = False
|
71 |
+
|
72 |
+
self.load_model()
|
73 |
+
|
74 |
+
def load_model(self):
|
75 |
+
gr.Info("Start Load Models...")
|
76 |
+
print("Start Load Models...")
|
77 |
+
|
78 |
+
# download ckpt
|
79 |
+
pretrained_model_name_or_path = 'auffusion/auffusion-full-no-adapter'
|
80 |
+
if not os.path.isdir(pretrained_model_name_or_path):
|
81 |
+
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path, local_dir='models/auffusion')
|
82 |
+
|
83 |
+
fc_ckpt = 'ymzhang319/FoleyCrafter'
|
84 |
+
if not os.path.isdir(fc_ckpt):
|
85 |
+
fc_ckpt = snapshot_download(fc_ckpt, local_dir='models/')
|
86 |
+
|
87 |
+
# set model config
|
88 |
+
temporal_ckpt_path = osp.join(self.model_dir, 'temporal_adapter.ckpt')
|
89 |
+
|
90 |
+
# load vocoder
|
91 |
+
vocoder_config_path= "./models/auffusion"
|
92 |
+
self.vocoder = Generator.from_pretrained(
|
93 |
+
vocoder_config_path,
|
94 |
+
subfolder="vocoder").to(self.device)
|
95 |
+
|
96 |
+
# load time detector
|
97 |
+
time_detector_ckpt = osp.join(osp.join(self.model_dir, 'timestamp_detector.pth.tar'))
|
98 |
+
time_detector = VideoOnsetNet(False)
|
99 |
+
self.time_detector, _ = torch_utils.load_model(time_detector_ckpt, time_detector, strict=True, device=self.device)
|
100 |
+
|
101 |
+
self.pipeline = build_foleycrafter().to(self.device)
|
102 |
+
ckpt = torch.load(temporal_ckpt_path)
|
103 |
+
|
104 |
+
# load temporal adapter
|
105 |
+
if 'state_dict' in ckpt.keys():
|
106 |
+
ckpt = ckpt['state_dict']
|
107 |
+
load_gligen_ckpt = {}
|
108 |
+
for key, value in ckpt.items():
|
109 |
+
if key.startswith('module.'):
|
110 |
+
load_gligen_ckpt[key[len('module.'):]] = value
|
111 |
+
else:
|
112 |
+
load_gligen_ckpt[key] = value
|
113 |
+
m, u = self.pipeline.controlnet.load_state_dict(load_gligen_ckpt, strict=False)
|
114 |
+
print(f"### Control Net missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
115 |
+
|
116 |
+
self.image_processor = CLIPImageProcessor()
|
117 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained('h94/IP-Adapter', subfolder='models/image_encoder').to(self.device)
|
118 |
+
|
119 |
+
self.pipeline.load_ip_adapter(fc_ckpt, subfolder='semantic', weight_name='semantic_adapter.bin', image_encoder_folder=None)
|
120 |
+
|
121 |
+
gr.Info("Load Finish!")
|
122 |
+
print("Load Finish!")
|
123 |
+
self.loaded = True
|
124 |
+
|
125 |
+
return "Load"
|
126 |
+
|
127 |
+
def foley(
|
128 |
+
self,
|
129 |
+
input_video,
|
130 |
+
prompt_textbox,
|
131 |
+
negative_prompt_textbox,
|
132 |
+
ip_adapter_scale,
|
133 |
+
temporal_scale,
|
134 |
+
sampler_dropdown,
|
135 |
+
sample_step_slider,
|
136 |
+
cfg_scale_slider,
|
137 |
+
seed_textbox,
|
138 |
+
):
|
139 |
+
|
140 |
+
vision_transform_list = [
|
141 |
+
torchvision.transforms.Resize((128, 128)),
|
142 |
+
torchvision.transforms.CenterCrop((112, 112)),
|
143 |
+
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
144 |
+
]
|
145 |
+
video_transform = torchvision.transforms.Compose(vision_transform_list)
|
146 |
+
if not self.loaded:
|
147 |
+
raise gr.Error("Error with loading model")
|
148 |
+
generator = torch.Generator()
|
149 |
+
if seed_textbox != "":
|
150 |
+
torch.manual_seed(int(seed_textbox))
|
151 |
+
generator.manual_seed(int(seed_textbox))
|
152 |
+
max_frame_nums = 15
|
153 |
+
frames, duration = read_frames_with_moviepy(input_video, max_frame_nums=max_frame_nums)
|
154 |
+
if duration >= 10:
|
155 |
+
duration = 10
|
156 |
+
time_frames = torch.FloatTensor(frames).permute(0, 3, 1, 2)
|
157 |
+
time_frames = video_transform(time_frames)
|
158 |
+
time_frames = {'frames': time_frames.unsqueeze(0).permute(0, 2, 1, 3, 4)}
|
159 |
+
preds = self.time_detector(time_frames)
|
160 |
+
preds = torch.sigmoid(preds)
|
161 |
+
|
162 |
+
# duration
|
163 |
+
time_condition = [-1 if preds[0][int(i / (1024 / 10 * duration) * max_frame_nums)] < 0.5 else 1 for i in range(int(1024 / 10 * duration))]
|
164 |
+
time_condition = time_condition + [-1] * (1024 - len(time_condition))
|
165 |
+
# w -> b c h w
|
166 |
+
time_condition = torch.FloatTensor(time_condition).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(1, 1, 256, 1)
|
167 |
+
|
168 |
+
images = self.image_processor(images=frames, return_tensors="pt").to(self.device)
|
169 |
+
image_embeddings = self.image_encoder(**images).image_embeds
|
170 |
+
image_embeddings = torch.mean(image_embeddings, dim=0, keepdim=True).unsqueeze(0).unsqueeze(0)
|
171 |
+
neg_image_embeddings = torch.zeros_like(image_embeddings)
|
172 |
+
image_embeddings = torch.cat([neg_image_embeddings, image_embeddings], dim=1)
|
173 |
+
self.pipeline.set_ip_adapter_scale(ip_adapter_scale)
|
174 |
+
sample = self.pipeline(
|
175 |
+
prompt=prompt_textbox,
|
176 |
+
negative_prompt=negative_prompt_textbox,
|
177 |
+
ip_adapter_image_embeds=image_embeddings,
|
178 |
+
image=time_condition,
|
179 |
+
controlnet_conditioning_scale=float(temporal_scale),
|
180 |
+
num_inference_steps=sample_step_slider,
|
181 |
+
height=256,
|
182 |
+
width=1024,
|
183 |
+
output_type="pt",
|
184 |
+
generator=generator,
|
185 |
+
)
|
186 |
+
name = 'output'
|
187 |
+
audio_img = sample.images[0]
|
188 |
+
audio = denormalize_spectrogram(audio_img)
|
189 |
+
audio = self.vocoder.inference(audio, lengths=160000)[0]
|
190 |
+
audio_save_path = osp.join(self.savedir_sample, 'audio')
|
191 |
+
os.makedirs(audio_save_path, exist_ok=True)
|
192 |
+
audio = audio[:int(duration * 16000)]
|
193 |
+
|
194 |
+
save_path = osp.join(audio_save_path, f'{name}.wav')
|
195 |
+
sf.write(save_path, audio, 16000)
|
196 |
+
|
197 |
+
audio = AudioFileClip(osp.join(audio_save_path, f'{name}.wav'))
|
198 |
+
video = VideoFileClip(input_video)
|
199 |
+
audio = audio.subclip(0, duration)
|
200 |
+
video.audio = audio
|
201 |
+
video = video.subclip(0, duration)
|
202 |
+
video.write_videofile(osp.join(self.savedir_sample, f'{name}.mp4'))
|
203 |
+
save_sample_path = os.path.join(self.savedir_sample, f"{name}.mp4")
|
204 |
+
|
205 |
+
return save_sample_path
|
206 |
+
|
207 |
+
controller = FoleyController()
|
208 |
+
|
209 |
+
def ui():
|
210 |
+
with gr.Blocks(css=css) as demo:
|
211 |
+
gr.HTML(
|
212 |
+
"<div align='center'><font size='6'>FoleyCrafter: Bring Silent Videos to Life with Lifelike and Synchronized Sounds</font></div>"
|
213 |
+
)
|
214 |
+
with gr.Row():
|
215 |
+
gr.Markdown(
|
216 |
+
"<div align='center'><font size='5'><a href='https://foleycrafter.github.io/'>Project Page</a>  " # noqa
|
217 |
+
"<a href='https://arxiv.org/abs/xxxx.xxxxx/'>Paper</a>  "
|
218 |
+
"<a href='https://github.com/open-mmlab/foleycrafter'>Code</a>  "
|
219 |
+
"<a href='https://huggingface.co/spaces/ymzhang319/FoleyCrafter'>Demo</a> </font></div>"
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Column(variant="panel"):
|
223 |
+
with gr.Row(equal_height=False):
|
224 |
+
with gr.Column():
|
225 |
+
with gr.Row():
|
226 |
+
init_img = gr.Video(label="Input Video")
|
227 |
+
with gr.Row():
|
228 |
+
prompt_textbox = gr.Textbox(value='', label="Prompt", lines=1)
|
229 |
+
with gr.Row():
|
230 |
+
negative_prompt_textbox = gr.Textbox(value=N_PROMPT, label="Negative prompt", lines=1)
|
231 |
+
|
232 |
+
with gr.Row():
|
233 |
+
sampler_dropdown = gr.Dropdown(
|
234 |
+
label="Sampling method",
|
235 |
+
choices=list(scheduler_dict.keys()),
|
236 |
+
value=list(scheduler_dict.keys())[0],
|
237 |
+
)
|
238 |
+
sample_step_slider = gr.Slider(
|
239 |
+
label="Sampling steps", value=25, minimum=10, maximum=100, step=1
|
240 |
+
)
|
241 |
+
|
242 |
+
cfg_scale_slider = gr.Slider(label="CFG Scale", value=7.5, minimum=0, maximum=20)
|
243 |
+
ip_adapter_scale = gr.Slider(label="Visual Content Scale", value=1.0, minimum=0, maximum=1)
|
244 |
+
temporal_scale = gr.Slider(label="Temporal Align Scale", value=0., minimum=0., maximum=1.0)
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
seed_textbox = gr.Textbox(label="Seed", value=42)
|
248 |
+
seed_button = gr.Button(value="\U0001f3b2", elem_classes="toolbutton")
|
249 |
+
seed_button.click(fn=lambda x: random.randint(1, 1e8), outputs=[seed_textbox], queue=False)
|
250 |
+
|
251 |
+
generate_button = gr.Button(value="Generate", variant="primary")
|
252 |
+
|
253 |
+
result_video = gr.Video(label="Generated Audio", interactive=False)
|
254 |
+
|
255 |
+
generate_button.click(
|
256 |
+
fn=controller.foley,
|
257 |
+
inputs=[
|
258 |
+
init_img,
|
259 |
+
prompt_textbox,
|
260 |
+
negative_prompt_textbox,
|
261 |
+
ip_adapter_scale,
|
262 |
+
temporal_scale,
|
263 |
+
sampler_dropdown,
|
264 |
+
sample_step_slider,
|
265 |
+
cfg_scale_slider,
|
266 |
+
seed_textbox,
|
267 |
+
],
|
268 |
+
outputs=[result_video],
|
269 |
+
)
|
270 |
+
|
271 |
+
return demo
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
demo = ui()
|
275 |
+
demo.queue(3)
|
276 |
+
demo.launch(server_name=args.server_name, server_port=args.port, share=args.share)
|
configs/auffusion/vocoder/config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 0,
|
4 |
+
"batch_size": 16,
|
5 |
+
"learning_rate": 0.0002,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [5,4,4,2],
|
12 |
+
"upsample_kernel_sizes": [11,8,8,4],
|
13 |
+
"upsample_initial_channel": 512,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
|
17 |
+
"segment_size": 5120,
|
18 |
+
"num_mels": 256,
|
19 |
+
"num_freq": 2049,
|
20 |
+
"n_fft": 2048,
|
21 |
+
"hop_size": 160,
|
22 |
+
"win_size": 1024,
|
23 |
+
|
24 |
+
"sampling_rate": 16000,
|
25 |
+
|
26 |
+
"fmin": 0,
|
27 |
+
"fmax": null,
|
28 |
+
"fmax_for_loss": null,
|
29 |
+
|
30 |
+
"num_workers": 4,
|
31 |
+
|
32 |
+
"dist_config": {
|
33 |
+
"dist_backend": "nccl",
|
34 |
+
"dist_url": "tcp://localhost:54321",
|
35 |
+
"world_size": 1
|
36 |
+
}
|
37 |
+
}
|
configs/train/train_semantic_adapter.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir: "outputs"
|
2 |
+
|
3 |
+
pretrained_model_path: ""
|
4 |
+
|
5 |
+
motion_module_path: "models/mm_sd_v15_v2.ckpt"
|
6 |
+
|
7 |
+
train_data:
|
8 |
+
csv_path: "./curated.csv"
|
9 |
+
audio_fps: 48000
|
10 |
+
audio_size: 480000
|
11 |
+
|
12 |
+
validation_data:
|
13 |
+
prompts:
|
14 |
+
- "./data/input/lighthouse.png"
|
15 |
+
- "./data/input/guitar.png"
|
16 |
+
- "./data/input/lion.png"
|
17 |
+
- "./data/input/gun.png"
|
18 |
+
num_inference_steps: 25
|
19 |
+
guidance_scale: 7.5
|
20 |
+
sample_size: 512
|
21 |
+
|
22 |
+
trainable_modules:
|
23 |
+
- 'to_k_ip'
|
24 |
+
- 'to_v_ip'
|
25 |
+
|
26 |
+
audio_unet_checkpoint_path: ""
|
27 |
+
|
28 |
+
learning_rate: 1.0e-4
|
29 |
+
train_batch_size: 1 # max for mixed
|
30 |
+
gradient_accumulation_steps: 1
|
31 |
+
|
32 |
+
max_train_epoch: -1
|
33 |
+
max_train_steps: 200000
|
34 |
+
checkpointing_epochs: 4000
|
35 |
+
checkpointing_steps: 500
|
36 |
+
|
37 |
+
validation_steps: 3000
|
38 |
+
validation_steps_tuple: [2, 50, 300, 1000]
|
39 |
+
|
40 |
+
global_seed: 42
|
41 |
+
mixed_precision_training: true
|
42 |
+
|
43 |
+
is_debug: False
|
44 |
+
|
45 |
+
resume_ckpt: ""
|
46 |
+
|
47 |
+
# params for adapter
|
48 |
+
init_from_ip_adapter: false
|
49 |
+
|
50 |
+
always_null_text: false
|
51 |
+
|
52 |
+
reverse_null_text_prob: true
|
53 |
+
|
54 |
+
frame_wise_condition: true
|
configs/train/train_temporal_adapter.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir: "outputs"
|
2 |
+
|
3 |
+
pretrained_model_path: ""
|
4 |
+
|
5 |
+
motion_module_path: "models/mm_sd_v15_v2.ckpt"
|
6 |
+
|
7 |
+
train_data:
|
8 |
+
csv_path: "./curated.csv"
|
9 |
+
audio_fps: 48000
|
10 |
+
audio_size: 480000
|
11 |
+
|
12 |
+
validation_data:
|
13 |
+
prompts:
|
14 |
+
- "./data/input/lighthouse.png"
|
15 |
+
- "./data/input/guitar.png"
|
16 |
+
- "./data/input/lion.png"
|
17 |
+
- "./data/input/gun.png"
|
18 |
+
num_inference_steps: 25
|
19 |
+
guidance_scale: 7.5
|
20 |
+
sample_size: 512
|
21 |
+
|
22 |
+
trainable_modules:
|
23 |
+
- 'time_conv_in.'
|
24 |
+
- 'conv_in.'
|
25 |
+
|
26 |
+
video_unet_checkpoint_path: "models/vggsound_unet.ckpt"
|
27 |
+
audio_unet_checkpoint_path: ""
|
28 |
+
|
29 |
+
learning_rate: 5.0e-5
|
30 |
+
train_batch_size: 1 # max for mixed
|
31 |
+
gradient_accumulation_steps: 1
|
32 |
+
|
33 |
+
max_train_epoch: -1
|
34 |
+
max_train_steps: 500000
|
35 |
+
checkpointing_epochs: 4000
|
36 |
+
checkpointing_steps: 500
|
37 |
+
|
38 |
+
validation_steps: 3000
|
39 |
+
validation_steps_tuple: [2, 300, 1000]
|
40 |
+
|
41 |
+
global_seed: 42
|
42 |
+
mixed_precision_training: true
|
43 |
+
|
44 |
+
is_debug: False
|
45 |
+
|
46 |
+
resume_ckpt: ""
|
47 |
+
|
48 |
+
zero_no_label_mel: false
|
environment.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: foleycrafter
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
dependencies:
|
6 |
+
- python=3.10
|
7 |
+
- pytorch=2.2.0
|
8 |
+
- torchvision=0.17.0
|
9 |
+
- pytorch-cuda=11.8
|
10 |
+
- pip
|
11 |
+
- pip:
|
12 |
+
- diffusers==0.25.1
|
13 |
+
- transformers==4.30.2
|
14 |
+
- xformers
|
15 |
+
- imageio==2.33.1
|
16 |
+
- decord==0.6.0
|
17 |
+
- einops
|
18 |
+
- omegaconf
|
19 |
+
- safetensors
|
20 |
+
- gradio
|
21 |
+
- tqdm==4.66.1
|
22 |
+
- soundfile==0.12.1
|
23 |
+
- wandb
|
24 |
+
- moviepy==1.0.3
|
foleycrafter/data/dataset.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from torch.utils.data.dataset import Dataset
|
4 |
+
import torch.distributed as dist
|
5 |
+
import torchaudio
|
6 |
+
import torchvision
|
7 |
+
import torchvision.io
|
8 |
+
|
9 |
+
import os, io, csv, math, random
|
10 |
+
import os.path as osp
|
11 |
+
from pathlib import Path
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
from einops import rearrange
|
15 |
+
import glob
|
16 |
+
|
17 |
+
from decord import VideoReader, AudioReader
|
18 |
+
import decord
|
19 |
+
from copy import deepcopy
|
20 |
+
import pickle
|
21 |
+
|
22 |
+
from petrel_client.client import Client
|
23 |
+
import sys
|
24 |
+
sys.path.append('./')
|
25 |
+
from foleycrafter.data import video_transforms
|
26 |
+
|
27 |
+
from foleycrafter.utils.util import \
|
28 |
+
random_audio_video_clip, get_full_indices, video_tensor_to_np, get_video_frames
|
29 |
+
from foleycrafter.utils.spec_to_mel import wav_tensor_to_fbank, read_wav_file_io, load_audio, normalize_wav, pad_wav
|
30 |
+
from foleycrafter.utils.converter import get_mel_spectrogram_from_audio, pad_spec, normalize, normalize_spectrogram
|
31 |
+
|
32 |
+
def zero_rank_print(s):
|
33 |
+
if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s, flush=True)
|
34 |
+
|
35 |
+
@torch.no_grad()
|
36 |
+
def get_mel(audio_data, audio_cfg):
|
37 |
+
# mel shape: (n_mels, T)
|
38 |
+
mel = torchaudio.transforms.MelSpectrogram(
|
39 |
+
sample_rate=audio_cfg["sample_rate"],
|
40 |
+
n_fft=audio_cfg["window_size"],
|
41 |
+
win_length=audio_cfg["window_size"],
|
42 |
+
hop_length=audio_cfg["hop_size"],
|
43 |
+
center=True,
|
44 |
+
pad_mode="reflect",
|
45 |
+
power=2.0,
|
46 |
+
norm=None,
|
47 |
+
onesided=True,
|
48 |
+
n_mels=64,
|
49 |
+
f_min=audio_cfg["fmin"],
|
50 |
+
f_max=audio_cfg["fmax"],
|
51 |
+
).to(audio_data.device)
|
52 |
+
mel = mel(audio_data)
|
53 |
+
# we use log mel spectrogram as input
|
54 |
+
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
|
55 |
+
return mel # (T, n_mels)
|
56 |
+
|
57 |
+
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
|
58 |
+
"""
|
59 |
+
PARAMS
|
60 |
+
------
|
61 |
+
C: compression factor
|
62 |
+
"""
|
63 |
+
return normalize_fun(torch.clamp(x, min=clip_val) * C)
|
64 |
+
|
65 |
+
class CPU_Unpickler(pickle.Unpickler):
|
66 |
+
def find_class(self, module, name):
|
67 |
+
if module == 'torch.storage' and name == '_load_from_bytes':
|
68 |
+
return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
|
69 |
+
else:
|
70 |
+
return super().find_class(module, name)
|
71 |
+
|
72 |
+
class AudioSetStrong(Dataset):
|
73 |
+
# read feature and audio
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
self.data_path = 'data/AudioSetStrong/train/feature'
|
79 |
+
self.data_list = list(self._client.list(self.data_path))
|
80 |
+
self.length = len(self.data_list)
|
81 |
+
# get video feature
|
82 |
+
self.video_path = 'data/AudioSetStrong/train/video'
|
83 |
+
vision_transform_list = [
|
84 |
+
transforms.Resize((128, 128)),
|
85 |
+
transforms.CenterCrop((112, 112)),
|
86 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
87 |
+
]
|
88 |
+
self.video_transform = transforms.Compose(vision_transform_list)
|
89 |
+
|
90 |
+
def get_batch(self, idx):
|
91 |
+
embeds = self.data_list[idx]
|
92 |
+
mel = embeds['mel']
|
93 |
+
save_bsz = mel.shape[0]
|
94 |
+
audio_info = embeds['audio_info']
|
95 |
+
text_embeds = embeds['text_embeds']
|
96 |
+
|
97 |
+
# audio_info['label_list'] = np.array(audio_info['label_list'])
|
98 |
+
audio_info_array = np.array(audio_info['label_list'])
|
99 |
+
prompts = []
|
100 |
+
for i in range(save_bsz):
|
101 |
+
prompts.append(', '.join(audio_info_array[i, :audio_info['event_num'][i]].tolist()))
|
102 |
+
# import ipdb; ipdb.set_trace()
|
103 |
+
# read videos
|
104 |
+
videos = None
|
105 |
+
for video_name in audio_info['audio_name']:
|
106 |
+
video_bytes = self._client.Get(osp.join(self.video_path, video_name+'.mp4'))
|
107 |
+
video_bytes = io.BytesIO(video_bytes)
|
108 |
+
video_reader = VideoReader(video_bytes)
|
109 |
+
video = video_reader.get_batch(get_full_indices(video_reader)).asnumpy()
|
110 |
+
video = get_video_frames(video, 150)
|
111 |
+
video = torch.from_numpy(video).permute(0, 3, 1, 2).contiguous().float()
|
112 |
+
video = self.video_transform(video)
|
113 |
+
video = video.unsqueeze(0)
|
114 |
+
if videos is None:
|
115 |
+
videos = video
|
116 |
+
else:
|
117 |
+
videos = torch.cat([videos, video], dim=0)
|
118 |
+
# video = torch.from_numpy(video).permute(0, 3, 1, 2).contiguous()
|
119 |
+
assert videos is not None, 'no video read'
|
120 |
+
|
121 |
+
return mel, audio_info, text_embeds, prompts, videos
|
122 |
+
|
123 |
+
def __len__(self):
|
124 |
+
return self.length
|
125 |
+
|
126 |
+
def __getitem__(self, idx):
|
127 |
+
while True:
|
128 |
+
try:
|
129 |
+
mel, audio_info, text_embeds, prompts, videos = self.get_batch(idx)
|
130 |
+
break
|
131 |
+
except Exception as e:
|
132 |
+
zero_rank_print(' >>> load error <<<')
|
133 |
+
idx = random.randint(0, self.length-1)
|
134 |
+
sample = dict(mel=mel, audio_info=audio_info, text_embeds=text_embeds, prompts=prompts, videos=videos)
|
135 |
+
return sample
|
136 |
+
|
137 |
+
class VGGSound(Dataset):
|
138 |
+
# read feature and audio
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.data_path = 'data/VGGSound/train/video'
|
144 |
+
self.visual_data_path = 'data/VGGSound/train/feature'
|
145 |
+
self.embeds_list = glob.glob(f'{self.data_path}/*.pt')
|
146 |
+
self.visual_list = glob.glob(f'{self.visual_data_path}/*.pt')
|
147 |
+
self.length = len(self.embeds_list)
|
148 |
+
|
149 |
+
def get_batch(self, idx):
|
150 |
+
embeds = torch.load(self.embeds_list[idx], map_location='cpu')
|
151 |
+
visual_embeds = torch.load(self.visual_list[idx], map_location='cpu')
|
152 |
+
|
153 |
+
# audio_embeds = embeds['audio_embeds']
|
154 |
+
visual_embeds = visual_embeds['visual_embeds']
|
155 |
+
video_name = embeds['video_name']
|
156 |
+
text = embeds['text']
|
157 |
+
mel = embeds['mel']
|
158 |
+
|
159 |
+
audio = mel
|
160 |
+
|
161 |
+
return visual_embeds, audio, text
|
162 |
+
|
163 |
+
def __len__(self):
|
164 |
+
return self.length
|
165 |
+
|
166 |
+
def __getitem__(self, idx):
|
167 |
+
while True:
|
168 |
+
try:
|
169 |
+
visual_embeds, audio, text = self.get_batch(idx)
|
170 |
+
break
|
171 |
+
except Exception as e:
|
172 |
+
zero_rank_print('load error')
|
173 |
+
idx = random.randint(0, self.length-1)
|
174 |
+
sample = dict(visual_embeds=visual_embeds, audio=audio, text=text)
|
175 |
+
return sample
|
foleycrafter/data/video_transforms.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import random
|
3 |
+
import numbers
|
4 |
+
from torchvision.transforms import RandomCrop, RandomResizedCrop
|
5 |
+
|
6 |
+
def _is_tensor_video_clip(clip):
|
7 |
+
if not torch.is_tensor(clip):
|
8 |
+
raise TypeError("clip should be Tensor. Got %s" % type(clip))
|
9 |
+
|
10 |
+
if not clip.ndimension() == 4:
|
11 |
+
raise ValueError("clip should be 4D. Got %dD" % clip.dim())
|
12 |
+
|
13 |
+
return True
|
14 |
+
|
15 |
+
|
16 |
+
def crop(clip, i, j, h, w):
|
17 |
+
"""
|
18 |
+
Args:
|
19 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
20 |
+
"""
|
21 |
+
if len(clip.size()) != 4:
|
22 |
+
raise ValueError("clip should be a 4D tensor")
|
23 |
+
return clip[..., i : i + h, j : j + w]
|
24 |
+
|
25 |
+
|
26 |
+
def resize(clip, target_size, interpolation_mode):
|
27 |
+
if len(target_size) != 2:
|
28 |
+
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
|
29 |
+
return torch.nn.functional.interpolate(clip, size=target_size, mode=interpolation_mode, align_corners=False)
|
30 |
+
|
31 |
+
def resize_scale(clip, target_size, interpolation_mode):
|
32 |
+
if len(target_size) != 2:
|
33 |
+
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
|
34 |
+
_, _, H, W = clip.shape
|
35 |
+
scale_ = target_size[0] / min(H, W)
|
36 |
+
return torch.nn.functional.interpolate(clip, scale_factor=scale_, mode=interpolation_mode, align_corners=False)
|
37 |
+
|
38 |
+
|
39 |
+
def resized_crop(clip, i, j, h, w, size, interpolation_mode="bilinear"):
|
40 |
+
"""
|
41 |
+
Do spatial cropping and resizing to the video clip
|
42 |
+
Args:
|
43 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
44 |
+
i (int): i in (i,j) i.e coordinates of the upper left corner.
|
45 |
+
j (int): j in (i,j) i.e coordinates of the upper left corner.
|
46 |
+
h (int): Height of the cropped region.
|
47 |
+
w (int): Width of the cropped region.
|
48 |
+
size (tuple(int, int)): height and width of resized clip
|
49 |
+
Returns:
|
50 |
+
clip (torch.tensor): Resized and cropped clip. Size is (T, C, H, W)
|
51 |
+
"""
|
52 |
+
if not _is_tensor_video_clip(clip):
|
53 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
54 |
+
clip = crop(clip, i, j, h, w)
|
55 |
+
clip = resize(clip, size, interpolation_mode)
|
56 |
+
return clip
|
57 |
+
|
58 |
+
|
59 |
+
def center_crop(clip, crop_size):
|
60 |
+
if not _is_tensor_video_clip(clip):
|
61 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
62 |
+
h, w = clip.size(-2), clip.size(-1)
|
63 |
+
th, tw = crop_size
|
64 |
+
if h < th or w < tw:
|
65 |
+
raise ValueError("height and width must be no smaller than crop_size")
|
66 |
+
|
67 |
+
i = int(round((h - th) / 2.0))
|
68 |
+
j = int(round((w - tw) / 2.0))
|
69 |
+
return crop(clip, i, j, th, tw)
|
70 |
+
|
71 |
+
def random_shift_crop(clip):
|
72 |
+
'''
|
73 |
+
Slide along the long edge, with the short edge as crop size
|
74 |
+
'''
|
75 |
+
if not _is_tensor_video_clip(clip):
|
76 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
77 |
+
h, w = clip.size(-2), clip.size(-1)
|
78 |
+
|
79 |
+
if h <= w:
|
80 |
+
long_edge = w
|
81 |
+
short_edge = h
|
82 |
+
else:
|
83 |
+
long_edge = h
|
84 |
+
short_edge =w
|
85 |
+
|
86 |
+
th, tw = short_edge, short_edge
|
87 |
+
|
88 |
+
i = torch.randint(0, h - th + 1, size=(1,)).item()
|
89 |
+
j = torch.randint(0, w - tw + 1, size=(1,)).item()
|
90 |
+
return crop(clip, i, j, th, tw)
|
91 |
+
|
92 |
+
|
93 |
+
def to_tensor(clip):
|
94 |
+
"""
|
95 |
+
Convert tensor data type from uint8 to float, divide value by 255.0 and
|
96 |
+
permute the dimensions of clip tensor
|
97 |
+
Args:
|
98 |
+
clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
|
99 |
+
Return:
|
100 |
+
clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
|
101 |
+
"""
|
102 |
+
_is_tensor_video_clip(clip)
|
103 |
+
if not clip.dtype == torch.uint8:
|
104 |
+
raise TypeError("clip tensor should have data type uint8. Got %s" % str(clip.dtype))
|
105 |
+
# return clip.float().permute(3, 0, 1, 2) / 255.0
|
106 |
+
return clip.float() / 255.0
|
107 |
+
|
108 |
+
|
109 |
+
def normalize(clip, mean, std, inplace=False):
|
110 |
+
"""
|
111 |
+
Args:
|
112 |
+
clip (torch.tensor): Video clip to be normalized. Size is (T, C, H, W)
|
113 |
+
mean (tuple): pixel RGB mean. Size is (3)
|
114 |
+
std (tuple): pixel standard deviation. Size is (3)
|
115 |
+
Returns:
|
116 |
+
normalized clip (torch.tensor): Size is (T, C, H, W)
|
117 |
+
"""
|
118 |
+
if not _is_tensor_video_clip(clip):
|
119 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
120 |
+
if not inplace:
|
121 |
+
clip = clip.clone()
|
122 |
+
mean = torch.as_tensor(mean, dtype=clip.dtype, device=clip.device)
|
123 |
+
print(mean)
|
124 |
+
std = torch.as_tensor(std, dtype=clip.dtype, device=clip.device)
|
125 |
+
clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None])
|
126 |
+
return clip
|
127 |
+
|
128 |
+
|
129 |
+
def hflip(clip):
|
130 |
+
"""
|
131 |
+
Args:
|
132 |
+
clip (torch.tensor): Video clip to be normalized. Size is (T, C, H, W)
|
133 |
+
Returns:
|
134 |
+
flipped clip (torch.tensor): Size is (T, C, H, W)
|
135 |
+
"""
|
136 |
+
if not _is_tensor_video_clip(clip):
|
137 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
138 |
+
return clip.flip(-1)
|
139 |
+
|
140 |
+
|
141 |
+
class RandomCropVideo:
|
142 |
+
def __init__(self, size):
|
143 |
+
if isinstance(size, numbers.Number):
|
144 |
+
self.size = (int(size), int(size))
|
145 |
+
else:
|
146 |
+
self.size = size
|
147 |
+
|
148 |
+
def __call__(self, clip):
|
149 |
+
"""
|
150 |
+
Args:
|
151 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
152 |
+
Returns:
|
153 |
+
torch.tensor: randomly cropped video clip.
|
154 |
+
size is (T, C, OH, OW)
|
155 |
+
"""
|
156 |
+
i, j, h, w = self.get_params(clip)
|
157 |
+
return crop(clip, i, j, h, w)
|
158 |
+
|
159 |
+
def get_params(self, clip):
|
160 |
+
h, w = clip.shape[-2:]
|
161 |
+
th, tw = self.size
|
162 |
+
|
163 |
+
if h < th or w < tw:
|
164 |
+
raise ValueError(f"Required crop size {(th, tw)} is larger than input image size {(h, w)}")
|
165 |
+
|
166 |
+
if w == tw and h == th:
|
167 |
+
return 0, 0, h, w
|
168 |
+
|
169 |
+
i = torch.randint(0, h - th + 1, size=(1,)).item()
|
170 |
+
j = torch.randint(0, w - tw + 1, size=(1,)).item()
|
171 |
+
|
172 |
+
return i, j, th, tw
|
173 |
+
|
174 |
+
def __repr__(self) -> str:
|
175 |
+
return f"{self.__class__.__name__}(size={self.size})"
|
176 |
+
|
177 |
+
|
178 |
+
class UCFCenterCropVideo:
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
size,
|
182 |
+
interpolation_mode="bilinear",
|
183 |
+
):
|
184 |
+
if isinstance(size, tuple):
|
185 |
+
if len(size) != 2:
|
186 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
187 |
+
self.size = size
|
188 |
+
else:
|
189 |
+
self.size = (size, size)
|
190 |
+
|
191 |
+
self.interpolation_mode = interpolation_mode
|
192 |
+
|
193 |
+
|
194 |
+
def __call__(self, clip):
|
195 |
+
"""
|
196 |
+
Args:
|
197 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
198 |
+
Returns:
|
199 |
+
torch.tensor: scale resized / center cropped video clip.
|
200 |
+
size is (T, C, crop_size, crop_size)
|
201 |
+
"""
|
202 |
+
clip_resize = resize_scale(clip=clip, target_size=self.size, interpolation_mode=self.interpolation_mode)
|
203 |
+
clip_center_crop = center_crop(clip_resize, self.size)
|
204 |
+
return clip_center_crop
|
205 |
+
|
206 |
+
def __repr__(self) -> str:
|
207 |
+
return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"
|
208 |
+
|
209 |
+
class KineticsRandomCropResizeVideo:
|
210 |
+
'''
|
211 |
+
Slide along the long edge, with the short edge as crop size. And resie to the desired size.
|
212 |
+
'''
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
size,
|
216 |
+
interpolation_mode="bilinear",
|
217 |
+
):
|
218 |
+
if isinstance(size, tuple):
|
219 |
+
if len(size) != 2:
|
220 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
221 |
+
self.size = size
|
222 |
+
else:
|
223 |
+
self.size = (size, size)
|
224 |
+
|
225 |
+
self.interpolation_mode = interpolation_mode
|
226 |
+
|
227 |
+
def __call__(self, clip):
|
228 |
+
clip_random_crop = random_shift_crop(clip)
|
229 |
+
clip_resize = resize(clip_random_crop, self.size, self.interpolation_mode)
|
230 |
+
return clip_resize
|
231 |
+
|
232 |
+
|
233 |
+
class CenterCropVideo:
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
size,
|
237 |
+
interpolation_mode="bilinear",
|
238 |
+
):
|
239 |
+
if isinstance(size, tuple):
|
240 |
+
if len(size) != 2:
|
241 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
242 |
+
self.size = size
|
243 |
+
else:
|
244 |
+
self.size = (size, size)
|
245 |
+
|
246 |
+
self.interpolation_mode = interpolation_mode
|
247 |
+
|
248 |
+
|
249 |
+
def __call__(self, clip):
|
250 |
+
"""
|
251 |
+
Args:
|
252 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
253 |
+
Returns:
|
254 |
+
torch.tensor: center cropped video clip.
|
255 |
+
size is (T, C, crop_size, crop_size)
|
256 |
+
"""
|
257 |
+
clip_center_crop = center_crop(clip, self.size)
|
258 |
+
return clip_center_crop
|
259 |
+
|
260 |
+
def __repr__(self) -> str:
|
261 |
+
return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"
|
262 |
+
|
263 |
+
|
264 |
+
class NormalizeVideo:
|
265 |
+
"""
|
266 |
+
Normalize the video clip by mean subtraction and division by standard deviation
|
267 |
+
Args:
|
268 |
+
mean (3-tuple): pixel RGB mean
|
269 |
+
std (3-tuple): pixel RGB standard deviation
|
270 |
+
inplace (boolean): whether do in-place normalization
|
271 |
+
"""
|
272 |
+
|
273 |
+
def __init__(self, mean, std, inplace=False):
|
274 |
+
self.mean = mean
|
275 |
+
self.std = std
|
276 |
+
self.inplace = inplace
|
277 |
+
|
278 |
+
def __call__(self, clip):
|
279 |
+
"""
|
280 |
+
Args:
|
281 |
+
clip (torch.tensor): video clip must be normalized. Size is (C, T, H, W)
|
282 |
+
"""
|
283 |
+
return normalize(clip, self.mean, self.std, self.inplace)
|
284 |
+
|
285 |
+
def __repr__(self) -> str:
|
286 |
+
return f"{self.__class__.__name__}(mean={self.mean}, std={self.std}, inplace={self.inplace})"
|
287 |
+
|
288 |
+
|
289 |
+
class ToTensorVideo:
|
290 |
+
"""
|
291 |
+
Convert tensor data type from uint8 to float, divide value by 255.0 and
|
292 |
+
permute the dimensions of clip tensor
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self):
|
296 |
+
pass
|
297 |
+
|
298 |
+
def __call__(self, clip):
|
299 |
+
"""
|
300 |
+
Args:
|
301 |
+
clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
|
302 |
+
Return:
|
303 |
+
clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
|
304 |
+
"""
|
305 |
+
return to_tensor(clip)
|
306 |
+
|
307 |
+
def __repr__(self) -> str:
|
308 |
+
return self.__class__.__name__
|
309 |
+
|
310 |
+
|
311 |
+
class RandomHorizontalFlipVideo:
|
312 |
+
"""
|
313 |
+
Flip the video clip along the horizontal direction with a given probability
|
314 |
+
Args:
|
315 |
+
p (float): probability of the clip being flipped. Default value is 0.5
|
316 |
+
"""
|
317 |
+
|
318 |
+
def __init__(self, p=0.5):
|
319 |
+
self.p = p
|
320 |
+
|
321 |
+
def __call__(self, clip):
|
322 |
+
"""
|
323 |
+
Args:
|
324 |
+
clip (torch.tensor): Size is (T, C, H, W)
|
325 |
+
Return:
|
326 |
+
clip (torch.tensor): Size is (T, C, H, W)
|
327 |
+
"""
|
328 |
+
if random.random() < self.p:
|
329 |
+
clip = hflip(clip)
|
330 |
+
return clip
|
331 |
+
|
332 |
+
def __repr__(self) -> str:
|
333 |
+
return f"{self.__class__.__name__}(p={self.p})"
|
334 |
+
|
335 |
+
# ------------------------------------------------------------
|
336 |
+
# --------------------- Sampling ---------------------------
|
337 |
+
# ------------------------------------------------------------
|
338 |
+
class TemporalRandomCrop(object):
|
339 |
+
"""Temporally crop the given frame indices at a random location.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
size (int): Desired length of frames will be seen in the model.
|
343 |
+
"""
|
344 |
+
|
345 |
+
def __init__(self, size):
|
346 |
+
self.size = size
|
347 |
+
|
348 |
+
def __call__(self, total_frames):
|
349 |
+
rand_end = max(0, total_frames - self.size - 1)
|
350 |
+
begin_index = random.randint(0, rand_end)
|
351 |
+
end_index = min(begin_index + self.size, total_frames)
|
352 |
+
return begin_index, end_index
|
353 |
+
|
354 |
+
|
355 |
+
if __name__ == '__main__':
|
356 |
+
from torchvision import transforms
|
357 |
+
import torchvision.io as io
|
358 |
+
import numpy as np
|
359 |
+
from torchvision.utils import save_image
|
360 |
+
import os
|
361 |
+
|
362 |
+
vframes, aframes, info = io.read_video(
|
363 |
+
filename='./v_Archery_g01_c03.avi',
|
364 |
+
pts_unit='sec',
|
365 |
+
output_format='TCHW'
|
366 |
+
)
|
367 |
+
|
368 |
+
trans = transforms.Compose([
|
369 |
+
ToTensorVideo(),
|
370 |
+
RandomHorizontalFlipVideo(),
|
371 |
+
UCFCenterCropVideo(512),
|
372 |
+
# NormalizeVideo(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
373 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
374 |
+
])
|
375 |
+
|
376 |
+
target_video_len = 32
|
377 |
+
frame_interval = 1
|
378 |
+
total_frames = len(vframes)
|
379 |
+
print(total_frames)
|
380 |
+
|
381 |
+
temporal_sample = TemporalRandomCrop(target_video_len * frame_interval)
|
382 |
+
|
383 |
+
|
384 |
+
# Sampling video frames
|
385 |
+
start_frame_ind, end_frame_ind = temporal_sample(total_frames)
|
386 |
+
# print(start_frame_ind)
|
387 |
+
# print(end_frame_ind)
|
388 |
+
assert end_frame_ind - start_frame_ind >= target_video_len
|
389 |
+
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, target_video_len, dtype=int)
|
390 |
+
|
391 |
+
select_vframes = vframes[frame_indice]
|
392 |
+
|
393 |
+
select_vframes_trans = trans(select_vframes)
|
394 |
+
|
395 |
+
select_vframes_trans_int = ((select_vframes_trans * 0.5 + 0.5) * 255).to(dtype=torch.uint8)
|
396 |
+
|
397 |
+
io.write_video('./test.avi', select_vframes_trans_int.permute(0, 2, 3, 1), fps=8)
|
398 |
+
|
399 |
+
for i in range(target_video_len):
|
400 |
+
save_image(select_vframes_trans[i], os.path.join('./test000', '%04d.png' % i), normalize=True, value_range=(-1, 1))
|
foleycrafter/models/adapters/attention_processor.py
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from typing import Union
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
from diffusers.utils import logging
|
8 |
+
from foleycrafter.models.adapters.ip_adapter import MLPProjModel
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
11 |
+
|
12 |
+
class AttnProcessor(nn.Module):
|
13 |
+
r"""
|
14 |
+
Default processor for performing attention-related computations.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
hidden_size=None,
|
20 |
+
cross_attention_dim=None,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
def __call__(
|
25 |
+
self,
|
26 |
+
attn,
|
27 |
+
hidden_states,
|
28 |
+
encoder_hidden_states=None,
|
29 |
+
attention_mask=None,
|
30 |
+
temb=None,
|
31 |
+
):
|
32 |
+
residual = hidden_states
|
33 |
+
|
34 |
+
if attn.spatial_norm is not None:
|
35 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
36 |
+
|
37 |
+
input_ndim = hidden_states.ndim
|
38 |
+
|
39 |
+
if input_ndim == 4:
|
40 |
+
batch_size, channel, height, width = hidden_states.shape
|
41 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
42 |
+
|
43 |
+
batch_size, sequence_length, _ = (
|
44 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
45 |
+
)
|
46 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
47 |
+
|
48 |
+
if attn.group_norm is not None:
|
49 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
50 |
+
|
51 |
+
query = attn.to_q(hidden_states)
|
52 |
+
|
53 |
+
if encoder_hidden_states is None:
|
54 |
+
encoder_hidden_states = hidden_states
|
55 |
+
elif attn.norm_cross:
|
56 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
57 |
+
|
58 |
+
key = attn.to_k(encoder_hidden_states)
|
59 |
+
value = attn.to_v(encoder_hidden_states)
|
60 |
+
|
61 |
+
query = attn.head_to_batch_dim(query)
|
62 |
+
key = attn.head_to_batch_dim(key)
|
63 |
+
value = attn.head_to_batch_dim(value)
|
64 |
+
|
65 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
66 |
+
hidden_states = torch.bmm(attention_probs, value)
|
67 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
68 |
+
|
69 |
+
# linear proj
|
70 |
+
hidden_states = attn.to_out[0](hidden_states)
|
71 |
+
# dropout
|
72 |
+
hidden_states = attn.to_out[1](hidden_states)
|
73 |
+
|
74 |
+
if input_ndim == 4:
|
75 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
76 |
+
|
77 |
+
if attn.residual_connection:
|
78 |
+
hidden_states = hidden_states + residual
|
79 |
+
|
80 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
81 |
+
|
82 |
+
return hidden_states
|
83 |
+
|
84 |
+
|
85 |
+
class IPAttnProcessor(nn.Module):
|
86 |
+
r"""
|
87 |
+
Attention processor for IP-Adapater.
|
88 |
+
Args:
|
89 |
+
hidden_size (`int`):
|
90 |
+
The hidden size of the attention layer.
|
91 |
+
cross_attention_dim (`int`):
|
92 |
+
The number of channels in the `encoder_hidden_states`.
|
93 |
+
scale (`float`, defaults to 1.0):
|
94 |
+
the weight scale of image prompt.
|
95 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
96 |
+
The context length of the image features.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.cross_attention_dim = cross_attention_dim
|
104 |
+
self.scale = scale
|
105 |
+
self.num_tokens = num_tokens
|
106 |
+
|
107 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
108 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
109 |
+
|
110 |
+
def __call__(
|
111 |
+
self,
|
112 |
+
attn,
|
113 |
+
hidden_states,
|
114 |
+
encoder_hidden_states=None,
|
115 |
+
attention_mask=None,
|
116 |
+
temb=None,
|
117 |
+
):
|
118 |
+
residual = hidden_states
|
119 |
+
|
120 |
+
if attn.spatial_norm is not None:
|
121 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
122 |
+
|
123 |
+
input_ndim = hidden_states.ndim
|
124 |
+
|
125 |
+
if input_ndim == 4:
|
126 |
+
batch_size, channel, height, width = hidden_states.shape
|
127 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
128 |
+
|
129 |
+
batch_size, sequence_length, _ = (
|
130 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
131 |
+
)
|
132 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
133 |
+
|
134 |
+
if attn.group_norm is not None:
|
135 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
136 |
+
|
137 |
+
query = attn.to_q(hidden_states)
|
138 |
+
|
139 |
+
if encoder_hidden_states is None:
|
140 |
+
encoder_hidden_states = hidden_states
|
141 |
+
else:
|
142 |
+
# get encoder_hidden_states, ip_hidden_states
|
143 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
144 |
+
encoder_hidden_states, ip_hidden_states = (
|
145 |
+
encoder_hidden_states[:, :end_pos, :],
|
146 |
+
encoder_hidden_states[:, end_pos:, :],
|
147 |
+
)
|
148 |
+
if attn.norm_cross:
|
149 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
150 |
+
|
151 |
+
key = attn.to_k(encoder_hidden_states)
|
152 |
+
value = attn.to_v(encoder_hidden_states)
|
153 |
+
|
154 |
+
query = attn.head_to_batch_dim(query)
|
155 |
+
key = attn.head_to_batch_dim(key)
|
156 |
+
value = attn.head_to_batch_dim(value)
|
157 |
+
|
158 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
159 |
+
hidden_states = torch.bmm(attention_probs, value)
|
160 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
161 |
+
|
162 |
+
# for ip-adapter
|
163 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
164 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
165 |
+
|
166 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
167 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
168 |
+
|
169 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
170 |
+
self.attn_map = ip_attention_probs
|
171 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
172 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
173 |
+
|
174 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
175 |
+
|
176 |
+
# linear proj
|
177 |
+
hidden_states = attn.to_out[0](hidden_states)
|
178 |
+
# dropout
|
179 |
+
hidden_states = attn.to_out[1](hidden_states)
|
180 |
+
|
181 |
+
if input_ndim == 4:
|
182 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
183 |
+
|
184 |
+
if attn.residual_connection:
|
185 |
+
hidden_states = hidden_states + residual
|
186 |
+
|
187 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
188 |
+
|
189 |
+
return hidden_states
|
190 |
+
|
191 |
+
|
192 |
+
class AttnProcessor2_0(torch.nn.Module):
|
193 |
+
r"""
|
194 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
hidden_size=None,
|
200 |
+
cross_attention_dim=None,
|
201 |
+
):
|
202 |
+
super().__init__()
|
203 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
204 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
205 |
+
|
206 |
+
def __call__(
|
207 |
+
self,
|
208 |
+
attn,
|
209 |
+
hidden_states,
|
210 |
+
encoder_hidden_states=None,
|
211 |
+
attention_mask=None,
|
212 |
+
temb=None,
|
213 |
+
):
|
214 |
+
residual = hidden_states
|
215 |
+
|
216 |
+
if attn.spatial_norm is not None:
|
217 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
218 |
+
|
219 |
+
input_ndim = hidden_states.ndim
|
220 |
+
|
221 |
+
if input_ndim == 4:
|
222 |
+
batch_size, channel, height, width = hidden_states.shape
|
223 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
224 |
+
|
225 |
+
batch_size, sequence_length, _ = (
|
226 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
227 |
+
)
|
228 |
+
|
229 |
+
if attention_mask is not None:
|
230 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
231 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
232 |
+
# (batch, heads, source_length, target_length)
|
233 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
234 |
+
|
235 |
+
if attn.group_norm is not None:
|
236 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
237 |
+
|
238 |
+
query = attn.to_q(hidden_states)
|
239 |
+
|
240 |
+
if encoder_hidden_states is None:
|
241 |
+
encoder_hidden_states = hidden_states
|
242 |
+
elif attn.norm_cross:
|
243 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
244 |
+
|
245 |
+
key = attn.to_k(encoder_hidden_states)
|
246 |
+
value = attn.to_v(encoder_hidden_states)
|
247 |
+
|
248 |
+
inner_dim = key.shape[-1]
|
249 |
+
head_dim = inner_dim // attn.heads
|
250 |
+
|
251 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
252 |
+
|
253 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
254 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
255 |
+
|
256 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
257 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
258 |
+
hidden_states = F.scaled_dot_product_attention(
|
259 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
260 |
+
)
|
261 |
+
|
262 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
263 |
+
hidden_states = hidden_states.to(query.dtype)
|
264 |
+
|
265 |
+
# linear proj
|
266 |
+
hidden_states = attn.to_out[0](hidden_states)
|
267 |
+
# dropout
|
268 |
+
hidden_states = attn.to_out[1](hidden_states)
|
269 |
+
|
270 |
+
if input_ndim == 4:
|
271 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
272 |
+
|
273 |
+
if attn.residual_connection:
|
274 |
+
hidden_states = hidden_states + residual
|
275 |
+
|
276 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
277 |
+
|
278 |
+
return hidden_states
|
279 |
+
|
280 |
+
class AttnProcessor2_0WithProjection(torch.nn.Module):
|
281 |
+
r"""
|
282 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
283 |
+
"""
|
284 |
+
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
hidden_size=None,
|
288 |
+
cross_attention_dim=None,
|
289 |
+
):
|
290 |
+
super().__init__()
|
291 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
292 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
293 |
+
self.before_proj_size = 1024
|
294 |
+
self.after_proj_size = 768
|
295 |
+
self.visual_proj = nn.Linear(self.before_proj_size, self.after_proj_size)
|
296 |
+
|
297 |
+
def __call__(
|
298 |
+
self,
|
299 |
+
attn,
|
300 |
+
hidden_states,
|
301 |
+
encoder_hidden_states=None,
|
302 |
+
attention_mask=None,
|
303 |
+
temb=None,
|
304 |
+
):
|
305 |
+
residual = hidden_states
|
306 |
+
# encoder_hidden_states = self.visual_proj(encoder_hidden_states)
|
307 |
+
|
308 |
+
if attn.spatial_norm is not None:
|
309 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
310 |
+
|
311 |
+
input_ndim = hidden_states.ndim
|
312 |
+
|
313 |
+
if input_ndim == 4:
|
314 |
+
batch_size, channel, height, width = hidden_states.shape
|
315 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
316 |
+
|
317 |
+
batch_size, sequence_length, _ = (
|
318 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
319 |
+
)
|
320 |
+
|
321 |
+
if attention_mask is not None:
|
322 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
323 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
324 |
+
# (batch, heads, source_length, target_length)
|
325 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
326 |
+
|
327 |
+
if attn.group_norm is not None:
|
328 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
329 |
+
|
330 |
+
query = attn.to_q(hidden_states)
|
331 |
+
|
332 |
+
if encoder_hidden_states is None:
|
333 |
+
encoder_hidden_states = hidden_states
|
334 |
+
elif attn.norm_cross:
|
335 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
336 |
+
|
337 |
+
key = attn.to_k(encoder_hidden_states)
|
338 |
+
value = attn.to_v(encoder_hidden_states)
|
339 |
+
|
340 |
+
inner_dim = key.shape[-1]
|
341 |
+
head_dim = inner_dim // attn.heads
|
342 |
+
|
343 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
344 |
+
|
345 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
346 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
347 |
+
|
348 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
349 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
350 |
+
hidden_states = F.scaled_dot_product_attention(
|
351 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
352 |
+
)
|
353 |
+
|
354 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
355 |
+
hidden_states = hidden_states.to(query.dtype)
|
356 |
+
|
357 |
+
# linear proj
|
358 |
+
hidden_states = attn.to_out[0](hidden_states)
|
359 |
+
# dropout
|
360 |
+
hidden_states = attn.to_out[1](hidden_states)
|
361 |
+
|
362 |
+
if input_ndim == 4:
|
363 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
364 |
+
|
365 |
+
if attn.residual_connection:
|
366 |
+
hidden_states = hidden_states + residual
|
367 |
+
|
368 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
369 |
+
|
370 |
+
return hidden_states
|
371 |
+
|
372 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
373 |
+
r"""
|
374 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
375 |
+
Args:
|
376 |
+
hidden_size (`int`):
|
377 |
+
The hidden size of the attention layer.
|
378 |
+
cross_attention_dim (`int`):
|
379 |
+
The number of channels in the `encoder_hidden_states`.
|
380 |
+
scale (`float`, defaults to 1.0):
|
381 |
+
the weight scale of image prompt.
|
382 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
383 |
+
The context length of the image features.
|
384 |
+
"""
|
385 |
+
|
386 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
387 |
+
super().__init__()
|
388 |
+
|
389 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
390 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
391 |
+
|
392 |
+
self.hidden_size = hidden_size
|
393 |
+
self.cross_attention_dim = cross_attention_dim
|
394 |
+
self.scale = scale
|
395 |
+
self.num_tokens = num_tokens
|
396 |
+
|
397 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
398 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
399 |
+
|
400 |
+
def __call__(
|
401 |
+
self,
|
402 |
+
attn,
|
403 |
+
hidden_states,
|
404 |
+
encoder_hidden_states=None,
|
405 |
+
attention_mask=None,
|
406 |
+
temb=None,
|
407 |
+
):
|
408 |
+
residual = hidden_states
|
409 |
+
|
410 |
+
if attn.spatial_norm is not None:
|
411 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
412 |
+
|
413 |
+
input_ndim = hidden_states.ndim
|
414 |
+
|
415 |
+
if input_ndim == 4:
|
416 |
+
batch_size, channel, height, width = hidden_states.shape
|
417 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
418 |
+
|
419 |
+
batch_size, sequence_length, _ = (
|
420 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
421 |
+
)
|
422 |
+
|
423 |
+
if attention_mask is not None:
|
424 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
425 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
426 |
+
# (batch, heads, source_length, target_length)
|
427 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
428 |
+
|
429 |
+
if attn.group_norm is not None:
|
430 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
431 |
+
|
432 |
+
query = attn.to_q(hidden_states)
|
433 |
+
|
434 |
+
if encoder_hidden_states is None:
|
435 |
+
encoder_hidden_states = hidden_states
|
436 |
+
else:
|
437 |
+
# get encoder_hidden_states, ip_hidden_states
|
438 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
439 |
+
encoder_hidden_states, ip_hidden_states = (
|
440 |
+
encoder_hidden_states[:, :end_pos, :],
|
441 |
+
encoder_hidden_states[:, end_pos:, :],
|
442 |
+
)
|
443 |
+
if attn.norm_cross:
|
444 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
445 |
+
|
446 |
+
key = attn.to_k(encoder_hidden_states)
|
447 |
+
value = attn.to_v(encoder_hidden_states)
|
448 |
+
|
449 |
+
inner_dim = key.shape[-1]
|
450 |
+
head_dim = inner_dim // attn.heads
|
451 |
+
|
452 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
453 |
+
|
454 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
455 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
456 |
+
|
457 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
458 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
459 |
+
hidden_states = F.scaled_dot_product_attention(
|
460 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
461 |
+
)
|
462 |
+
|
463 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
464 |
+
hidden_states = hidden_states.to(query.dtype)
|
465 |
+
|
466 |
+
# for ip-adapter
|
467 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
468 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
469 |
+
|
470 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
471 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
472 |
+
|
473 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
474 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
475 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
476 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
477 |
+
)
|
478 |
+
with torch.no_grad():
|
479 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
480 |
+
#print(self.attn_map.shape)
|
481 |
+
|
482 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
483 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
484 |
+
|
485 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
486 |
+
|
487 |
+
# linear proj
|
488 |
+
hidden_states = attn.to_out[0](hidden_states)
|
489 |
+
# dropout
|
490 |
+
hidden_states = attn.to_out[1](hidden_states)
|
491 |
+
|
492 |
+
if input_ndim == 4:
|
493 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
494 |
+
|
495 |
+
if attn.residual_connection:
|
496 |
+
hidden_states = hidden_states + residual
|
497 |
+
|
498 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
499 |
+
|
500 |
+
return hidden_states
|
501 |
+
|
502 |
+
## for controlnet
|
503 |
+
class CNAttnProcessor:
|
504 |
+
r"""
|
505 |
+
Default processor for performing attention-related computations.
|
506 |
+
"""
|
507 |
+
|
508 |
+
def __init__(self, num_tokens=4):
|
509 |
+
self.num_tokens = num_tokens
|
510 |
+
|
511 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
512 |
+
residual = hidden_states
|
513 |
+
|
514 |
+
if attn.spatial_norm is not None:
|
515 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
516 |
+
|
517 |
+
input_ndim = hidden_states.ndim
|
518 |
+
|
519 |
+
if input_ndim == 4:
|
520 |
+
batch_size, channel, height, width = hidden_states.shape
|
521 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
522 |
+
|
523 |
+
batch_size, sequence_length, _ = (
|
524 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
525 |
+
)
|
526 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
527 |
+
|
528 |
+
if attn.group_norm is not None:
|
529 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
530 |
+
|
531 |
+
query = attn.to_q(hidden_states)
|
532 |
+
|
533 |
+
if encoder_hidden_states is None:
|
534 |
+
encoder_hidden_states = hidden_states
|
535 |
+
else:
|
536 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
537 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
538 |
+
if attn.norm_cross:
|
539 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
540 |
+
|
541 |
+
key = attn.to_k(encoder_hidden_states)
|
542 |
+
value = attn.to_v(encoder_hidden_states)
|
543 |
+
|
544 |
+
query = attn.head_to_batch_dim(query)
|
545 |
+
key = attn.head_to_batch_dim(key)
|
546 |
+
value = attn.head_to_batch_dim(value)
|
547 |
+
|
548 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
549 |
+
hidden_states = torch.bmm(attention_probs, value)
|
550 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
551 |
+
|
552 |
+
# linear proj
|
553 |
+
hidden_states = attn.to_out[0](hidden_states)
|
554 |
+
# dropout
|
555 |
+
hidden_states = attn.to_out[1](hidden_states)
|
556 |
+
|
557 |
+
if input_ndim == 4:
|
558 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
559 |
+
|
560 |
+
if attn.residual_connection:
|
561 |
+
hidden_states = hidden_states + residual
|
562 |
+
|
563 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
564 |
+
|
565 |
+
return hidden_states
|
566 |
+
|
567 |
+
|
568 |
+
class CNAttnProcessor2_0:
|
569 |
+
r"""
|
570 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(self, num_tokens=4):
|
574 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
575 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
576 |
+
self.num_tokens = num_tokens
|
577 |
+
|
578 |
+
def __call__(
|
579 |
+
self,
|
580 |
+
attn,
|
581 |
+
hidden_states,
|
582 |
+
encoder_hidden_states=None,
|
583 |
+
attention_mask=None,
|
584 |
+
temb=None,
|
585 |
+
):
|
586 |
+
residual = hidden_states
|
587 |
+
|
588 |
+
if attn.spatial_norm is not None:
|
589 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
590 |
+
|
591 |
+
input_ndim = hidden_states.ndim
|
592 |
+
|
593 |
+
if input_ndim == 4:
|
594 |
+
batch_size, channel, height, width = hidden_states.shape
|
595 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
596 |
+
|
597 |
+
batch_size, sequence_length, _ = (
|
598 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
599 |
+
)
|
600 |
+
|
601 |
+
if attention_mask is not None:
|
602 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
603 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
604 |
+
# (batch, heads, source_length, target_length)
|
605 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
606 |
+
|
607 |
+
if attn.group_norm is not None:
|
608 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
609 |
+
|
610 |
+
query = attn.to_q(hidden_states)
|
611 |
+
|
612 |
+
if encoder_hidden_states is None:
|
613 |
+
encoder_hidden_states = hidden_states
|
614 |
+
else:
|
615 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
616 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
617 |
+
if attn.norm_cross:
|
618 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
619 |
+
|
620 |
+
key = attn.to_k(encoder_hidden_states)
|
621 |
+
value = attn.to_v(encoder_hidden_states)
|
622 |
+
|
623 |
+
inner_dim = key.shape[-1]
|
624 |
+
head_dim = inner_dim // attn.heads
|
625 |
+
|
626 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
627 |
+
|
628 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
629 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
630 |
+
|
631 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
632 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
633 |
+
hidden_states = F.scaled_dot_product_attention(
|
634 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
635 |
+
)
|
636 |
+
|
637 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
638 |
+
hidden_states = hidden_states.to(query.dtype)
|
639 |
+
|
640 |
+
# linear proj
|
641 |
+
hidden_states = attn.to_out[0](hidden_states)
|
642 |
+
# dropout
|
643 |
+
hidden_states = attn.to_out[1](hidden_states)
|
644 |
+
|
645 |
+
if input_ndim == 4:
|
646 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
647 |
+
|
648 |
+
if attn.residual_connection:
|
649 |
+
hidden_states = hidden_states + residual
|
650 |
+
|
651 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
652 |
+
|
653 |
+
return hidden_states
|
foleycrafter/models/adapters/ip_adapter.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import os
|
7 |
+
from typing import List
|
8 |
+
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
11 |
+
from PIL import Image
|
12 |
+
from safetensors import safe_open
|
13 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
14 |
+
|
15 |
+
from foleycrafter.models.adapters.resampler import Resampler
|
16 |
+
from foleycrafter.models.adapters.utils import is_torch2_available
|
17 |
+
|
18 |
+
class IPAdapter(torch.nn.Module):
|
19 |
+
"""IP-Adapter"""
|
20 |
+
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
|
21 |
+
super().__init__()
|
22 |
+
self.unet = unet
|
23 |
+
self.image_proj_model = image_proj_model
|
24 |
+
self.adapter_modules = adapter_modules
|
25 |
+
|
26 |
+
if ckpt_path is not None:
|
27 |
+
self.load_from_checkpoint(ckpt_path)
|
28 |
+
|
29 |
+
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
|
30 |
+
ip_tokens = self.image_proj_model(image_embeds)
|
31 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
|
32 |
+
# Predict the noise residual
|
33 |
+
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
34 |
+
return noise_pred
|
35 |
+
|
36 |
+
def load_from_checkpoint(self, ckpt_path: str):
|
37 |
+
# Calculate original checksums
|
38 |
+
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
|
39 |
+
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
|
40 |
+
|
41 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
42 |
+
|
43 |
+
# Load state dict for image_proj_model and adapter_modules
|
44 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
|
45 |
+
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=True)
|
46 |
+
|
47 |
+
# Calculate new checksums
|
48 |
+
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
|
49 |
+
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
|
50 |
+
|
51 |
+
# Verify if the weights have changed
|
52 |
+
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
|
53 |
+
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
|
54 |
+
|
55 |
+
print(f"Successfully loaded weights from checkpoint {ckpt_path}")
|
56 |
+
|
57 |
+
class VideoProjModel(torch.nn.Module):
|
58 |
+
"""Projection Model"""
|
59 |
+
|
60 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=1, video_frame=50):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
self.cross_attention_dim = cross_attention_dim
|
64 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
65 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
66 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
67 |
+
|
68 |
+
self.video_frame = video_frame
|
69 |
+
|
70 |
+
def forward(self, image_embeds):
|
71 |
+
embeds = image_embeds
|
72 |
+
clip_extra_context_tokens = self.proj(embeds)
|
73 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
74 |
+
return clip_extra_context_tokens
|
75 |
+
|
76 |
+
class ImageProjModel(torch.nn.Module):
|
77 |
+
"""Projection Model"""
|
78 |
+
|
79 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
80 |
+
super().__init__()
|
81 |
+
|
82 |
+
self.cross_attention_dim = cross_attention_dim
|
83 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
84 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
85 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
86 |
+
|
87 |
+
def forward(self, image_embeds):
|
88 |
+
embeds = image_embeds
|
89 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
90 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
91 |
+
)
|
92 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
93 |
+
return clip_extra_context_tokens
|
94 |
+
|
95 |
+
|
96 |
+
class MLPProjModel(torch.nn.Module):
|
97 |
+
"""SD model with image prompt"""
|
98 |
+
def zero_initialize(module):
|
99 |
+
for param in module.parameters():
|
100 |
+
param.data.zero_()
|
101 |
+
|
102 |
+
def zero_initialize_last_layer(module):
|
103 |
+
last_layer = None
|
104 |
+
for module_name, layer in module.named_modules():
|
105 |
+
if isinstance(layer, torch.nn.Linear):
|
106 |
+
last_layer = layer
|
107 |
+
|
108 |
+
if last_layer is not None:
|
109 |
+
last_layer.weight.data.zero_()
|
110 |
+
last_layer.bias.data.zero_()
|
111 |
+
|
112 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
113 |
+
|
114 |
+
super().__init__()
|
115 |
+
|
116 |
+
self.proj = torch.nn.Sequential(
|
117 |
+
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
118 |
+
torch.nn.GELU(),
|
119 |
+
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
120 |
+
torch.nn.LayerNorm(cross_attention_dim)
|
121 |
+
)
|
122 |
+
# zero initialize the last layer
|
123 |
+
# self.zero_initialize_last_layer()
|
124 |
+
|
125 |
+
def forward(self, image_embeds):
|
126 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
127 |
+
return clip_extra_context_tokens
|
128 |
+
|
129 |
+
class V2AMapperMLP(torch.nn.Module):
|
130 |
+
def __init__(self, cross_attention_dim=512, clip_embeddings_dim=512, mult=4):
|
131 |
+
super().__init__()
|
132 |
+
self.proj = torch.nn.Sequential(
|
133 |
+
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim * mult),
|
134 |
+
torch.nn.GELU(),
|
135 |
+
torch.nn.Linear(clip_embeddings_dim * mult, cross_attention_dim),
|
136 |
+
torch.nn.LayerNorm(cross_attention_dim)
|
137 |
+
)
|
138 |
+
|
139 |
+
def forward(self, image_embeds):
|
140 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
141 |
+
return clip_extra_context_tokens
|
142 |
+
|
143 |
+
class TimeProjModel(torch.nn.Module):
|
144 |
+
def __init__(self, positive_len, out_dim, feature_type="text-only", frame_nums:int=64):
|
145 |
+
super().__init__()
|
146 |
+
self.positive_len = positive_len
|
147 |
+
self.out_dim = out_dim
|
148 |
+
|
149 |
+
self.position_dim = frame_nums
|
150 |
+
|
151 |
+
if isinstance(out_dim, tuple):
|
152 |
+
out_dim = out_dim[0]
|
153 |
+
|
154 |
+
if feature_type == "text-only":
|
155 |
+
self.linears = nn.Sequential(
|
156 |
+
nn.Linear(self.positive_len + self.position_dim, 512),
|
157 |
+
nn.SiLU(),
|
158 |
+
nn.Linear(512, 512),
|
159 |
+
nn.SiLU(),
|
160 |
+
nn.Linear(512, out_dim),
|
161 |
+
)
|
162 |
+
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
|
163 |
+
|
164 |
+
elif feature_type == "text-image":
|
165 |
+
self.linears_text = nn.Sequential(
|
166 |
+
nn.Linear(self.positive_len + self.position_dim, 512),
|
167 |
+
nn.SiLU(),
|
168 |
+
nn.Linear(512, 512),
|
169 |
+
nn.SiLU(),
|
170 |
+
nn.Linear(512, out_dim),
|
171 |
+
)
|
172 |
+
self.linears_image = nn.Sequential(
|
173 |
+
nn.Linear(self.positive_len + self.position_dim, 512),
|
174 |
+
nn.SiLU(),
|
175 |
+
nn.Linear(512, 512),
|
176 |
+
nn.SiLU(),
|
177 |
+
nn.Linear(512, out_dim),
|
178 |
+
)
|
179 |
+
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
|
180 |
+
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
|
181 |
+
|
182 |
+
# self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
|
183 |
+
|
184 |
+
def forward(
|
185 |
+
self,
|
186 |
+
boxes,
|
187 |
+
masks,
|
188 |
+
positive_embeddings=None,
|
189 |
+
):
|
190 |
+
masks = masks.unsqueeze(-1)
|
191 |
+
|
192 |
+
# # embedding position (it may includes padding as placeholder)
|
193 |
+
# xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 -> B*N*C
|
194 |
+
|
195 |
+
# # learnable null embedding
|
196 |
+
# xyxy_null = self.null_position_feature.view(1, 1, -1)
|
197 |
+
|
198 |
+
# # replace padding with learnable null embedding
|
199 |
+
# xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
|
200 |
+
|
201 |
+
time_embeds = boxes
|
202 |
+
|
203 |
+
# positionet with text only information
|
204 |
+
if positive_embeddings is not None:
|
205 |
+
# learnable null embedding
|
206 |
+
positive_null = self.null_positive_feature.view(1, 1, -1)
|
207 |
+
|
208 |
+
# replace padding with learnable null embedding
|
209 |
+
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null
|
210 |
+
|
211 |
+
objs = self.linears(torch.cat([positive_embeddings, time_embeds], dim=-1))
|
212 |
+
|
213 |
+
# positionet with text and image infomation
|
214 |
+
else:
|
215 |
+
raise NotImplementedError
|
216 |
+
|
217 |
+
return objs
|
foleycrafter/models/adapters/resampler.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
|
11 |
+
|
12 |
+
# FFN
|
13 |
+
def FeedForward(dim, mult=4):
|
14 |
+
inner_dim = int(dim * mult)
|
15 |
+
return nn.Sequential(
|
16 |
+
nn.LayerNorm(dim),
|
17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def reshape_tensor(x, heads):
|
24 |
+
bs, length, width = x.shape
|
25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
26 |
+
x = x.view(bs, length, heads, -1)
|
27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
28 |
+
x = x.transpose(1, 2)
|
29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
30 |
+
x = x.reshape(bs, heads, length, -1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class PerceiverAttention(nn.Module):
|
35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
36 |
+
super().__init__()
|
37 |
+
self.scale = dim_head**-0.5
|
38 |
+
self.dim_head = dim_head
|
39 |
+
self.heads = heads
|
40 |
+
inner_dim = dim_head * heads
|
41 |
+
|
42 |
+
self.norm1 = nn.LayerNorm(dim)
|
43 |
+
self.norm2 = nn.LayerNorm(dim)
|
44 |
+
|
45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
48 |
+
|
49 |
+
def forward(self, x, latents):
|
50 |
+
"""
|
51 |
+
Args:
|
52 |
+
x (torch.Tensor): image features
|
53 |
+
shape (b, n1, D)
|
54 |
+
latent (torch.Tensor): latent features
|
55 |
+
shape (b, n2, D)
|
56 |
+
"""
|
57 |
+
x = self.norm1(x)
|
58 |
+
latents = self.norm2(latents)
|
59 |
+
|
60 |
+
b, l, _ = latents.shape
|
61 |
+
|
62 |
+
q = self.to_q(latents)
|
63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
65 |
+
|
66 |
+
q = reshape_tensor(q, self.heads)
|
67 |
+
k = reshape_tensor(k, self.heads)
|
68 |
+
v = reshape_tensor(v, self.heads)
|
69 |
+
|
70 |
+
# attention
|
71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
72 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
73 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
74 |
+
out = weight @ v
|
75 |
+
|
76 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
77 |
+
|
78 |
+
return self.to_out(out)
|
79 |
+
|
80 |
+
|
81 |
+
class Resampler(nn.Module):
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
dim=1024,
|
85 |
+
depth=8,
|
86 |
+
dim_head=64,
|
87 |
+
heads=16,
|
88 |
+
num_queries=8,
|
89 |
+
embedding_dim=768,
|
90 |
+
output_dim=1024,
|
91 |
+
ff_mult=4,
|
92 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
93 |
+
apply_pos_emb: bool = False,
|
94 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
98 |
+
|
99 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
100 |
+
|
101 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
102 |
+
|
103 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
104 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
105 |
+
|
106 |
+
self.to_latents_from_mean_pooled_seq = (
|
107 |
+
nn.Sequential(
|
108 |
+
nn.LayerNorm(dim),
|
109 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
110 |
+
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
111 |
+
)
|
112 |
+
if num_latents_mean_pooled > 0
|
113 |
+
else None
|
114 |
+
)
|
115 |
+
|
116 |
+
self.layers = nn.ModuleList([])
|
117 |
+
for _ in range(depth):
|
118 |
+
self.layers.append(
|
119 |
+
nn.ModuleList(
|
120 |
+
[
|
121 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
122 |
+
FeedForward(dim=dim, mult=ff_mult),
|
123 |
+
]
|
124 |
+
)
|
125 |
+
)
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
if self.pos_emb is not None:
|
129 |
+
n, device = x.shape[1], x.device
|
130 |
+
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
131 |
+
x = x + pos_emb
|
132 |
+
|
133 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
134 |
+
|
135 |
+
x = self.proj_in(x)
|
136 |
+
|
137 |
+
if self.to_latents_from_mean_pooled_seq:
|
138 |
+
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
|
139 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
140 |
+
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
141 |
+
|
142 |
+
for attn, ff in self.layers:
|
143 |
+
latents = attn(x, latents) + latents
|
144 |
+
latents = ff(latents) + latents
|
145 |
+
|
146 |
+
latents = self.proj_out(latents)
|
147 |
+
return self.norm_out(latents)
|
148 |
+
|
149 |
+
|
150 |
+
def masked_mean(t, *, dim, mask=None):
|
151 |
+
if mask is None:
|
152 |
+
return t.mean(dim=dim)
|
153 |
+
|
154 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
155 |
+
mask = rearrange(mask, "b n -> b n 1")
|
156 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
157 |
+
|
158 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
foleycrafter/models/adapters/transformer.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.utils.checkpoint
|
4 |
+
|
5 |
+
from typing import Any, Optional, Tuple, Union
|
6 |
+
|
7 |
+
class Attention(nn.Module):
|
8 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
9 |
+
|
10 |
+
def __init__(self, hidden_size, num_attention_heads, attention_head_dim, attention_dropout=0.0):
|
11 |
+
super().__init__()
|
12 |
+
self.embed_dim = hidden_size
|
13 |
+
self.num_heads = num_attention_heads
|
14 |
+
self.head_dim = attention_head_dim
|
15 |
+
|
16 |
+
self.scale = self.head_dim**-0.5
|
17 |
+
self.dropout = attention_dropout
|
18 |
+
|
19 |
+
self.inner_dim = self.head_dim * self.num_heads
|
20 |
+
|
21 |
+
self.k_proj = nn.Linear(self.embed_dim, self.inner_dim)
|
22 |
+
self.v_proj = nn.Linear(self.embed_dim, self.inner_dim)
|
23 |
+
self.q_proj = nn.Linear(self.embed_dim, self.inner_dim)
|
24 |
+
self.out_proj = nn.Linear(self.inner_dim, self.embed_dim)
|
25 |
+
|
26 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
27 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
28 |
+
|
29 |
+
def forward(
|
30 |
+
self,
|
31 |
+
hidden_states: torch.Tensor,
|
32 |
+
attention_mask: Optional[torch.Tensor] = None,
|
33 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
34 |
+
output_attentions: Optional[bool] = False,
|
35 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
36 |
+
"""Input shape: Batch x Time x Channel"""
|
37 |
+
|
38 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
39 |
+
|
40 |
+
# get query proj
|
41 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
42 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
43 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
44 |
+
|
45 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
46 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
47 |
+
key_states = key_states.view(*proj_shape)
|
48 |
+
value_states = value_states.view(*proj_shape)
|
49 |
+
|
50 |
+
src_len = key_states.size(1)
|
51 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
52 |
+
|
53 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
54 |
+
raise ValueError(
|
55 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
56 |
+
f" {attn_weights.size()}"
|
57 |
+
)
|
58 |
+
|
59 |
+
# apply the causal_attention_mask first
|
60 |
+
if causal_attention_mask is not None:
|
61 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
62 |
+
raise ValueError(
|
63 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
64 |
+
f" {causal_attention_mask.size()}"
|
65 |
+
)
|
66 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
67 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
68 |
+
|
69 |
+
if attention_mask is not None:
|
70 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
71 |
+
raise ValueError(
|
72 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
73 |
+
)
|
74 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
75 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
76 |
+
|
77 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
78 |
+
|
79 |
+
if output_attentions:
|
80 |
+
# this operation is a bit akward, but it's required to
|
81 |
+
# make sure that attn_weights keeps its gradient.
|
82 |
+
# In order to do so, attn_weights have to reshaped
|
83 |
+
# twice and have to be reused in the following
|
84 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
85 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
86 |
+
else:
|
87 |
+
attn_weights_reshaped = None
|
88 |
+
|
89 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
90 |
+
|
91 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
92 |
+
|
93 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
94 |
+
raise ValueError(
|
95 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
96 |
+
f" {attn_output.size()}"
|
97 |
+
)
|
98 |
+
|
99 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
100 |
+
attn_output = attn_output.transpose(1, 2)
|
101 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.inner_dim)
|
102 |
+
|
103 |
+
attn_output = self.out_proj(attn_output)
|
104 |
+
|
105 |
+
return attn_output, attn_weights_reshaped
|
106 |
+
|
107 |
+
|
108 |
+
class MLP(nn.Module):
|
109 |
+
def __init__(self, hidden_size, intermediate_size, mult=4):
|
110 |
+
super().__init__()
|
111 |
+
self.activation_fn = nn.SiLU()
|
112 |
+
self.fc1 = nn.Linear(hidden_size, intermediate_size * mult)
|
113 |
+
self.fc2 = nn.Linear(intermediate_size * mult, hidden_size)
|
114 |
+
|
115 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
116 |
+
hidden_states = self.fc1(hidden_states)
|
117 |
+
hidden_states = self.activation_fn(hidden_states)
|
118 |
+
hidden_states = self.fc2(hidden_states)
|
119 |
+
return hidden_states
|
120 |
+
|
121 |
+
class Transformer(nn.Module):
|
122 |
+
def __init__(self, depth=12):
|
123 |
+
super().__init__()
|
124 |
+
self.layers = nn.ModuleList([TransformerBlock() for _ in range(depth)])
|
125 |
+
def forward(
|
126 |
+
self,
|
127 |
+
hidden_states: torch.Tensor,
|
128 |
+
attention_mask: torch.Tensor=None,
|
129 |
+
causal_attention_mask: torch.Tensor=None,
|
130 |
+
output_attentions: Optional[bool] = False,
|
131 |
+
) -> Tuple[torch.FloatTensor]:
|
132 |
+
"""
|
133 |
+
Args:
|
134 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
135 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
136 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
137 |
+
`(config.encoder_attention_heads,)`.
|
138 |
+
output_attentions (`bool`, *optional*):
|
139 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
140 |
+
returned tensors for more detail.
|
141 |
+
"""
|
142 |
+
for layer in self.layers:
|
143 |
+
hidden_states = layer(
|
144 |
+
hidden_states=hidden_states,
|
145 |
+
attention_mask=attention_mask,
|
146 |
+
causal_attention_mask=causal_attention_mask,
|
147 |
+
output_attentions=output_attentions,
|
148 |
+
)
|
149 |
+
|
150 |
+
return hidden_states
|
151 |
+
|
152 |
+
class TransformerBlock(nn.Module):
|
153 |
+
def __init__(self, hidden_size=512, num_attention_heads=12, attention_head_dim=64, attention_dropout=0.0, dropout=0.0, eps=1e-5):
|
154 |
+
super().__init__()
|
155 |
+
self.embed_dim = hidden_size
|
156 |
+
self.self_attn = Attention(hidden_size=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim)
|
157 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=eps)
|
158 |
+
self.mlp = MLP(hidden_size=hidden_size, intermediate_size=hidden_size)
|
159 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=eps)
|
160 |
+
|
161 |
+
def forward(
|
162 |
+
self,
|
163 |
+
hidden_states: torch.Tensor,
|
164 |
+
attention_mask: torch.Tensor=None,
|
165 |
+
causal_attention_mask: torch.Tensor=None,
|
166 |
+
output_attentions: Optional[bool] = False,
|
167 |
+
) -> Tuple[torch.FloatTensor]:
|
168 |
+
"""
|
169 |
+
Args:
|
170 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
171 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
172 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
173 |
+
`(config.encoder_attention_heads,)`.
|
174 |
+
output_attentions (`bool`, *optional*):
|
175 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
176 |
+
returned tensors for more detail.
|
177 |
+
"""
|
178 |
+
residual = hidden_states
|
179 |
+
|
180 |
+
hidden_states = self.layer_norm1(hidden_states)
|
181 |
+
hidden_states, attn_weights = self.self_attn(
|
182 |
+
hidden_states=hidden_states,
|
183 |
+
attention_mask=attention_mask,
|
184 |
+
causal_attention_mask=causal_attention_mask,
|
185 |
+
output_attentions=output_attentions,
|
186 |
+
)
|
187 |
+
hidden_states = residual + hidden_states
|
188 |
+
|
189 |
+
residual = hidden_states
|
190 |
+
hidden_states = self.layer_norm2(hidden_states)
|
191 |
+
hidden_states = self.mlp(hidden_states)
|
192 |
+
hidden_states = residual + hidden_states
|
193 |
+
|
194 |
+
outputs = (hidden_states,)
|
195 |
+
|
196 |
+
if output_attentions:
|
197 |
+
outputs += (attn_weights,)
|
198 |
+
|
199 |
+
return outputs[0]
|
200 |
+
|
201 |
+
class DiffusionTransformerBlock(nn.Module):
|
202 |
+
def __init__(self, hidden_size=512, num_attention_heads=12, attention_head_dim=64, attention_dropout=0.0, dropout=0.0, eps=1e-5):
|
203 |
+
super().__init__()
|
204 |
+
self.embed_dim = hidden_size
|
205 |
+
self.self_attn = Attention(hidden_size=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim)
|
206 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=eps)
|
207 |
+
self.mlp = MLP(hidden_size=hidden_size, intermediate_size=hidden_size)
|
208 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=eps)
|
209 |
+
self.output_token = nn.Parameter(torch.randn(1, hidden_size))
|
210 |
+
|
211 |
+
def forward(
|
212 |
+
self,
|
213 |
+
hidden_states: torch.Tensor,
|
214 |
+
attention_mask: torch.Tensor=None,
|
215 |
+
causal_attention_mask: torch.Tensor=None,
|
216 |
+
output_attentions: Optional[bool] = False,
|
217 |
+
) -> Tuple[torch.FloatTensor]:
|
218 |
+
"""
|
219 |
+
Args:
|
220 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
221 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
222 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
223 |
+
`(config.encoder_attention_heads,)`.
|
224 |
+
output_attentions (`bool`, *optional*):
|
225 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
226 |
+
returned tensors for more detail.
|
227 |
+
"""
|
228 |
+
output_token = self.output_token.unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)
|
229 |
+
hidden_states = torch.cat([output_token, hidden_states], dim=1)
|
230 |
+
residual = hidden_states
|
231 |
+
|
232 |
+
hidden_states = self.layer_norm1(hidden_states)
|
233 |
+
hidden_states, attn_weights = self.self_attn(
|
234 |
+
hidden_states=hidden_states,
|
235 |
+
attention_mask=attention_mask,
|
236 |
+
causal_attention_mask=causal_attention_mask,
|
237 |
+
output_attentions=output_attentions,
|
238 |
+
)
|
239 |
+
hidden_states = residual + hidden_states
|
240 |
+
|
241 |
+
residual = hidden_states
|
242 |
+
hidden_states = self.layer_norm2(hidden_states)
|
243 |
+
hidden_states = self.mlp(hidden_states)
|
244 |
+
hidden_states = residual + hidden_states
|
245 |
+
|
246 |
+
outputs = (hidden_states,)
|
247 |
+
|
248 |
+
if output_attentions:
|
249 |
+
outputs += (attn_weights,)
|
250 |
+
|
251 |
+
return outputs[0][:,0:1,...]
|
252 |
+
|
253 |
+
class V2AMapperMLP(nn.Module):
|
254 |
+
def __init__(self, input_dim=512, output_dim=512, expansion_rate=4):
|
255 |
+
super().__init__()
|
256 |
+
self.linear = nn.Linear(input_dim, input_dim * expansion_rate)
|
257 |
+
self.silu = nn.SiLU()
|
258 |
+
self.layer_norm = nn.LayerNorm(input_dim * expansion_rate)
|
259 |
+
self.linear2 = nn.Linear(input_dim * expansion_rate, output_dim)
|
260 |
+
|
261 |
+
def forward(self, x):
|
262 |
+
|
263 |
+
x = self.linear(x)
|
264 |
+
x = self.silu(x)
|
265 |
+
x = self.layer_norm(x)
|
266 |
+
x = self.linear2(x)
|
267 |
+
|
268 |
+
return x
|
269 |
+
|
270 |
+
class ImageProjModel(torch.nn.Module):
|
271 |
+
"""Projection Model"""
|
272 |
+
|
273 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
274 |
+
super().__init__()
|
275 |
+
|
276 |
+
self.cross_attention_dim = cross_attention_dim
|
277 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
278 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
279 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
280 |
+
|
281 |
+
self.zero_initialize_last_layer()
|
282 |
+
|
283 |
+
def zero_initialize_last_layer(module):
|
284 |
+
last_layer = None
|
285 |
+
for module_name, layer in module.named_modules():
|
286 |
+
if isinstance(layer, torch.nn.Linear):
|
287 |
+
last_layer = layer
|
288 |
+
|
289 |
+
if last_layer is not None:
|
290 |
+
last_layer.weight.data.zero_()
|
291 |
+
last_layer.bias.data.zero_()
|
292 |
+
|
293 |
+
def forward(self, image_embeds):
|
294 |
+
embeds = image_embeds
|
295 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
296 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
297 |
+
)
|
298 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
299 |
+
return clip_extra_context_tokens
|
300 |
+
|
301 |
+
class VisionAudioAdapter(torch.nn.Module):
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
embedding_size=768,
|
305 |
+
expand_dim=4,
|
306 |
+
token_num=4,
|
307 |
+
):
|
308 |
+
super().__init__()
|
309 |
+
|
310 |
+
self.mapper = V2AMapperMLP(
|
311 |
+
embedding_size,
|
312 |
+
embedding_size,
|
313 |
+
expansion_rate=expand_dim,
|
314 |
+
)
|
315 |
+
|
316 |
+
self.proj = ImageProjModel(
|
317 |
+
cross_attention_dim=embedding_size,
|
318 |
+
clip_embeddings_dim=embedding_size,
|
319 |
+
clip_extra_context_tokens=token_num,
|
320 |
+
)
|
321 |
+
|
322 |
+
def forward(self, image_embeds):
|
323 |
+
image_embeds = self.mapper(image_embeds)
|
324 |
+
image_embeds = self.proj(image_embeds)
|
325 |
+
return image_embeds
|
326 |
+
|
327 |
+
|
foleycrafter/models/adapters/utils.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
attn_maps = {}
|
7 |
+
def hook_fn(name):
|
8 |
+
def forward_hook(module, input, output):
|
9 |
+
if hasattr(module.processor, "attn_map"):
|
10 |
+
attn_maps[name] = module.processor.attn_map
|
11 |
+
del module.processor.attn_map
|
12 |
+
|
13 |
+
return forward_hook
|
14 |
+
|
15 |
+
def register_cross_attention_hook(unet):
|
16 |
+
for name, module in unet.named_modules():
|
17 |
+
if name.split('.')[-1].startswith('attn2'):
|
18 |
+
module.register_forward_hook(hook_fn(name))
|
19 |
+
|
20 |
+
return unet
|
21 |
+
|
22 |
+
def upscale(attn_map, target_size):
|
23 |
+
attn_map = torch.mean(attn_map, dim=0)
|
24 |
+
attn_map = attn_map.permute(1,0)
|
25 |
+
temp_size = None
|
26 |
+
|
27 |
+
for i in range(0,5):
|
28 |
+
scale = 2 ** i
|
29 |
+
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
|
30 |
+
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
|
31 |
+
break
|
32 |
+
|
33 |
+
assert temp_size is not None, "temp_size cannot is None"
|
34 |
+
|
35 |
+
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
36 |
+
|
37 |
+
attn_map = F.interpolate(
|
38 |
+
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
39 |
+
size=target_size,
|
40 |
+
mode='bilinear',
|
41 |
+
align_corners=False
|
42 |
+
)[0]
|
43 |
+
|
44 |
+
attn_map = torch.softmax(attn_map, dim=0)
|
45 |
+
return attn_map
|
46 |
+
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
47 |
+
|
48 |
+
idx = 0 if instance_or_negative else 1
|
49 |
+
net_attn_maps = []
|
50 |
+
|
51 |
+
for name, attn_map in attn_maps.items():
|
52 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
53 |
+
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
|
54 |
+
attn_map = upscale(attn_map, image_size)
|
55 |
+
net_attn_maps.append(attn_map)
|
56 |
+
|
57 |
+
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
58 |
+
|
59 |
+
return net_attn_maps
|
60 |
+
|
61 |
+
def attnmaps2images(net_attn_maps):
|
62 |
+
|
63 |
+
#total_attn_scores = 0
|
64 |
+
images = []
|
65 |
+
|
66 |
+
for attn_map in net_attn_maps:
|
67 |
+
attn_map = attn_map.cpu().numpy()
|
68 |
+
#total_attn_scores += attn_map.mean().item()
|
69 |
+
|
70 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
71 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
72 |
+
#print("norm: ", normalized_attn_map.shape)
|
73 |
+
image = Image.fromarray(normalized_attn_map)
|
74 |
+
|
75 |
+
#image = fix_save_attn_map(attn_map)
|
76 |
+
images.append(image)
|
77 |
+
|
78 |
+
#print(total_attn_scores)
|
79 |
+
return images
|
80 |
+
def is_torch2_available():
|
81 |
+
return hasattr(F, "scaled_dot_product_attention")
|
foleycrafter/models/auffusion/attention.py
ADDED
@@ -0,0 +1,669 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
21 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
22 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
23 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
24 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
25 |
+
from diffusers.models.normalization import\
|
26 |
+
AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
27 |
+
|
28 |
+
from foleycrafter.models.auffusion.attention_processor import Attention
|
29 |
+
|
30 |
+
def _chunked_feed_forward(
|
31 |
+
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
|
32 |
+
):
|
33 |
+
# "feed_forward_chunk_size" can be used to save memory
|
34 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
35 |
+
raise ValueError(
|
36 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
37 |
+
)
|
38 |
+
|
39 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
40 |
+
if lora_scale is None:
|
41 |
+
ff_output = torch.cat(
|
42 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
43 |
+
dim=chunk_dim,
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
# TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
|
47 |
+
ff_output = torch.cat(
|
48 |
+
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
49 |
+
dim=chunk_dim,
|
50 |
+
)
|
51 |
+
|
52 |
+
return ff_output
|
53 |
+
|
54 |
+
|
55 |
+
@maybe_allow_in_graph
|
56 |
+
class GatedSelfAttentionDense(nn.Module):
|
57 |
+
r"""
|
58 |
+
A gated self-attention dense layer that combines visual features and object features.
|
59 |
+
|
60 |
+
Parameters:
|
61 |
+
query_dim (`int`): The number of channels in the query.
|
62 |
+
context_dim (`int`): The number of channels in the context.
|
63 |
+
n_heads (`int`): The number of heads to use for attention.
|
64 |
+
d_head (`int`): The number of channels in each head.
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
68 |
+
super().__init__()
|
69 |
+
|
70 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
71 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
72 |
+
|
73 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
74 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
75 |
+
|
76 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
77 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
78 |
+
|
79 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
80 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
81 |
+
|
82 |
+
self.enabled = True
|
83 |
+
|
84 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
85 |
+
if not self.enabled:
|
86 |
+
return x
|
87 |
+
|
88 |
+
n_visual = x.shape[1]
|
89 |
+
objs = self.linear(objs)
|
90 |
+
|
91 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
92 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
93 |
+
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
@maybe_allow_in_graph
|
98 |
+
class BasicTransformerBlock(nn.Module):
|
99 |
+
r"""
|
100 |
+
A basic Transformer block.
|
101 |
+
|
102 |
+
Parameters:
|
103 |
+
dim (`int`): The number of channels in the input and output.
|
104 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
105 |
+
attention_head_dim (`int`): The number of channels in each head.
|
106 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
107 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
108 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
109 |
+
num_embeds_ada_norm (:
|
110 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
111 |
+
attention_bias (:
|
112 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
113 |
+
only_cross_attention (`bool`, *optional*):
|
114 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
115 |
+
double_self_attention (`bool`, *optional*):
|
116 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
117 |
+
upcast_attention (`bool`, *optional*):
|
118 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
119 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
120 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
121 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
122 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
123 |
+
final_dropout (`bool` *optional*, defaults to False):
|
124 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
125 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
126 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
127 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
128 |
+
The type of positional embeddings to apply to.
|
129 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
130 |
+
The maximum number of positional embeddings to apply.
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
dim: int,
|
136 |
+
num_attention_heads: int,
|
137 |
+
attention_head_dim: int,
|
138 |
+
dropout=0.0,
|
139 |
+
cross_attention_dim: Optional[int] = None,
|
140 |
+
activation_fn: str = "geglu",
|
141 |
+
num_embeds_ada_norm: Optional[int] = None,
|
142 |
+
attention_bias: bool = False,
|
143 |
+
only_cross_attention: bool = False,
|
144 |
+
double_self_attention: bool = False,
|
145 |
+
upcast_attention: bool = False,
|
146 |
+
norm_elementwise_affine: bool = True,
|
147 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
148 |
+
norm_eps: float = 1e-5,
|
149 |
+
final_dropout: bool = False,
|
150 |
+
attention_type: str = "default",
|
151 |
+
positional_embeddings: Optional[str] = None,
|
152 |
+
num_positional_embeddings: Optional[int] = None,
|
153 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
154 |
+
ada_norm_bias: Optional[int] = None,
|
155 |
+
ff_inner_dim: Optional[int] = None,
|
156 |
+
ff_bias: bool = True,
|
157 |
+
attention_out_bias: bool = True,
|
158 |
+
):
|
159 |
+
super().__init__()
|
160 |
+
self.only_cross_attention = only_cross_attention
|
161 |
+
|
162 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
163 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
164 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
165 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
166 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
167 |
+
|
168 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
169 |
+
raise ValueError(
|
170 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
171 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
172 |
+
)
|
173 |
+
|
174 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
175 |
+
raise ValueError(
|
176 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
177 |
+
)
|
178 |
+
|
179 |
+
if positional_embeddings == "sinusoidal":
|
180 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
181 |
+
else:
|
182 |
+
self.pos_embed = None
|
183 |
+
|
184 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
185 |
+
# 1. Self-Attn
|
186 |
+
if self.use_ada_layer_norm:
|
187 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
188 |
+
elif self.use_ada_layer_norm_zero:
|
189 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
190 |
+
elif self.use_ada_layer_norm_continuous:
|
191 |
+
self.norm1 = AdaLayerNormContinuous(
|
192 |
+
dim,
|
193 |
+
ada_norm_continous_conditioning_embedding_dim,
|
194 |
+
norm_elementwise_affine,
|
195 |
+
norm_eps,
|
196 |
+
ada_norm_bias,
|
197 |
+
"rms_norm",
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
201 |
+
|
202 |
+
self.attn1 = Attention(
|
203 |
+
query_dim=dim,
|
204 |
+
heads=num_attention_heads,
|
205 |
+
dim_head=attention_head_dim,
|
206 |
+
dropout=dropout,
|
207 |
+
bias=attention_bias,
|
208 |
+
cross_attention_dim=cross_attention_dim if (only_cross_attention and not double_self_attention) else None,
|
209 |
+
upcast_attention=upcast_attention,
|
210 |
+
out_bias=attention_out_bias,
|
211 |
+
)
|
212 |
+
|
213 |
+
# 2. Cross-Attn
|
214 |
+
if cross_attention_dim is not None or double_self_attention:
|
215 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
216 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
217 |
+
# the second cross attention block.
|
218 |
+
if self.use_ada_layer_norm:
|
219 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
220 |
+
elif self.use_ada_layer_norm_continuous:
|
221 |
+
self.norm2 = AdaLayerNormContinuous(
|
222 |
+
dim,
|
223 |
+
ada_norm_continous_conditioning_embedding_dim,
|
224 |
+
norm_elementwise_affine,
|
225 |
+
norm_eps,
|
226 |
+
ada_norm_bias,
|
227 |
+
"rms_norm",
|
228 |
+
)
|
229 |
+
else:
|
230 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
231 |
+
|
232 |
+
self.attn2 = Attention(
|
233 |
+
query_dim=dim,
|
234 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
235 |
+
heads=num_attention_heads,
|
236 |
+
dim_head=attention_head_dim,
|
237 |
+
dropout=dropout,
|
238 |
+
bias=attention_bias,
|
239 |
+
upcast_attention=upcast_attention,
|
240 |
+
out_bias=attention_out_bias,
|
241 |
+
) # is self-attn if encoder_hidden_states is none
|
242 |
+
else:
|
243 |
+
self.norm2 = None
|
244 |
+
self.attn2 = None
|
245 |
+
|
246 |
+
# 3. Feed-forward
|
247 |
+
if self.use_ada_layer_norm_continuous:
|
248 |
+
self.norm3 = AdaLayerNormContinuous(
|
249 |
+
dim,
|
250 |
+
ada_norm_continous_conditioning_embedding_dim,
|
251 |
+
norm_elementwise_affine,
|
252 |
+
norm_eps,
|
253 |
+
ada_norm_bias,
|
254 |
+
"layer_norm",
|
255 |
+
)
|
256 |
+
elif not self.use_ada_layer_norm_single:
|
257 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
258 |
+
|
259 |
+
self.ff = FeedForward(
|
260 |
+
dim,
|
261 |
+
dropout=dropout,
|
262 |
+
activation_fn=activation_fn,
|
263 |
+
final_dropout=final_dropout,
|
264 |
+
inner_dim=ff_inner_dim,
|
265 |
+
bias=ff_bias,
|
266 |
+
)
|
267 |
+
|
268 |
+
# 4. Fuser
|
269 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
270 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
271 |
+
|
272 |
+
# 5. Scale-shift for PixArt-Alpha.
|
273 |
+
if self.use_ada_layer_norm_single:
|
274 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
275 |
+
|
276 |
+
# let chunk size default to None
|
277 |
+
self._chunk_size = None
|
278 |
+
self._chunk_dim = 0
|
279 |
+
|
280 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
281 |
+
# Sets chunk feed-forward
|
282 |
+
self._chunk_size = chunk_size
|
283 |
+
self._chunk_dim = dim
|
284 |
+
|
285 |
+
def forward(
|
286 |
+
self,
|
287 |
+
hidden_states: torch.FloatTensor,
|
288 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
289 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
290 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
291 |
+
timestep: Optional[torch.LongTensor] = None,
|
292 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
293 |
+
class_labels: Optional[torch.LongTensor] = None,
|
294 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
295 |
+
) -> torch.FloatTensor:
|
296 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
297 |
+
# 0. Self-Attention
|
298 |
+
batch_size = hidden_states.shape[0]
|
299 |
+
|
300 |
+
if self.use_ada_layer_norm:
|
301 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
302 |
+
elif self.use_ada_layer_norm_zero:
|
303 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
304 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
305 |
+
)
|
306 |
+
elif self.use_layer_norm:
|
307 |
+
norm_hidden_states = self.norm1(hidden_states)
|
308 |
+
elif self.use_ada_layer_norm_continuous:
|
309 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
310 |
+
elif self.use_ada_layer_norm_single:
|
311 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
312 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
313 |
+
).chunk(6, dim=1)
|
314 |
+
norm_hidden_states = self.norm1(hidden_states)
|
315 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
316 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
317 |
+
else:
|
318 |
+
raise ValueError("Incorrect norm used")
|
319 |
+
|
320 |
+
if self.pos_embed is not None:
|
321 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
322 |
+
|
323 |
+
# 1. Retrieve lora scale.
|
324 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
325 |
+
|
326 |
+
# 2. Prepare GLIGEN inputs
|
327 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
328 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
329 |
+
|
330 |
+
attn_output = self.attn1(
|
331 |
+
norm_hidden_states,
|
332 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
333 |
+
attention_mask=attention_mask,
|
334 |
+
**cross_attention_kwargs,
|
335 |
+
)
|
336 |
+
if self.use_ada_layer_norm_zero:
|
337 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
338 |
+
elif self.use_ada_layer_norm_single:
|
339 |
+
attn_output = gate_msa * attn_output
|
340 |
+
|
341 |
+
hidden_states = attn_output + hidden_states
|
342 |
+
if hidden_states.ndim == 4:
|
343 |
+
hidden_states = hidden_states.squeeze(1)
|
344 |
+
|
345 |
+
# 2.5 GLIGEN Control
|
346 |
+
if gligen_kwargs is not None:
|
347 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
348 |
+
|
349 |
+
# 3. Cross-Attention
|
350 |
+
if self.attn2 is not None:
|
351 |
+
if self.use_ada_layer_norm:
|
352 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
353 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
354 |
+
norm_hidden_states = self.norm2(hidden_states)
|
355 |
+
elif self.use_ada_layer_norm_single:
|
356 |
+
# For PixArt norm2 isn't applied here:
|
357 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
358 |
+
norm_hidden_states = hidden_states
|
359 |
+
elif self.use_ada_layer_norm_continuous:
|
360 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
361 |
+
else:
|
362 |
+
raise ValueError("Incorrect norm")
|
363 |
+
|
364 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
365 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
366 |
+
|
367 |
+
attn_output = self.attn2(
|
368 |
+
norm_hidden_states,
|
369 |
+
encoder_hidden_states=encoder_hidden_states,
|
370 |
+
attention_mask=encoder_attention_mask,
|
371 |
+
**cross_attention_kwargs,
|
372 |
+
)
|
373 |
+
hidden_states = attn_output + hidden_states
|
374 |
+
|
375 |
+
# 4. Feed-forward
|
376 |
+
if self.use_ada_layer_norm_continuous:
|
377 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
378 |
+
elif not self.use_ada_layer_norm_single:
|
379 |
+
norm_hidden_states = self.norm3(hidden_states)
|
380 |
+
|
381 |
+
if self.use_ada_layer_norm_zero:
|
382 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
383 |
+
|
384 |
+
if self.use_ada_layer_norm_single:
|
385 |
+
norm_hidden_states = self.norm2(hidden_states)
|
386 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
387 |
+
|
388 |
+
if self._chunk_size is not None:
|
389 |
+
# "feed_forward_chunk_size" can be used to save memory
|
390 |
+
ff_output = _chunked_feed_forward(
|
391 |
+
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
|
392 |
+
)
|
393 |
+
else:
|
394 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
395 |
+
|
396 |
+
if self.use_ada_layer_norm_zero:
|
397 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
398 |
+
elif self.use_ada_layer_norm_single:
|
399 |
+
ff_output = gate_mlp * ff_output
|
400 |
+
|
401 |
+
hidden_states = ff_output + hidden_states
|
402 |
+
if hidden_states.ndim == 4:
|
403 |
+
hidden_states = hidden_states.squeeze(1)
|
404 |
+
|
405 |
+
return hidden_states
|
406 |
+
|
407 |
+
|
408 |
+
@maybe_allow_in_graph
|
409 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
410 |
+
r"""
|
411 |
+
A basic Transformer block for video like data.
|
412 |
+
|
413 |
+
Parameters:
|
414 |
+
dim (`int`): The number of channels in the input and output.
|
415 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
416 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
417 |
+
attention_head_dim (`int`): The number of channels in each head.
|
418 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
419 |
+
"""
|
420 |
+
|
421 |
+
def __init__(
|
422 |
+
self,
|
423 |
+
dim: int,
|
424 |
+
time_mix_inner_dim: int,
|
425 |
+
num_attention_heads: int,
|
426 |
+
attention_head_dim: int,
|
427 |
+
cross_attention_dim: Optional[int] = None,
|
428 |
+
):
|
429 |
+
super().__init__()
|
430 |
+
self.is_res = dim == time_mix_inner_dim
|
431 |
+
|
432 |
+
self.norm_in = nn.LayerNorm(dim)
|
433 |
+
|
434 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
435 |
+
# 1. Self-Attn
|
436 |
+
self.norm_in = nn.LayerNorm(dim)
|
437 |
+
self.ff_in = FeedForward(
|
438 |
+
dim,
|
439 |
+
dim_out=time_mix_inner_dim,
|
440 |
+
activation_fn="geglu",
|
441 |
+
)
|
442 |
+
|
443 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
444 |
+
self.attn1 = Attention(
|
445 |
+
query_dim=time_mix_inner_dim,
|
446 |
+
heads=num_attention_heads,
|
447 |
+
dim_head=attention_head_dim,
|
448 |
+
cross_attention_dim=None,
|
449 |
+
)
|
450 |
+
|
451 |
+
# 2. Cross-Attn
|
452 |
+
if cross_attention_dim is not None:
|
453 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
454 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
455 |
+
# the second cross attention block.
|
456 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
457 |
+
self.attn2 = Attention(
|
458 |
+
query_dim=time_mix_inner_dim,
|
459 |
+
cross_attention_dim=cross_attention_dim,
|
460 |
+
heads=num_attention_heads,
|
461 |
+
dim_head=attention_head_dim,
|
462 |
+
) # is self-attn if encoder_hidden_states is none
|
463 |
+
else:
|
464 |
+
self.norm2 = None
|
465 |
+
self.attn2 = None
|
466 |
+
|
467 |
+
# 3. Feed-forward
|
468 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
469 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
470 |
+
|
471 |
+
# let chunk size default to None
|
472 |
+
self._chunk_size = None
|
473 |
+
self._chunk_dim = None
|
474 |
+
|
475 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
476 |
+
# Sets chunk feed-forward
|
477 |
+
self._chunk_size = chunk_size
|
478 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
479 |
+
self._chunk_dim = 1
|
480 |
+
|
481 |
+
def forward(
|
482 |
+
self,
|
483 |
+
hidden_states: torch.FloatTensor,
|
484 |
+
num_frames: int,
|
485 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
486 |
+
) -> torch.FloatTensor:
|
487 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
488 |
+
# 0. Self-Attention
|
489 |
+
batch_size = hidden_states.shape[0]
|
490 |
+
|
491 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
492 |
+
batch_size = batch_frames // num_frames
|
493 |
+
|
494 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
495 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
496 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
497 |
+
|
498 |
+
residual = hidden_states
|
499 |
+
hidden_states = self.norm_in(hidden_states)
|
500 |
+
|
501 |
+
if self._chunk_size is not None:
|
502 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
503 |
+
else:
|
504 |
+
hidden_states = self.ff_in(hidden_states)
|
505 |
+
|
506 |
+
if self.is_res:
|
507 |
+
hidden_states = hidden_states + residual
|
508 |
+
|
509 |
+
norm_hidden_states = self.norm1(hidden_states)
|
510 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
511 |
+
hidden_states = attn_output + hidden_states
|
512 |
+
|
513 |
+
# 3. Cross-Attention
|
514 |
+
if self.attn2 is not None:
|
515 |
+
norm_hidden_states = self.norm2(hidden_states)
|
516 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
517 |
+
hidden_states = attn_output + hidden_states
|
518 |
+
|
519 |
+
# 4. Feed-forward
|
520 |
+
norm_hidden_states = self.norm3(hidden_states)
|
521 |
+
|
522 |
+
if self._chunk_size is not None:
|
523 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
524 |
+
else:
|
525 |
+
ff_output = self.ff(norm_hidden_states)
|
526 |
+
|
527 |
+
if self.is_res:
|
528 |
+
hidden_states = ff_output + hidden_states
|
529 |
+
else:
|
530 |
+
hidden_states = ff_output
|
531 |
+
|
532 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
533 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
534 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
535 |
+
|
536 |
+
return hidden_states
|
537 |
+
|
538 |
+
|
539 |
+
class SkipFFTransformerBlock(nn.Module):
|
540 |
+
def __init__(
|
541 |
+
self,
|
542 |
+
dim: int,
|
543 |
+
num_attention_heads: int,
|
544 |
+
attention_head_dim: int,
|
545 |
+
kv_input_dim: int,
|
546 |
+
kv_input_dim_proj_use_bias: bool,
|
547 |
+
dropout=0.0,
|
548 |
+
cross_attention_dim: Optional[int] = None,
|
549 |
+
attention_bias: bool = False,
|
550 |
+
attention_out_bias: bool = True,
|
551 |
+
):
|
552 |
+
super().__init__()
|
553 |
+
if kv_input_dim != dim:
|
554 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
555 |
+
else:
|
556 |
+
self.kv_mapper = None
|
557 |
+
|
558 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
559 |
+
|
560 |
+
self.attn1 = Attention(
|
561 |
+
query_dim=dim,
|
562 |
+
heads=num_attention_heads,
|
563 |
+
dim_head=attention_head_dim,
|
564 |
+
dropout=dropout,
|
565 |
+
bias=attention_bias,
|
566 |
+
cross_attention_dim=cross_attention_dim,
|
567 |
+
out_bias=attention_out_bias,
|
568 |
+
)
|
569 |
+
|
570 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
571 |
+
|
572 |
+
self.attn2 = Attention(
|
573 |
+
query_dim=dim,
|
574 |
+
cross_attention_dim=cross_attention_dim,
|
575 |
+
heads=num_attention_heads,
|
576 |
+
dim_head=attention_head_dim,
|
577 |
+
dropout=dropout,
|
578 |
+
bias=attention_bias,
|
579 |
+
out_bias=attention_out_bias,
|
580 |
+
)
|
581 |
+
|
582 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
583 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
584 |
+
|
585 |
+
if self.kv_mapper is not None:
|
586 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
587 |
+
|
588 |
+
norm_hidden_states = self.norm1(hidden_states)
|
589 |
+
|
590 |
+
attn_output = self.attn1(
|
591 |
+
norm_hidden_states,
|
592 |
+
encoder_hidden_states=encoder_hidden_states,
|
593 |
+
**cross_attention_kwargs,
|
594 |
+
)
|
595 |
+
|
596 |
+
hidden_states = attn_output + hidden_states
|
597 |
+
|
598 |
+
norm_hidden_states = self.norm2(hidden_states)
|
599 |
+
|
600 |
+
attn_output = self.attn2(
|
601 |
+
norm_hidden_states,
|
602 |
+
encoder_hidden_states=encoder_hidden_states,
|
603 |
+
**cross_attention_kwargs,
|
604 |
+
)
|
605 |
+
|
606 |
+
hidden_states = attn_output + hidden_states
|
607 |
+
|
608 |
+
return hidden_states
|
609 |
+
|
610 |
+
|
611 |
+
class FeedForward(nn.Module):
|
612 |
+
r"""
|
613 |
+
A feed-forward layer.
|
614 |
+
|
615 |
+
Parameters:
|
616 |
+
dim (`int`): The number of channels in the input.
|
617 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
618 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
619 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
620 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
621 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
622 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
623 |
+
"""
|
624 |
+
|
625 |
+
def __init__(
|
626 |
+
self,
|
627 |
+
dim: int,
|
628 |
+
dim_out: Optional[int] = None,
|
629 |
+
mult: int = 4,
|
630 |
+
dropout: float = 0.0,
|
631 |
+
activation_fn: str = "geglu",
|
632 |
+
final_dropout: bool = False,
|
633 |
+
inner_dim=None,
|
634 |
+
bias: bool = True,
|
635 |
+
):
|
636 |
+
super().__init__()
|
637 |
+
if inner_dim is None:
|
638 |
+
inner_dim = int(dim * mult)
|
639 |
+
dim_out = dim_out if dim_out is not None else dim
|
640 |
+
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
641 |
+
|
642 |
+
if activation_fn == "gelu":
|
643 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
644 |
+
if activation_fn == "gelu-approximate":
|
645 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
646 |
+
elif activation_fn == "geglu":
|
647 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
648 |
+
elif activation_fn == "geglu-approximate":
|
649 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
650 |
+
|
651 |
+
self.net = nn.ModuleList([])
|
652 |
+
# project in
|
653 |
+
self.net.append(act_fn)
|
654 |
+
# project dropout
|
655 |
+
self.net.append(nn.Dropout(dropout))
|
656 |
+
# project out
|
657 |
+
self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
|
658 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
659 |
+
if final_dropout:
|
660 |
+
self.net.append(nn.Dropout(dropout))
|
661 |
+
|
662 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
663 |
+
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
664 |
+
for module in self.net:
|
665 |
+
if isinstance(module, compatible_cls):
|
666 |
+
hidden_states = module(hidden_states, scale)
|
667 |
+
else:
|
668 |
+
hidden_states = module(hidden_states)
|
669 |
+
return hidden_states
|
foleycrafter/models/auffusion/attention_processor.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
foleycrafter/models/auffusion/dual_transformer_2d.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Optional
|
15 |
+
|
16 |
+
from torch import nn
|
17 |
+
|
18 |
+
from foleycrafter.models.auffusion.transformer_2d \
|
19 |
+
import Transformer2DModel, Transformer2DModelOutput
|
20 |
+
|
21 |
+
|
22 |
+
class DualTransformer2DModel(nn.Module):
|
23 |
+
"""
|
24 |
+
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
|
25 |
+
|
26 |
+
Parameters:
|
27 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
28 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
29 |
+
in_channels (`int`, *optional*):
|
30 |
+
Pass if the input is continuous. The number of channels in the input and output.
|
31 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
32 |
+
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
33 |
+
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
|
34 |
+
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
|
35 |
+
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
|
36 |
+
`ImagePositionalEmbeddings`.
|
37 |
+
num_vector_embeds (`int`, *optional*):
|
38 |
+
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
|
39 |
+
Includes the class for the masked latent pixel.
|
40 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
41 |
+
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
|
42 |
+
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
|
43 |
+
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
|
44 |
+
up to but not more than steps than `num_embeds_ada_norm`.
|
45 |
+
attention_bias (`bool`, *optional*):
|
46 |
+
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
num_attention_heads: int = 16,
|
52 |
+
attention_head_dim: int = 88,
|
53 |
+
in_channels: Optional[int] = None,
|
54 |
+
num_layers: int = 1,
|
55 |
+
dropout: float = 0.0,
|
56 |
+
norm_num_groups: int = 32,
|
57 |
+
cross_attention_dim: Optional[int] = None,
|
58 |
+
attention_bias: bool = False,
|
59 |
+
sample_size: Optional[int] = None,
|
60 |
+
num_vector_embeds: Optional[int] = None,
|
61 |
+
activation_fn: str = "geglu",
|
62 |
+
num_embeds_ada_norm: Optional[int] = None,
|
63 |
+
):
|
64 |
+
super().__init__()
|
65 |
+
self.transformers = nn.ModuleList(
|
66 |
+
[
|
67 |
+
Transformer2DModel(
|
68 |
+
num_attention_heads=num_attention_heads,
|
69 |
+
attention_head_dim=attention_head_dim,
|
70 |
+
in_channels=in_channels,
|
71 |
+
num_layers=num_layers,
|
72 |
+
dropout=dropout,
|
73 |
+
norm_num_groups=norm_num_groups,
|
74 |
+
cross_attention_dim=cross_attention_dim,
|
75 |
+
attention_bias=attention_bias,
|
76 |
+
sample_size=sample_size,
|
77 |
+
num_vector_embeds=num_vector_embeds,
|
78 |
+
activation_fn=activation_fn,
|
79 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
80 |
+
)
|
81 |
+
for _ in range(2)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
# Variables that can be set by a pipeline:
|
86 |
+
|
87 |
+
# The ratio of transformer1 to transformer2's output states to be combined during inference
|
88 |
+
self.mix_ratio = 0.5
|
89 |
+
|
90 |
+
# The shape of `encoder_hidden_states` is expected to be
|
91 |
+
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
|
92 |
+
self.condition_lengths = [77, 257]
|
93 |
+
|
94 |
+
# Which transformer to use to encode which condition.
|
95 |
+
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
|
96 |
+
self.transformer_index_for_condition = [1, 0]
|
97 |
+
|
98 |
+
def forward(
|
99 |
+
self,
|
100 |
+
hidden_states,
|
101 |
+
encoder_hidden_states,
|
102 |
+
timestep=None,
|
103 |
+
attention_mask=None,
|
104 |
+
cross_attention_kwargs=None,
|
105 |
+
return_dict: bool = True,
|
106 |
+
):
|
107 |
+
"""
|
108 |
+
Args:
|
109 |
+
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
110 |
+
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
|
111 |
+
hidden_states.
|
112 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
|
113 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
114 |
+
self-attention.
|
115 |
+
timestep ( `torch.long`, *optional*):
|
116 |
+
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
117 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
118 |
+
Optional attention mask to be applied in Attention.
|
119 |
+
cross_attention_kwargs (`dict`, *optional*):
|
120 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
121 |
+
`self.processor` in
|
122 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
123 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
124 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`:
|
128 |
+
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
129 |
+
returning a tuple, the first element is the sample tensor.
|
130 |
+
"""
|
131 |
+
input_states = hidden_states
|
132 |
+
|
133 |
+
encoded_states = []
|
134 |
+
tokens_start = 0
|
135 |
+
# attention_mask is not used yet
|
136 |
+
for i in range(2):
|
137 |
+
# for each of the two transformers, pass the corresponding condition tokens
|
138 |
+
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
|
139 |
+
transformer_index = self.transformer_index_for_condition[i]
|
140 |
+
encoded_state = self.transformers[transformer_index](
|
141 |
+
input_states,
|
142 |
+
encoder_hidden_states=condition_state,
|
143 |
+
timestep=timestep,
|
144 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
145 |
+
return_dict=False,
|
146 |
+
)[0]
|
147 |
+
encoded_states.append(encoded_state - input_states)
|
148 |
+
tokens_start += self.condition_lengths[i]
|
149 |
+
|
150 |
+
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
|
151 |
+
output_states = output_states + input_states
|
152 |
+
|
153 |
+
if not return_dict:
|
154 |
+
return (output_states,)
|
155 |
+
|
156 |
+
return Transformer2DModelOutput(sample=output_states)
|
foleycrafter/models/auffusion/loaders/ip_adapter.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
20 |
+
from safetensors import safe_open
|
21 |
+
|
22 |
+
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
23 |
+
from diffusers.utils import (
|
24 |
+
_get_model_file,
|
25 |
+
is_accelerate_available,
|
26 |
+
is_torch_version,
|
27 |
+
is_transformers_available,
|
28 |
+
logging,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
if is_transformers_available():
|
33 |
+
from transformers import (
|
34 |
+
CLIPImageProcessor,
|
35 |
+
CLIPVisionModelWithProjection,
|
36 |
+
)
|
37 |
+
|
38 |
+
from diffusers.models.attention_processor import (
|
39 |
+
IPAdapterAttnProcessor,
|
40 |
+
)
|
41 |
+
|
42 |
+
from foleycrafter.models.auffusion.attention_processor import IPAdapterAttnProcessor2_0, VPTemporalAdapterAttnProcessor2_0
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
class IPAdapterMixin:
|
48 |
+
"""Mixin for handling IP Adapters."""
|
49 |
+
|
50 |
+
@validate_hf_hub_args
|
51 |
+
def load_ip_adapter(
|
52 |
+
self,
|
53 |
+
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
|
54 |
+
subfolder: Union[str, List[str]],
|
55 |
+
weight_name: Union[str, List[str]],
|
56 |
+
image_encoder_folder: Optional[str] = "image_encoder",
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
"""
|
60 |
+
Parameters:
|
61 |
+
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
|
62 |
+
Can be either:
|
63 |
+
|
64 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
65 |
+
the Hub.
|
66 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
67 |
+
with [`ModelMixin.save_pretrained`].
|
68 |
+
- A [torch state
|
69 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
70 |
+
subfolder (`str` or `List[str]`):
|
71 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
72 |
+
If a list is passed, it should have the same length as `weight_name`.
|
73 |
+
weight_name (`str` or `List[str]`):
|
74 |
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
75 |
+
`weight_name`.
|
76 |
+
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
77 |
+
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
78 |
+
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside `subfolder`,
|
79 |
+
you only need to pass the name of the folder that contains image encoder weights, e.g. `image_encoder_folder="image_encoder"`.
|
80 |
+
If the image encoder is located in a folder other than `subfolder`, you should pass the path to the folder that contains image encoder weights,
|
81 |
+
for example, `image_encoder_folder="different_subfolder/image_encoder"`.
|
82 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
83 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
84 |
+
is not used.
|
85 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
87 |
+
cached versions if they exist.
|
88 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
90 |
+
incompletely downloaded files are deleted.
|
91 |
+
proxies (`Dict[str, str]`, *optional*):
|
92 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
93 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
94 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
96 |
+
won't be downloaded from the Hub.
|
97 |
+
token (`str` or *bool*, *optional*):
|
98 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
99 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
100 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
101 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
102 |
+
allowed by Git.
|
103 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
104 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
105 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
106 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
107 |
+
argument to `True` will raise an error.
|
108 |
+
"""
|
109 |
+
|
110 |
+
# handle the list inputs for multiple IP Adapters
|
111 |
+
if not isinstance(weight_name, list):
|
112 |
+
weight_name = [weight_name]
|
113 |
+
|
114 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
115 |
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
|
116 |
+
if len(pretrained_model_name_or_path_or_dict) == 1:
|
117 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
|
118 |
+
|
119 |
+
if not isinstance(subfolder, list):
|
120 |
+
subfolder = [subfolder]
|
121 |
+
if len(subfolder) == 1:
|
122 |
+
subfolder = subfolder * len(weight_name)
|
123 |
+
|
124 |
+
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
|
125 |
+
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
|
126 |
+
|
127 |
+
if len(weight_name) != len(subfolder):
|
128 |
+
raise ValueError("`weight_name` and `subfolder` must have the same length.")
|
129 |
+
|
130 |
+
# Load the main state dict first.
|
131 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
132 |
+
force_download = kwargs.pop("force_download", False)
|
133 |
+
resume_download = kwargs.pop("resume_download", False)
|
134 |
+
proxies = kwargs.pop("proxies", None)
|
135 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
136 |
+
token = kwargs.pop("token", None)
|
137 |
+
revision = kwargs.pop("revision", None)
|
138 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
139 |
+
|
140 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
141 |
+
low_cpu_mem_usage = False
|
142 |
+
logger.warning(
|
143 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
144 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
145 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
146 |
+
" install accelerate\n```\n."
|
147 |
+
)
|
148 |
+
|
149 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
150 |
+
raise NotImplementedError(
|
151 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
152 |
+
" `low_cpu_mem_usage=False`."
|
153 |
+
)
|
154 |
+
|
155 |
+
user_agent = {
|
156 |
+
"file_type": "attn_procs_weights",
|
157 |
+
"framework": "pytorch",
|
158 |
+
}
|
159 |
+
state_dicts = []
|
160 |
+
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
|
161 |
+
pretrained_model_name_or_path_or_dict, weight_name, subfolder
|
162 |
+
):
|
163 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
164 |
+
model_file = _get_model_file(
|
165 |
+
pretrained_model_name_or_path_or_dict,
|
166 |
+
weights_name=weight_name,
|
167 |
+
cache_dir=cache_dir,
|
168 |
+
force_download=force_download,
|
169 |
+
resume_download=resume_download,
|
170 |
+
proxies=proxies,
|
171 |
+
local_files_only=local_files_only,
|
172 |
+
token=token,
|
173 |
+
revision=revision,
|
174 |
+
subfolder=subfolder,
|
175 |
+
user_agent=user_agent,
|
176 |
+
)
|
177 |
+
if weight_name.endswith(".safetensors"):
|
178 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
179 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
180 |
+
for key in f.keys():
|
181 |
+
if key.startswith("image_proj."):
|
182 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
183 |
+
elif key.startswith("ip_adapter."):
|
184 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
185 |
+
else:
|
186 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
187 |
+
else:
|
188 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
189 |
+
|
190 |
+
keys = list(state_dict.keys())
|
191 |
+
if keys != ["image_proj", "ip_adapter"]:
|
192 |
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
193 |
+
|
194 |
+
state_dicts.append(state_dict)
|
195 |
+
|
196 |
+
# load CLIP image encoder here if it has not been registered to the pipeline yet
|
197 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
198 |
+
if image_encoder_folder is not None:
|
199 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
200 |
+
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
|
201 |
+
if image_encoder_folder.count("/") == 0:
|
202 |
+
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
|
203 |
+
else:
|
204 |
+
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
|
205 |
+
|
206 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
207 |
+
pretrained_model_name_or_path_or_dict,
|
208 |
+
subfolder=image_encoder_subfolder,
|
209 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
210 |
+
).to(self.device, dtype=self.dtype)
|
211 |
+
self.register_modules(image_encoder=image_encoder)
|
212 |
+
else:
|
213 |
+
raise ValueError(
|
214 |
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
logger.warning(
|
218 |
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
219 |
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
220 |
+
)
|
221 |
+
|
222 |
+
# create feature extractor if it has not been registered to the pipeline yet
|
223 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
|
224 |
+
feature_extractor = CLIPImageProcessor()
|
225 |
+
self.register_modules(feature_extractor=feature_extractor)
|
226 |
+
|
227 |
+
# load ip-adapter into unet
|
228 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
229 |
+
unet._load_ip_adapter_weights(state_dicts)
|
230 |
+
|
231 |
+
def set_ip_adapter_scale(self, scale):
|
232 |
+
"""
|
233 |
+
Sets the conditioning scale between text and image.
|
234 |
+
|
235 |
+
Example:
|
236 |
+
|
237 |
+
```py
|
238 |
+
pipeline.set_ip_adapter_scale(0.5)
|
239 |
+
```
|
240 |
+
"""
|
241 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
242 |
+
for attn_processor in unet.attn_processors.values():
|
243 |
+
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
|
244 |
+
if not isinstance(scale, list):
|
245 |
+
scale = [scale] * len(attn_processor.scale)
|
246 |
+
if len(attn_processor.scale) != len(scale):
|
247 |
+
raise ValueError(
|
248 |
+
f"`scale` should be a list of same length as the number if ip-adapters "
|
249 |
+
f"Expected {len(attn_processor.scale)} but got {len(scale)}."
|
250 |
+
)
|
251 |
+
attn_processor.scale = scale
|
252 |
+
|
253 |
+
def unload_ip_adapter(self):
|
254 |
+
"""
|
255 |
+
Unloads the IP Adapter weights
|
256 |
+
|
257 |
+
Examples:
|
258 |
+
|
259 |
+
```python
|
260 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
261 |
+
>>> pipeline.unload_ip_adapter()
|
262 |
+
>>> ...
|
263 |
+
```
|
264 |
+
"""
|
265 |
+
# remove CLIP image encoder
|
266 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
267 |
+
self.image_encoder = None
|
268 |
+
self.register_to_config(image_encoder=[None, None])
|
269 |
+
|
270 |
+
# remove feature extractor only when safety_checker is None as safety_checker uses
|
271 |
+
# the feature_extractor later
|
272 |
+
if not hasattr(self, "safety_checker"):
|
273 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
274 |
+
self.feature_extractor = None
|
275 |
+
self.register_to_config(feature_extractor=[None, None])
|
276 |
+
|
277 |
+
# remove hidden encoder
|
278 |
+
self.unet.encoder_hid_proj = None
|
279 |
+
self.config.encoder_hid_dim_type = None
|
280 |
+
|
281 |
+
# restore original Unet attention processors layers
|
282 |
+
self.unet.set_default_attn_processor()
|
283 |
+
|
284 |
+
|
285 |
+
class VPAdapterMixin:
|
286 |
+
"""Mixin for handling IP Adapters."""
|
287 |
+
|
288 |
+
@validate_hf_hub_args
|
289 |
+
def load_ip_adapter(
|
290 |
+
self,
|
291 |
+
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
|
292 |
+
subfolder: Union[str, List[str]],
|
293 |
+
weight_name: Union[str, List[str]],
|
294 |
+
image_encoder_folder: Optional[str] = "image_encoder",
|
295 |
+
**kwargs,
|
296 |
+
):
|
297 |
+
"""
|
298 |
+
Parameters:
|
299 |
+
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
|
300 |
+
Can be either:
|
301 |
+
|
302 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
303 |
+
the Hub.
|
304 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
305 |
+
with [`ModelMixin.save_pretrained`].
|
306 |
+
- A [torch state
|
307 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
308 |
+
subfolder (`str` or `List[str]`):
|
309 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
310 |
+
If a list is passed, it should have the same length as `weight_name`.
|
311 |
+
weight_name (`str` or `List[str]`):
|
312 |
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
313 |
+
`weight_name`.
|
314 |
+
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
315 |
+
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
316 |
+
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside `subfolder`,
|
317 |
+
you only need to pass the name of the folder that contains image encoder weights, e.g. `image_encoder_folder="image_encoder"`.
|
318 |
+
If the image encoder is located in a folder other than `subfolder`, you should pass the path to the folder that contains image encoder weights,
|
319 |
+
for example, `image_encoder_folder="different_subfolder/image_encoder"`.
|
320 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
321 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
322 |
+
is not used.
|
323 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
324 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
325 |
+
cached versions if they exist.
|
326 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
327 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
328 |
+
incompletely downloaded files are deleted.
|
329 |
+
proxies (`Dict[str, str]`, *optional*):
|
330 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
331 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
332 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
333 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
334 |
+
won't be downloaded from the Hub.
|
335 |
+
token (`str` or *bool*, *optional*):
|
336 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
337 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
338 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
339 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
340 |
+
allowed by Git.
|
341 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
342 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
343 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
344 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
345 |
+
argument to `True` will raise an error.
|
346 |
+
"""
|
347 |
+
|
348 |
+
# handle the list inputs for multiple IP Adapters
|
349 |
+
if not isinstance(weight_name, list):
|
350 |
+
weight_name = [weight_name]
|
351 |
+
|
352 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
353 |
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
|
354 |
+
if len(pretrained_model_name_or_path_or_dict) == 1:
|
355 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
|
356 |
+
|
357 |
+
if not isinstance(subfolder, list):
|
358 |
+
subfolder = [subfolder]
|
359 |
+
if len(subfolder) == 1:
|
360 |
+
subfolder = subfolder * len(weight_name)
|
361 |
+
|
362 |
+
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
|
363 |
+
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
|
364 |
+
|
365 |
+
if len(weight_name) != len(subfolder):
|
366 |
+
raise ValueError("`weight_name` and `subfolder` must have the same length.")
|
367 |
+
|
368 |
+
# Load the main state dict first.
|
369 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
370 |
+
force_download = kwargs.pop("force_download", False)
|
371 |
+
resume_download = kwargs.pop("resume_download", False)
|
372 |
+
proxies = kwargs.pop("proxies", None)
|
373 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
374 |
+
token = kwargs.pop("token", None)
|
375 |
+
revision = kwargs.pop("revision", None)
|
376 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
377 |
+
|
378 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
379 |
+
low_cpu_mem_usage = False
|
380 |
+
logger.warning(
|
381 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
382 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
383 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
384 |
+
" install accelerate\n```\n."
|
385 |
+
)
|
386 |
+
|
387 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
388 |
+
raise NotImplementedError(
|
389 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
390 |
+
" `low_cpu_mem_usage=False`."
|
391 |
+
)
|
392 |
+
|
393 |
+
user_agent = {
|
394 |
+
"file_type": "attn_procs_weights",
|
395 |
+
"framework": "pytorch",
|
396 |
+
}
|
397 |
+
state_dicts = []
|
398 |
+
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
|
399 |
+
pretrained_model_name_or_path_or_dict, weight_name, subfolder
|
400 |
+
):
|
401 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
402 |
+
model_file = _get_model_file(
|
403 |
+
pretrained_model_name_or_path_or_dict,
|
404 |
+
weights_name=weight_name,
|
405 |
+
cache_dir=cache_dir,
|
406 |
+
force_download=force_download,
|
407 |
+
resume_download=resume_download,
|
408 |
+
proxies=proxies,
|
409 |
+
local_files_only=local_files_only,
|
410 |
+
token=token,
|
411 |
+
revision=revision,
|
412 |
+
subfolder=subfolder,
|
413 |
+
user_agent=user_agent,
|
414 |
+
)
|
415 |
+
if weight_name.endswith(".safetensors"):
|
416 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
417 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
418 |
+
for key in f.keys():
|
419 |
+
if key.startswith("image_proj."):
|
420 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
421 |
+
elif key.startswith("ip_adapter."):
|
422 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
423 |
+
else:
|
424 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
425 |
+
else:
|
426 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
427 |
+
|
428 |
+
keys = list(state_dict.keys())
|
429 |
+
if keys != ["image_proj", "ip_adapter"]:
|
430 |
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
431 |
+
|
432 |
+
state_dicts.append(state_dict)
|
433 |
+
|
434 |
+
# load CLIP image encoder here if it has not been registered to the pipeline yet
|
435 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
436 |
+
if image_encoder_folder is not None:
|
437 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
438 |
+
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
|
439 |
+
if image_encoder_folder.count("/") == 0:
|
440 |
+
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
|
441 |
+
else:
|
442 |
+
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
|
443 |
+
|
444 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
445 |
+
pretrained_model_name_or_path_or_dict,
|
446 |
+
subfolder=image_encoder_subfolder,
|
447 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
448 |
+
).to(self.device, dtype=self.dtype)
|
449 |
+
self.register_modules(image_encoder=image_encoder)
|
450 |
+
else:
|
451 |
+
raise ValueError(
|
452 |
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
453 |
+
)
|
454 |
+
else:
|
455 |
+
logger.warning(
|
456 |
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
457 |
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
458 |
+
)
|
459 |
+
|
460 |
+
# create feature extractor if it has not been registered to the pipeline yet
|
461 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
|
462 |
+
feature_extractor = CLIPImageProcessor()
|
463 |
+
self.register_modules(feature_extractor=feature_extractor)
|
464 |
+
|
465 |
+
# load ip-adapter into unet
|
466 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
467 |
+
unet._load_ip_adapter_weights_VPAdapter(state_dicts)
|
468 |
+
|
469 |
+
def set_ip_adapter_scale(self, scale):
|
470 |
+
"""
|
471 |
+
Sets the conditioning scale between text and image.
|
472 |
+
|
473 |
+
Example:
|
474 |
+
|
475 |
+
```py
|
476 |
+
pipeline.set_ip_adapter_scale(0.5)
|
477 |
+
```
|
478 |
+
"""
|
479 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
480 |
+
for attn_processor in unet.attn_processors.values():
|
481 |
+
if isinstance(attn_processor, (IPAdapterAttnProcessor, VPTemporalAdapterAttnProcessor2_0)):
|
482 |
+
if not isinstance(scale, list):
|
483 |
+
scale = [scale] * len(attn_processor.scale)
|
484 |
+
if len(attn_processor.scale) != len(scale):
|
485 |
+
raise ValueError(
|
486 |
+
f"`scale` should be a list of same length as the number if ip-adapters "
|
487 |
+
f"Expected {len(attn_processor.scale)} but got {len(scale)}."
|
488 |
+
)
|
489 |
+
attn_processor.scale = scale
|
490 |
+
|
491 |
+
def unload_ip_adapter(self):
|
492 |
+
"""
|
493 |
+
Unloads the IP Adapter weights
|
494 |
+
|
495 |
+
Examples:
|
496 |
+
|
497 |
+
```python
|
498 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
499 |
+
>>> pipeline.unload_ip_adapter()
|
500 |
+
>>> ...
|
501 |
+
```
|
502 |
+
"""
|
503 |
+
# remove CLIP image encoder
|
504 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
505 |
+
self.image_encoder = None
|
506 |
+
self.register_to_config(image_encoder=[None, None])
|
507 |
+
|
508 |
+
# remove feature extractor only when safety_checker is None as safety_checker uses
|
509 |
+
# the feature_extractor later
|
510 |
+
if not hasattr(self, "safety_checker"):
|
511 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
512 |
+
self.feature_extractor = None
|
513 |
+
self.register_to_config(feature_extractor=[None, None])
|
514 |
+
|
515 |
+
# remove hidden encoder
|
516 |
+
self.unet.encoder_hid_proj = None
|
517 |
+
self.config.encoder_hid_dim_type = None
|
518 |
+
|
519 |
+
# restore original Unet attention processors layers
|
520 |
+
self.unet.set_default_attn_processor()
|
foleycrafter/models/auffusion/loaders/unet.py
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import inspect
|
15 |
+
import os
|
16 |
+
from collections import defaultdict
|
17 |
+
from contextlib import nullcontext
|
18 |
+
from functools import partial
|
19 |
+
from typing import Callable, Dict, List, Optional, Union, Tuple
|
20 |
+
|
21 |
+
import safetensors
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
25 |
+
from torch import nn
|
26 |
+
|
27 |
+
from diffusers.models.embeddings import ImageProjection, MLPProjection, Resampler
|
28 |
+
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
29 |
+
from diffusers.utils import (
|
30 |
+
USE_PEFT_BACKEND,
|
31 |
+
_get_model_file,
|
32 |
+
delete_adapter_layers,
|
33 |
+
is_accelerate_available,
|
34 |
+
logging,
|
35 |
+
is_torch_version,
|
36 |
+
set_adapter_layers,
|
37 |
+
set_weights_and_activate_adapters,
|
38 |
+
)
|
39 |
+
from diffusers.loaders.utils import AttnProcsLayers
|
40 |
+
|
41 |
+
from foleycrafter.models.adapters.ip_adapter import VideoProjModel
|
42 |
+
from foleycrafter.models.auffusion.attention_processor import IPAdapterAttnProcessor2_0, VPTemporalAdapterAttnProcessor2_0, AttnProcessor2_0
|
43 |
+
|
44 |
+
|
45 |
+
if is_accelerate_available():
|
46 |
+
from accelerate import init_empty_weights
|
47 |
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
class VPAdapterImageProjection(nn.Module):
|
52 |
+
def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
|
53 |
+
super().__init__()
|
54 |
+
self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)
|
55 |
+
|
56 |
+
def forward(self, image_embeds: List[torch.FloatTensor]):
|
57 |
+
projected_image_embeds = []
|
58 |
+
|
59 |
+
# currently, we accept `image_embeds` as
|
60 |
+
# 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
|
61 |
+
# 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
|
62 |
+
if not isinstance(image_embeds, list):
|
63 |
+
deprecation_message = (
|
64 |
+
"You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
|
65 |
+
" Please make sure to update your script to pass `image_embeds` as a list of tensors to supress this warning."
|
66 |
+
)
|
67 |
+
image_embeds = [image_embeds.unsqueeze(1)]
|
68 |
+
|
69 |
+
if len(image_embeds) != len(self.image_projection_layers):
|
70 |
+
raise ValueError(
|
71 |
+
f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
|
72 |
+
)
|
73 |
+
|
74 |
+
for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
|
75 |
+
image_embed = image_embed.squeeze(1)
|
76 |
+
batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
|
77 |
+
image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
|
78 |
+
image_embed = image_projection_layer(image_embed)
|
79 |
+
image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])
|
80 |
+
|
81 |
+
projected_image_embeds.append(image_embed)
|
82 |
+
|
83 |
+
return projected_image_embeds
|
84 |
+
|
85 |
+
class MultiIPAdapterImageProjection(nn.Module):
|
86 |
+
def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
|
87 |
+
super().__init__()
|
88 |
+
self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)
|
89 |
+
|
90 |
+
def forward(self, image_embeds: List[torch.FloatTensor]):
|
91 |
+
projected_image_embeds = []
|
92 |
+
|
93 |
+
# currently, we accept `image_embeds` as
|
94 |
+
# 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
|
95 |
+
# 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
|
96 |
+
if not isinstance(image_embeds, list):
|
97 |
+
deprecation_message = (
|
98 |
+
"You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
|
99 |
+
" Please make sure to update your script to pass `image_embeds` as a list of tensors to supress this warning."
|
100 |
+
)
|
101 |
+
image_embeds = [image_embeds.unsqueeze(1)]
|
102 |
+
|
103 |
+
if len(image_embeds) != len(self.image_projection_layers):
|
104 |
+
raise ValueError(
|
105 |
+
f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
|
106 |
+
)
|
107 |
+
|
108 |
+
for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
|
109 |
+
batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
|
110 |
+
image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
|
111 |
+
image_embed = image_projection_layer(image_embed)
|
112 |
+
image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])
|
113 |
+
|
114 |
+
projected_image_embeds.append(image_embed)
|
115 |
+
|
116 |
+
return projected_image_embeds
|
117 |
+
|
118 |
+
|
119 |
+
TEXT_ENCODER_NAME = "text_encoder"
|
120 |
+
UNET_NAME = "unet"
|
121 |
+
|
122 |
+
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
123 |
+
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
124 |
+
|
125 |
+
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
|
126 |
+
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
|
127 |
+
|
128 |
+
|
129 |
+
class UNet2DConditionLoadersMixin:
|
130 |
+
"""
|
131 |
+
Load LoRA layers into a [`UNet2DCondtionModel`].
|
132 |
+
"""
|
133 |
+
|
134 |
+
text_encoder_name = TEXT_ENCODER_NAME
|
135 |
+
unet_name = UNET_NAME
|
136 |
+
|
137 |
+
@validate_hf_hub_args
|
138 |
+
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
139 |
+
r"""
|
140 |
+
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
|
141 |
+
defined in
|
142 |
+
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
|
143 |
+
and be a `torch.nn.Module` class.
|
144 |
+
|
145 |
+
Parameters:
|
146 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
147 |
+
Can be either:
|
148 |
+
|
149 |
+
- A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
150 |
+
the Hub.
|
151 |
+
- A path to a directory (for example `./my_model_directory`) containing the model weights saved
|
152 |
+
with [`ModelMixin.save_pretrained`].
|
153 |
+
- A [torch state
|
154 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
155 |
+
|
156 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
157 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
158 |
+
is not used.
|
159 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
160 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
161 |
+
cached versions if they exist.
|
162 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
163 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
164 |
+
incompletely downloaded files are deleted.
|
165 |
+
proxies (`Dict[str, str]`, *optional*):
|
166 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
167 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
168 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
169 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
170 |
+
won't be downloaded from the Hub.
|
171 |
+
token (`str` or *bool*, *optional*):
|
172 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
173 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
174 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
175 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
176 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
177 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
178 |
+
argument to `True` will raise an error.
|
179 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
180 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
181 |
+
allowed by Git.
|
182 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
183 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
184 |
+
mirror (`str`, *optional*):
|
185 |
+
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
|
186 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
187 |
+
information.
|
188 |
+
|
189 |
+
Example:
|
190 |
+
|
191 |
+
```py
|
192 |
+
from diffusers import AutoPipelineForText2Image
|
193 |
+
import torch
|
194 |
+
|
195 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
196 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
197 |
+
).to("cuda")
|
198 |
+
pipeline.unet.load_attn_procs(
|
199 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
200 |
+
)
|
201 |
+
```
|
202 |
+
"""
|
203 |
+
from diffusers.models.attention_processor import CustomDiffusionAttnProcessor
|
204 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
|
205 |
+
|
206 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
207 |
+
force_download = kwargs.pop("force_download", False)
|
208 |
+
resume_download = kwargs.pop("resume_download", False)
|
209 |
+
proxies = kwargs.pop("proxies", None)
|
210 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
211 |
+
token = kwargs.pop("token", None)
|
212 |
+
revision = kwargs.pop("revision", None)
|
213 |
+
subfolder = kwargs.pop("subfolder", None)
|
214 |
+
weight_name = kwargs.pop("weight_name", None)
|
215 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
216 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
217 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
218 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
219 |
+
network_alphas = kwargs.pop("network_alphas", None)
|
220 |
+
|
221 |
+
_pipeline = kwargs.pop("_pipeline", None)
|
222 |
+
|
223 |
+
is_network_alphas_none = network_alphas is None
|
224 |
+
|
225 |
+
allow_pickle = False
|
226 |
+
|
227 |
+
if use_safetensors is None:
|
228 |
+
use_safetensors = True
|
229 |
+
allow_pickle = True
|
230 |
+
|
231 |
+
user_agent = {
|
232 |
+
"file_type": "attn_procs_weights",
|
233 |
+
"framework": "pytorch",
|
234 |
+
}
|
235 |
+
|
236 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
237 |
+
low_cpu_mem_usage = False
|
238 |
+
logger.warning(
|
239 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
240 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
241 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
242 |
+
" install accelerate\n```\n."
|
243 |
+
)
|
244 |
+
|
245 |
+
model_file = None
|
246 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
247 |
+
# Let's first try to load .safetensors weights
|
248 |
+
if (use_safetensors and weight_name is None) or (
|
249 |
+
weight_name is not None and weight_name.endswith(".safetensors")
|
250 |
+
):
|
251 |
+
try:
|
252 |
+
model_file = _get_model_file(
|
253 |
+
pretrained_model_name_or_path_or_dict,
|
254 |
+
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
255 |
+
cache_dir=cache_dir,
|
256 |
+
force_download=force_download,
|
257 |
+
resume_download=resume_download,
|
258 |
+
proxies=proxies,
|
259 |
+
local_files_only=local_files_only,
|
260 |
+
token=token,
|
261 |
+
revision=revision,
|
262 |
+
subfolder=subfolder,
|
263 |
+
user_agent=user_agent,
|
264 |
+
)
|
265 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
266 |
+
except IOError as e:
|
267 |
+
if not allow_pickle:
|
268 |
+
raise e
|
269 |
+
# try loading non-safetensors weights
|
270 |
+
pass
|
271 |
+
if model_file is None:
|
272 |
+
model_file = _get_model_file(
|
273 |
+
pretrained_model_name_or_path_or_dict,
|
274 |
+
weights_name=weight_name or LORA_WEIGHT_NAME,
|
275 |
+
cache_dir=cache_dir,
|
276 |
+
force_download=force_download,
|
277 |
+
resume_download=resume_download,
|
278 |
+
proxies=proxies,
|
279 |
+
local_files_only=local_files_only,
|
280 |
+
token=token,
|
281 |
+
revision=revision,
|
282 |
+
subfolder=subfolder,
|
283 |
+
user_agent=user_agent,
|
284 |
+
)
|
285 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
286 |
+
else:
|
287 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
288 |
+
|
289 |
+
# fill attn processors
|
290 |
+
lora_layers_list = []
|
291 |
+
|
292 |
+
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
|
293 |
+
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
|
294 |
+
|
295 |
+
if is_lora:
|
296 |
+
# correct keys
|
297 |
+
state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
|
298 |
+
|
299 |
+
if network_alphas is not None:
|
300 |
+
network_alphas_keys = list(network_alphas.keys())
|
301 |
+
used_network_alphas_keys = set()
|
302 |
+
|
303 |
+
lora_grouped_dict = defaultdict(dict)
|
304 |
+
mapped_network_alphas = {}
|
305 |
+
|
306 |
+
all_keys = list(state_dict.keys())
|
307 |
+
for key in all_keys:
|
308 |
+
value = state_dict.pop(key)
|
309 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
310 |
+
lora_grouped_dict[attn_processor_key][sub_key] = value
|
311 |
+
|
312 |
+
# Create another `mapped_network_alphas` dictionary so that we can properly map them.
|
313 |
+
if network_alphas is not None:
|
314 |
+
for k in network_alphas_keys:
|
315 |
+
if k.replace(".alpha", "") in key:
|
316 |
+
mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
|
317 |
+
used_network_alphas_keys.add(k)
|
318 |
+
|
319 |
+
if not is_network_alphas_none:
|
320 |
+
if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
|
321 |
+
raise ValueError(
|
322 |
+
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
|
323 |
+
)
|
324 |
+
|
325 |
+
if len(state_dict) > 0:
|
326 |
+
raise ValueError(
|
327 |
+
f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
|
328 |
+
)
|
329 |
+
|
330 |
+
for key, value_dict in lora_grouped_dict.items():
|
331 |
+
attn_processor = self
|
332 |
+
for sub_key in key.split("."):
|
333 |
+
attn_processor = getattr(attn_processor, sub_key)
|
334 |
+
|
335 |
+
# Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
|
336 |
+
# or add_{k,v,q,out_proj}_proj_lora layers.
|
337 |
+
rank = value_dict["lora.down.weight"].shape[0]
|
338 |
+
|
339 |
+
if isinstance(attn_processor, LoRACompatibleConv):
|
340 |
+
in_features = attn_processor.in_channels
|
341 |
+
out_features = attn_processor.out_channels
|
342 |
+
kernel_size = attn_processor.kernel_size
|
343 |
+
|
344 |
+
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
|
345 |
+
with ctx():
|
346 |
+
lora = LoRAConv2dLayer(
|
347 |
+
in_features=in_features,
|
348 |
+
out_features=out_features,
|
349 |
+
rank=rank,
|
350 |
+
kernel_size=kernel_size,
|
351 |
+
stride=attn_processor.stride,
|
352 |
+
padding=attn_processor.padding,
|
353 |
+
network_alpha=mapped_network_alphas.get(key),
|
354 |
+
)
|
355 |
+
elif isinstance(attn_processor, LoRACompatibleLinear):
|
356 |
+
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
|
357 |
+
with ctx():
|
358 |
+
lora = LoRALinearLayer(
|
359 |
+
attn_processor.in_features,
|
360 |
+
attn_processor.out_features,
|
361 |
+
rank,
|
362 |
+
mapped_network_alphas.get(key),
|
363 |
+
)
|
364 |
+
else:
|
365 |
+
raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
|
366 |
+
|
367 |
+
value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
|
368 |
+
lora_layers_list.append((attn_processor, lora))
|
369 |
+
|
370 |
+
if low_cpu_mem_usage:
|
371 |
+
device = next(iter(value_dict.values())).device
|
372 |
+
dtype = next(iter(value_dict.values())).dtype
|
373 |
+
load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
|
374 |
+
else:
|
375 |
+
lora.load_state_dict(value_dict)
|
376 |
+
|
377 |
+
elif is_custom_diffusion:
|
378 |
+
attn_processors = {}
|
379 |
+
custom_diffusion_grouped_dict = defaultdict(dict)
|
380 |
+
for key, value in state_dict.items():
|
381 |
+
if len(value) == 0:
|
382 |
+
custom_diffusion_grouped_dict[key] = {}
|
383 |
+
else:
|
384 |
+
if "to_out" in key:
|
385 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
386 |
+
else:
|
387 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
|
388 |
+
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
|
389 |
+
|
390 |
+
for key, value_dict in custom_diffusion_grouped_dict.items():
|
391 |
+
if len(value_dict) == 0:
|
392 |
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
393 |
+
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
|
397 |
+
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
|
398 |
+
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
|
399 |
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
400 |
+
train_kv=True,
|
401 |
+
train_q_out=train_q_out,
|
402 |
+
hidden_size=hidden_size,
|
403 |
+
cross_attention_dim=cross_attention_dim,
|
404 |
+
)
|
405 |
+
attn_processors[key].load_state_dict(value_dict)
|
406 |
+
elif USE_PEFT_BACKEND:
|
407 |
+
# In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
|
408 |
+
# on the Unet
|
409 |
+
pass
|
410 |
+
else:
|
411 |
+
raise ValueError(
|
412 |
+
f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
|
413 |
+
)
|
414 |
+
|
415 |
+
# <Unsafe code
|
416 |
+
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
|
417 |
+
# Now we remove any existing hooks to
|
418 |
+
is_model_cpu_offload = False
|
419 |
+
is_sequential_cpu_offload = False
|
420 |
+
|
421 |
+
# For PEFT backend the Unet is already offloaded at this stage as it is handled inside `lora_lora_weights_into_unet`
|
422 |
+
if not USE_PEFT_BACKEND:
|
423 |
+
if _pipeline is not None:
|
424 |
+
for _, component in _pipeline.components.items():
|
425 |
+
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
|
426 |
+
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
|
427 |
+
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
|
428 |
+
|
429 |
+
logger.info(
|
430 |
+
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
431 |
+
)
|
432 |
+
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
433 |
+
|
434 |
+
# only custom diffusion needs to set attn processors
|
435 |
+
if is_custom_diffusion:
|
436 |
+
self.set_attn_processor(attn_processors)
|
437 |
+
|
438 |
+
# set lora layers
|
439 |
+
for target_module, lora_layer in lora_layers_list:
|
440 |
+
target_module.set_lora_layer(lora_layer)
|
441 |
+
|
442 |
+
self.to(dtype=self.dtype, device=self.device)
|
443 |
+
|
444 |
+
# Offload back.
|
445 |
+
if is_model_cpu_offload:
|
446 |
+
_pipeline.enable_model_cpu_offload()
|
447 |
+
elif is_sequential_cpu_offload:
|
448 |
+
_pipeline.enable_sequential_cpu_offload()
|
449 |
+
# Unsafe code />
|
450 |
+
|
451 |
+
def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
|
452 |
+
is_new_lora_format = all(
|
453 |
+
key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
|
454 |
+
)
|
455 |
+
if is_new_lora_format:
|
456 |
+
# Strip the `"unet"` prefix.
|
457 |
+
is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
|
458 |
+
if is_text_encoder_present:
|
459 |
+
warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
|
460 |
+
logger.warn(warn_message)
|
461 |
+
unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
|
462 |
+
state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
|
463 |
+
|
464 |
+
# change processor format to 'pure' LoRACompatibleLinear format
|
465 |
+
if any("processor" in k.split(".") for k in state_dict.keys()):
|
466 |
+
|
467 |
+
def format_to_lora_compatible(key):
|
468 |
+
if "processor" not in key.split("."):
|
469 |
+
return key
|
470 |
+
return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")
|
471 |
+
|
472 |
+
state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}
|
473 |
+
|
474 |
+
if network_alphas is not None:
|
475 |
+
network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
|
476 |
+
return state_dict, network_alphas
|
477 |
+
|
478 |
+
def save_attn_procs(
|
479 |
+
self,
|
480 |
+
save_directory: Union[str, os.PathLike],
|
481 |
+
is_main_process: bool = True,
|
482 |
+
weight_name: str = None,
|
483 |
+
save_function: Callable = None,
|
484 |
+
safe_serialization: bool = True,
|
485 |
+
**kwargs,
|
486 |
+
):
|
487 |
+
r"""
|
488 |
+
Save attention processor layers to a directory so that it can be reloaded with the
|
489 |
+
[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
|
490 |
+
|
491 |
+
Arguments:
|
492 |
+
save_directory (`str` or `os.PathLike`):
|
493 |
+
Directory to save an attention processor to (will be created if it doesn't exist).
|
494 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
495 |
+
Whether the process calling this is the main process or not. Useful during distributed training and you
|
496 |
+
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
497 |
+
process to avoid race conditions.
|
498 |
+
save_function (`Callable`):
|
499 |
+
The function to use to save the state dictionary. Useful during distributed training when you need to
|
500 |
+
replace `torch.save` with another method. Can be configured with the environment variable
|
501 |
+
`DIFFUSERS_SAVE_MODE`.
|
502 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
503 |
+
Whether to save the model using `safetensors` or with `pickle`.
|
504 |
+
|
505 |
+
Example:
|
506 |
+
|
507 |
+
```py
|
508 |
+
import torch
|
509 |
+
from diffusers import DiffusionPipeline
|
510 |
+
|
511 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
512 |
+
"CompVis/stable-diffusion-v1-4",
|
513 |
+
torch_dtype=torch.float16,
|
514 |
+
).to("cuda")
|
515 |
+
pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
|
516 |
+
pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
|
517 |
+
```
|
518 |
+
"""
|
519 |
+
from diffusers.models.attention_processor import (
|
520 |
+
CustomDiffusionAttnProcessor,
|
521 |
+
CustomDiffusionAttnProcessor2_0,
|
522 |
+
CustomDiffusionXFormersAttnProcessor,
|
523 |
+
)
|
524 |
+
|
525 |
+
if os.path.isfile(save_directory):
|
526 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
527 |
+
return
|
528 |
+
|
529 |
+
if save_function is None:
|
530 |
+
if safe_serialization:
|
531 |
+
|
532 |
+
def save_function(weights, filename):
|
533 |
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
534 |
+
|
535 |
+
else:
|
536 |
+
save_function = torch.save
|
537 |
+
|
538 |
+
os.makedirs(save_directory, exist_ok=True)
|
539 |
+
|
540 |
+
is_custom_diffusion = any(
|
541 |
+
isinstance(
|
542 |
+
x,
|
543 |
+
(CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
|
544 |
+
)
|
545 |
+
for (_, x) in self.attn_processors.items()
|
546 |
+
)
|
547 |
+
if is_custom_diffusion:
|
548 |
+
model_to_save = AttnProcsLayers(
|
549 |
+
{
|
550 |
+
y: x
|
551 |
+
for (y, x) in self.attn_processors.items()
|
552 |
+
if isinstance(
|
553 |
+
x,
|
554 |
+
(
|
555 |
+
CustomDiffusionAttnProcessor,
|
556 |
+
CustomDiffusionAttnProcessor2_0,
|
557 |
+
CustomDiffusionXFormersAttnProcessor,
|
558 |
+
),
|
559 |
+
)
|
560 |
+
}
|
561 |
+
)
|
562 |
+
state_dict = model_to_save.state_dict()
|
563 |
+
for name, attn in self.attn_processors.items():
|
564 |
+
if len(attn.state_dict()) == 0:
|
565 |
+
state_dict[name] = {}
|
566 |
+
else:
|
567 |
+
model_to_save = AttnProcsLayers(self.attn_processors)
|
568 |
+
state_dict = model_to_save.state_dict()
|
569 |
+
|
570 |
+
if weight_name is None:
|
571 |
+
if safe_serialization:
|
572 |
+
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
|
573 |
+
else:
|
574 |
+
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
|
575 |
+
|
576 |
+
# Save the model
|
577 |
+
save_function(state_dict, os.path.join(save_directory, weight_name))
|
578 |
+
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
|
579 |
+
|
580 |
+
def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None):
|
581 |
+
self.lora_scale = lora_scale
|
582 |
+
self._safe_fusing = safe_fusing
|
583 |
+
self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names))
|
584 |
+
|
585 |
+
def _fuse_lora_apply(self, module, adapter_names=None):
|
586 |
+
if not USE_PEFT_BACKEND:
|
587 |
+
if hasattr(module, "_fuse_lora"):
|
588 |
+
module._fuse_lora(self.lora_scale, self._safe_fusing)
|
589 |
+
|
590 |
+
if adapter_names is not None:
|
591 |
+
raise ValueError(
|
592 |
+
"The `adapter_names` argument is not supported in your environment. Please switch"
|
593 |
+
" to PEFT backend to use this argument by installing latest PEFT and transformers."
|
594 |
+
" `pip install -U peft transformers`"
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
598 |
+
|
599 |
+
merge_kwargs = {"safe_merge": self._safe_fusing}
|
600 |
+
|
601 |
+
if isinstance(module, BaseTunerLayer):
|
602 |
+
if self.lora_scale != 1.0:
|
603 |
+
module.scale_layer(self.lora_scale)
|
604 |
+
|
605 |
+
# For BC with prevous PEFT versions, we need to check the signature
|
606 |
+
# of the `merge` method to see if it supports the `adapter_names` argument.
|
607 |
+
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
|
608 |
+
if "adapter_names" in supported_merge_kwargs:
|
609 |
+
merge_kwargs["adapter_names"] = adapter_names
|
610 |
+
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
|
611 |
+
raise ValueError(
|
612 |
+
"The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
|
613 |
+
" to the latest version of PEFT. `pip install -U peft`"
|
614 |
+
)
|
615 |
+
|
616 |
+
module.merge(**merge_kwargs)
|
617 |
+
|
618 |
+
def unfuse_lora(self):
|
619 |
+
self.apply(self._unfuse_lora_apply)
|
620 |
+
|
621 |
+
def _unfuse_lora_apply(self, module):
|
622 |
+
if not USE_PEFT_BACKEND:
|
623 |
+
if hasattr(module, "_unfuse_lora"):
|
624 |
+
module._unfuse_lora()
|
625 |
+
else:
|
626 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
627 |
+
|
628 |
+
if isinstance(module, BaseTunerLayer):
|
629 |
+
module.unmerge()
|
630 |
+
|
631 |
+
def set_adapters(
|
632 |
+
self,
|
633 |
+
adapter_names: Union[List[str], str],
|
634 |
+
weights: Optional[Union[List[float], float]] = None,
|
635 |
+
):
|
636 |
+
"""
|
637 |
+
Set the currently active adapters for use in the UNet.
|
638 |
+
|
639 |
+
Args:
|
640 |
+
adapter_names (`List[str]` or `str`):
|
641 |
+
The names of the adapters to use.
|
642 |
+
adapter_weights (`Union[List[float], float]`, *optional*):
|
643 |
+
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
|
644 |
+
adapters.
|
645 |
+
|
646 |
+
Example:
|
647 |
+
|
648 |
+
```py
|
649 |
+
from diffusers import AutoPipelineForText2Image
|
650 |
+
import torch
|
651 |
+
|
652 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
653 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
654 |
+
).to("cuda")
|
655 |
+
pipeline.load_lora_weights(
|
656 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
657 |
+
)
|
658 |
+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
659 |
+
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
660 |
+
```
|
661 |
+
"""
|
662 |
+
if not USE_PEFT_BACKEND:
|
663 |
+
raise ValueError("PEFT backend is required for `set_adapters()`.")
|
664 |
+
|
665 |
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
666 |
+
|
667 |
+
if weights is None:
|
668 |
+
weights = [1.0] * len(adapter_names)
|
669 |
+
elif isinstance(weights, float):
|
670 |
+
weights = [weights] * len(adapter_names)
|
671 |
+
|
672 |
+
if len(adapter_names) != len(weights):
|
673 |
+
raise ValueError(
|
674 |
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
|
675 |
+
)
|
676 |
+
|
677 |
+
set_weights_and_activate_adapters(self, adapter_names, weights)
|
678 |
+
|
679 |
+
def disable_lora(self):
|
680 |
+
"""
|
681 |
+
Disable the UNet's active LoRA layers.
|
682 |
+
|
683 |
+
Example:
|
684 |
+
|
685 |
+
```py
|
686 |
+
from diffusers import AutoPipelineForText2Image
|
687 |
+
import torch
|
688 |
+
|
689 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
690 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
691 |
+
).to("cuda")
|
692 |
+
pipeline.load_lora_weights(
|
693 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
694 |
+
)
|
695 |
+
pipeline.disable_lora()
|
696 |
+
```
|
697 |
+
"""
|
698 |
+
if not USE_PEFT_BACKEND:
|
699 |
+
raise ValueError("PEFT backend is required for this method.")
|
700 |
+
set_adapter_layers(self, enabled=False)
|
701 |
+
|
702 |
+
def enable_lora(self):
|
703 |
+
"""
|
704 |
+
Enable the UNet's active LoRA layers.
|
705 |
+
|
706 |
+
Example:
|
707 |
+
|
708 |
+
```py
|
709 |
+
from diffusers import AutoPipelineForText2Image
|
710 |
+
import torch
|
711 |
+
|
712 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
713 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
714 |
+
).to("cuda")
|
715 |
+
pipeline.load_lora_weights(
|
716 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
717 |
+
)
|
718 |
+
pipeline.enable_lora()
|
719 |
+
```
|
720 |
+
"""
|
721 |
+
if not USE_PEFT_BACKEND:
|
722 |
+
raise ValueError("PEFT backend is required for this method.")
|
723 |
+
set_adapter_layers(self, enabled=True)
|
724 |
+
|
725 |
+
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
726 |
+
"""
|
727 |
+
Delete an adapter's LoRA layers from the UNet.
|
728 |
+
|
729 |
+
Args:
|
730 |
+
adapter_names (`Union[List[str], str]`):
|
731 |
+
The names (single string or list of strings) of the adapter to delete.
|
732 |
+
|
733 |
+
Example:
|
734 |
+
|
735 |
+
```py
|
736 |
+
from diffusers import AutoPipelineForText2Image
|
737 |
+
import torch
|
738 |
+
|
739 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
740 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
741 |
+
).to("cuda")
|
742 |
+
pipeline.load_lora_weights(
|
743 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
|
744 |
+
)
|
745 |
+
pipeline.delete_adapters("cinematic")
|
746 |
+
```
|
747 |
+
"""
|
748 |
+
if not USE_PEFT_BACKEND:
|
749 |
+
raise ValueError("PEFT backend is required for this method.")
|
750 |
+
|
751 |
+
if isinstance(adapter_names, str):
|
752 |
+
adapter_names = [adapter_names]
|
753 |
+
|
754 |
+
for adapter_name in adapter_names:
|
755 |
+
delete_adapter_layers(self, adapter_name)
|
756 |
+
|
757 |
+
# Pop also the corresponding adapter from the config
|
758 |
+
if hasattr(self, "peft_config"):
|
759 |
+
self.peft_config.pop(adapter_name, None)
|
760 |
+
|
761 |
+
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
|
762 |
+
if low_cpu_mem_usage:
|
763 |
+
if is_accelerate_available():
|
764 |
+
from accelerate import init_empty_weights
|
765 |
+
|
766 |
+
else:
|
767 |
+
low_cpu_mem_usage = False
|
768 |
+
logger.warning(
|
769 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
770 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
771 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
772 |
+
" install accelerate\n```\n."
|
773 |
+
)
|
774 |
+
|
775 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
776 |
+
raise NotImplementedError(
|
777 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
778 |
+
" `low_cpu_mem_usage=False`."
|
779 |
+
)
|
780 |
+
|
781 |
+
updated_state_dict = {}
|
782 |
+
image_projection = None
|
783 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
784 |
+
|
785 |
+
if "proj.weight" in state_dict:
|
786 |
+
# IP-Adapter
|
787 |
+
num_image_text_embeds = 4
|
788 |
+
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
|
789 |
+
cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds
|
790 |
+
|
791 |
+
with init_context():
|
792 |
+
image_projection = ImageProjection(
|
793 |
+
cross_attention_dim=cross_attention_dim,
|
794 |
+
image_embed_dim=clip_embeddings_dim,
|
795 |
+
num_image_text_embeds=num_image_text_embeds,
|
796 |
+
)
|
797 |
+
|
798 |
+
for key, value in state_dict.items():
|
799 |
+
diffusers_name = key.replace("proj", "image_embeds")
|
800 |
+
updated_state_dict[diffusers_name] = value
|
801 |
+
|
802 |
+
if not low_cpu_mem_usage:
|
803 |
+
image_projection.load_state_dict(updated_state_dict)
|
804 |
+
else:
|
805 |
+
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)
|
806 |
+
|
807 |
+
return image_projection
|
808 |
+
|
809 |
+
# def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, multi_frames_condition):
|
810 |
+
# updated_state_dict = {}
|
811 |
+
# image_projection = None
|
812 |
+
|
813 |
+
# if "proj.weight" in state_dict:
|
814 |
+
# # IP-Adapter
|
815 |
+
# # NOTE: adapt for multi-frame
|
816 |
+
# num_image_text_embeds = 4
|
817 |
+
# clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
|
818 |
+
# cross_attention_dim = state_dict["proj.weight"].shape[0] // 4
|
819 |
+
# # cross_attention_dim = state_dict["proj.weight"].shape[0]
|
820 |
+
|
821 |
+
# if not multi_frames_condition:
|
822 |
+
# image_projection = ImageProjection(
|
823 |
+
# cross_attention_dim=cross_attention_dim,
|
824 |
+
# image_embed_dim=clip_embeddings_dim,
|
825 |
+
# num_image_text_embeds=num_image_text_embeds,
|
826 |
+
# )
|
827 |
+
# else:
|
828 |
+
# num_image_text_embeds = 50
|
829 |
+
# cross_attention_dim = state_dict["proj.weight"].shape[0]
|
830 |
+
# image_projection = VideoProjModel(
|
831 |
+
# cross_attention_dim=cross_attention_dim,
|
832 |
+
# clip_embeddings_dim=clip_embeddings_dim,
|
833 |
+
# clip_extra_context_tokens=1,
|
834 |
+
# video_frame=num_image_text_embeds,
|
835 |
+
# )
|
836 |
+
|
837 |
+
# for key, value in state_dict.items():
|
838 |
+
# if not multi_frames_condition:
|
839 |
+
# diffusers_name = key.replace("proj", "image_embeds")
|
840 |
+
# else:
|
841 |
+
# diffusers_name = key
|
842 |
+
# updated_state_dict[diffusers_name] = value
|
843 |
+
|
844 |
+
# elif "proj.3.weight" in state_dict:
|
845 |
+
# # IP-Adapter Full
|
846 |
+
# clip_embeddings_dim = state_dict["proj.0.weight"].shape[0]
|
847 |
+
# cross_attention_dim = state_dict["proj.3.weight"].shape[0]
|
848 |
+
|
849 |
+
# image_projection = MLPProjection(
|
850 |
+
# cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim
|
851 |
+
# )
|
852 |
+
|
853 |
+
# for key, value in state_dict.items():
|
854 |
+
# diffusers_name = key.replace("proj.0", "ff.net.0.proj")
|
855 |
+
# diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
|
856 |
+
# diffusers_name = diffusers_name.replace("proj.3", "norm")
|
857 |
+
# updated_state_dict[diffusers_name] = value
|
858 |
+
|
859 |
+
# else:
|
860 |
+
# # IP-Adapter Plus
|
861 |
+
# num_image_text_embeds = state_dict["latents"].shape[1]
|
862 |
+
# embed_dims = state_dict["proj_in.weight"].shape[1]
|
863 |
+
# output_dims = state_dict["proj_out.weight"].shape[0]
|
864 |
+
# hidden_dims = state_dict["latents"].shape[2]
|
865 |
+
# heads = state_dict["layers.0.0.to_q.weight"].shape[0] // 64
|
866 |
+
|
867 |
+
# image_projection = Resampler(
|
868 |
+
# embed_dims=embed_dims,
|
869 |
+
# output_dims=output_dims,
|
870 |
+
# hidden_dims=hidden_dims,
|
871 |
+
# heads=heads,
|
872 |
+
# num_queries=num_image_text_embeds,
|
873 |
+
# )
|
874 |
+
|
875 |
+
# for key, value in state_dict.items():
|
876 |
+
# diffusers_name = key.replace("0.to", "2.to")
|
877 |
+
# diffusers_name = diffusers_name.replace("1.0.weight", "3.0.weight")
|
878 |
+
# diffusers_name = diffusers_name.replace("1.0.bias", "3.0.bias")
|
879 |
+
# diffusers_name = diffusers_name.replace("1.1.weight", "3.1.net.0.proj.weight")
|
880 |
+
# diffusers_name = diffusers_name.replace("1.3.weight", "3.1.net.2.weight")
|
881 |
+
|
882 |
+
# if "norm1" in diffusers_name:
|
883 |
+
# updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
|
884 |
+
# elif "norm2" in diffusers_name:
|
885 |
+
# updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
|
886 |
+
# elif "to_kv" in diffusers_name:
|
887 |
+
# v_chunk = value.chunk(2, dim=0)
|
888 |
+
# updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
|
889 |
+
# updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
|
890 |
+
# elif "to_out" in diffusers_name:
|
891 |
+
# updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
|
892 |
+
# else:
|
893 |
+
# updated_state_dict[diffusers_name] = value
|
894 |
+
|
895 |
+
# image_projection.load_state_dict(updated_state_dict)
|
896 |
+
# return image_projection
|
897 |
+
|
898 |
+
def _convert_ip_adapter_attn_to_diffusers_VPAdapter(self, state_dicts, low_cpu_mem_usage=False):
|
899 |
+
from diffusers.models.attention_processor import (
|
900 |
+
AttnProcessor,
|
901 |
+
IPAdapterAttnProcessor,
|
902 |
+
)
|
903 |
+
|
904 |
+
if low_cpu_mem_usage:
|
905 |
+
if is_accelerate_available():
|
906 |
+
from accelerate import init_empty_weights
|
907 |
+
|
908 |
+
else:
|
909 |
+
low_cpu_mem_usage = False
|
910 |
+
logger.warning(
|
911 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
912 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
913 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
914 |
+
" install accelerate\n```\n."
|
915 |
+
)
|
916 |
+
|
917 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
918 |
+
raise NotImplementedError(
|
919 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
920 |
+
" `low_cpu_mem_usage=False`."
|
921 |
+
)
|
922 |
+
|
923 |
+
# set ip-adapter cross-attention processors & load state_dict
|
924 |
+
attn_procs = {}
|
925 |
+
key_id = 1
|
926 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
927 |
+
for name in self.attn_processors.keys():
|
928 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
|
929 |
+
if name.startswith("mid_block"):
|
930 |
+
hidden_size = self.config.block_out_channels[-1]
|
931 |
+
elif name.startswith("up_blocks"):
|
932 |
+
block_id = int(name[len("up_blocks.")])
|
933 |
+
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
|
934 |
+
elif name.startswith("down_blocks"):
|
935 |
+
block_id = int(name[len("down_blocks.")])
|
936 |
+
hidden_size = self.config.block_out_channels[block_id]
|
937 |
+
|
938 |
+
if cross_attention_dim is None or "motion_modules" in name or 'fuser' in name:
|
939 |
+
attn_processor_class = (
|
940 |
+
AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
|
941 |
+
)
|
942 |
+
attn_procs[name] = attn_processor_class()
|
943 |
+
else:
|
944 |
+
attn_processor_class = (
|
945 |
+
VPTemporalAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor
|
946 |
+
)
|
947 |
+
num_image_text_embeds = []
|
948 |
+
for state_dict in state_dicts:
|
949 |
+
if "proj.weight" in state_dict["image_proj"]:
|
950 |
+
# IP-Adapter
|
951 |
+
num_image_text_embeds += [4]
|
952 |
+
elif "proj.3.weight" in state_dict["image_proj"]:
|
953 |
+
# IP-Adapter Full Face
|
954 |
+
num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token
|
955 |
+
else:
|
956 |
+
# IP-Adapter Plus
|
957 |
+
num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]
|
958 |
+
|
959 |
+
with init_context():
|
960 |
+
attn_procs[name] = attn_processor_class(
|
961 |
+
hidden_size=hidden_size,
|
962 |
+
cross_attention_dim=cross_attention_dim,
|
963 |
+
scale=1.0,
|
964 |
+
num_tokens=num_image_text_embeds,
|
965 |
+
)
|
966 |
+
|
967 |
+
value_dict = {}
|
968 |
+
for i, state_dict in enumerate(state_dicts):
|
969 |
+
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
|
970 |
+
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
|
971 |
+
|
972 |
+
if not low_cpu_mem_usage:
|
973 |
+
attn_procs[name].load_state_dict(value_dict)
|
974 |
+
else:
|
975 |
+
device = next(iter(value_dict.values())).device
|
976 |
+
dtype = next(iter(value_dict.values())).dtype
|
977 |
+
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
|
978 |
+
|
979 |
+
key_id += 2
|
980 |
+
|
981 |
+
return attn_procs
|
982 |
+
|
983 |
+
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
|
984 |
+
from diffusers.models.attention_processor import (
|
985 |
+
AttnProcessor,
|
986 |
+
IPAdapterAttnProcessor,
|
987 |
+
)
|
988 |
+
|
989 |
+
if low_cpu_mem_usage:
|
990 |
+
if is_accelerate_available():
|
991 |
+
from accelerate import init_empty_weights
|
992 |
+
|
993 |
+
else:
|
994 |
+
low_cpu_mem_usage = False
|
995 |
+
logger.warning(
|
996 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
997 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
998 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
999 |
+
" install accelerate\n```\n."
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
1003 |
+
raise NotImplementedError(
|
1004 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1005 |
+
" `low_cpu_mem_usage=False`."
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
# set ip-adapter cross-attention processors & load state_dict
|
1009 |
+
attn_procs = {}
|
1010 |
+
key_id = 1
|
1011 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
1012 |
+
for name in self.attn_processors.keys():
|
1013 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
|
1014 |
+
if name.startswith("mid_block"):
|
1015 |
+
hidden_size = self.config.block_out_channels[-1]
|
1016 |
+
elif name.startswith("up_blocks"):
|
1017 |
+
block_id = int(name[len("up_blocks.")])
|
1018 |
+
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
|
1019 |
+
elif name.startswith("down_blocks"):
|
1020 |
+
block_id = int(name[len("down_blocks.")])
|
1021 |
+
hidden_size = self.config.block_out_channels[block_id]
|
1022 |
+
|
1023 |
+
if cross_attention_dim is None or "motion_modules" in name or 'fuser' in name:
|
1024 |
+
attn_processor_class = (
|
1025 |
+
AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
|
1026 |
+
)
|
1027 |
+
attn_procs[name] = attn_processor_class()
|
1028 |
+
else:
|
1029 |
+
attn_processor_class = (
|
1030 |
+
IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor
|
1031 |
+
)
|
1032 |
+
num_image_text_embeds = []
|
1033 |
+
for state_dict in state_dicts:
|
1034 |
+
if "proj.weight" in state_dict["image_proj"]:
|
1035 |
+
# IP-Adapter
|
1036 |
+
num_image_text_embeds += [4]
|
1037 |
+
elif "proj.3.weight" in state_dict["image_proj"]:
|
1038 |
+
# IP-Adapter Full Face
|
1039 |
+
num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token
|
1040 |
+
else:
|
1041 |
+
# IP-Adapter Plus
|
1042 |
+
num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]
|
1043 |
+
|
1044 |
+
with init_context():
|
1045 |
+
attn_procs[name] = attn_processor_class(
|
1046 |
+
hidden_size=hidden_size,
|
1047 |
+
cross_attention_dim=cross_attention_dim,
|
1048 |
+
scale=1.0,
|
1049 |
+
num_tokens=num_image_text_embeds,
|
1050 |
+
)
|
1051 |
+
|
1052 |
+
value_dict = {}
|
1053 |
+
for i, state_dict in enumerate(state_dicts):
|
1054 |
+
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
|
1055 |
+
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
|
1056 |
+
|
1057 |
+
if not low_cpu_mem_usage:
|
1058 |
+
attn_procs[name].load_state_dict(value_dict)
|
1059 |
+
else:
|
1060 |
+
device = next(iter(value_dict.values())).device
|
1061 |
+
dtype = next(iter(value_dict.values())).dtype
|
1062 |
+
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
|
1063 |
+
|
1064 |
+
key_id += 2
|
1065 |
+
|
1066 |
+
return attn_procs
|
1067 |
+
|
1068 |
+
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
|
1069 |
+
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
1070 |
+
self.set_attn_processor(attn_procs)
|
1071 |
+
|
1072 |
+
# convert IP-Adapter Image Projection layers to diffusers
|
1073 |
+
image_projection_layers = []
|
1074 |
+
for state_dict in state_dicts:
|
1075 |
+
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
|
1076 |
+
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
|
1077 |
+
)
|
1078 |
+
image_projection_layers.append(image_projection_layer)
|
1079 |
+
|
1080 |
+
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
|
1081 |
+
self.config.encoder_hid_dim_type = "ip_image_proj"
|
1082 |
+
|
1083 |
+
self.to(dtype=self.dtype, device=self.device)
|
1084 |
+
|
1085 |
+
def _load_ip_adapter_weights_VPAdapter(self, state_dicts, low_cpu_mem_usage=False):
|
1086 |
+
attn_procs = self._convert_ip_adapter_attn_to_diffusers_VPAdapter(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
1087 |
+
self.set_attn_processor(attn_procs)
|
1088 |
+
|
1089 |
+
# convert IP-Adapter Image Projection layers to diffusers
|
1090 |
+
image_projection_layers = []
|
1091 |
+
for state_dict in state_dicts:
|
1092 |
+
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
|
1093 |
+
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
|
1094 |
+
)
|
1095 |
+
image_projection_layers.append(image_projection_layer)
|
1096 |
+
|
1097 |
+
self.encoder_hid_proj = VPAdapterImageProjection(image_projection_layers)
|
1098 |
+
self.config.encoder_hid_dim_type = "ip_image_proj"
|
1099 |
+
|
1100 |
+
self.to(dtype=self.dtype, device=self.device)
|
foleycrafter/models/auffusion/resnet.py
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from functools import partial
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.downsampling import ( # noqa
|
26 |
+
Downsample1D,
|
27 |
+
Downsample2D,
|
28 |
+
FirDownsample2D,
|
29 |
+
KDownsample2D,
|
30 |
+
downsample_2d,
|
31 |
+
)
|
32 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
33 |
+
from diffusers.models.normalization import AdaGroupNorm
|
34 |
+
from diffusers.models.upsampling import ( # noqa
|
35 |
+
FirUpsample2D,
|
36 |
+
KUpsample2D,
|
37 |
+
Upsample1D,
|
38 |
+
Upsample2D,
|
39 |
+
upfirdn2d_native,
|
40 |
+
upsample_2d,
|
41 |
+
)
|
42 |
+
from foleycrafter.models.auffusion.attention_processor import SpatialNorm
|
43 |
+
|
44 |
+
|
45 |
+
class ResnetBlock2D(nn.Module):
|
46 |
+
r"""
|
47 |
+
A Resnet block.
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
in_channels (`int`): The number of channels in the input.
|
51 |
+
out_channels (`int`, *optional*, default to be `None`):
|
52 |
+
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
|
53 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
54 |
+
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
|
55 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
56 |
+
groups_out (`int`, *optional*, default to None):
|
57 |
+
The number of groups to use for the second normalization layer. if set to None, same as `groups`.
|
58 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
59 |
+
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
|
60 |
+
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
|
61 |
+
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
|
62 |
+
"ada_group" for a stronger conditioning with scale and shift.
|
63 |
+
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
|
64 |
+
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
|
65 |
+
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
|
66 |
+
use_in_shortcut (`bool`, *optional*, default to `True`):
|
67 |
+
If `True`, add a 1x1 nn.conv2d layer for skip-connection.
|
68 |
+
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
|
69 |
+
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
|
70 |
+
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
|
71 |
+
`conv_shortcut` output.
|
72 |
+
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
|
73 |
+
If None, same as `out_channels`.
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
*,
|
79 |
+
in_channels: int,
|
80 |
+
out_channels: Optional[int] = None,
|
81 |
+
conv_shortcut: bool = False,
|
82 |
+
dropout: float = 0.0,
|
83 |
+
temb_channels: int = 512,
|
84 |
+
groups: int = 32,
|
85 |
+
groups_out: Optional[int] = None,
|
86 |
+
pre_norm: bool = True,
|
87 |
+
eps: float = 1e-6,
|
88 |
+
non_linearity: str = "swish",
|
89 |
+
skip_time_act: bool = False,
|
90 |
+
time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial
|
91 |
+
kernel: Optional[torch.FloatTensor] = None,
|
92 |
+
output_scale_factor: float = 1.0,
|
93 |
+
use_in_shortcut: Optional[bool] = None,
|
94 |
+
up: bool = False,
|
95 |
+
down: bool = False,
|
96 |
+
conv_shortcut_bias: bool = True,
|
97 |
+
conv_2d_out_channels: Optional[int] = None,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
self.pre_norm = pre_norm
|
101 |
+
self.pre_norm = True
|
102 |
+
self.in_channels = in_channels
|
103 |
+
out_channels = in_channels if out_channels is None else out_channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.use_conv_shortcut = conv_shortcut
|
106 |
+
self.up = up
|
107 |
+
self.down = down
|
108 |
+
self.output_scale_factor = output_scale_factor
|
109 |
+
self.time_embedding_norm = time_embedding_norm
|
110 |
+
self.skip_time_act = skip_time_act
|
111 |
+
|
112 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
113 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
114 |
+
|
115 |
+
if groups_out is None:
|
116 |
+
groups_out = groups
|
117 |
+
|
118 |
+
if self.time_embedding_norm == "ada_group":
|
119 |
+
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
|
120 |
+
elif self.time_embedding_norm == "spatial":
|
121 |
+
self.norm1 = SpatialNorm(in_channels, temb_channels)
|
122 |
+
else:
|
123 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
124 |
+
|
125 |
+
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
126 |
+
|
127 |
+
if temb_channels is not None:
|
128 |
+
if self.time_embedding_norm == "default":
|
129 |
+
self.time_emb_proj = linear_cls(temb_channels, out_channels)
|
130 |
+
elif self.time_embedding_norm == "scale_shift":
|
131 |
+
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels)
|
132 |
+
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
133 |
+
self.time_emb_proj = None
|
134 |
+
else:
|
135 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
136 |
+
else:
|
137 |
+
self.time_emb_proj = None
|
138 |
+
|
139 |
+
if self.time_embedding_norm == "ada_group":
|
140 |
+
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
|
141 |
+
elif self.time_embedding_norm == "spatial":
|
142 |
+
self.norm2 = SpatialNorm(out_channels, temb_channels)
|
143 |
+
else:
|
144 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
145 |
+
|
146 |
+
self.dropout = torch.nn.Dropout(dropout)
|
147 |
+
conv_2d_out_channels = conv_2d_out_channels or out_channels
|
148 |
+
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
|
149 |
+
|
150 |
+
self.nonlinearity = get_activation(non_linearity)
|
151 |
+
|
152 |
+
self.upsample = self.downsample = None
|
153 |
+
if self.up:
|
154 |
+
if kernel == "fir":
|
155 |
+
fir_kernel = (1, 3, 3, 1)
|
156 |
+
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
|
157 |
+
elif kernel == "sde_vp":
|
158 |
+
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
159 |
+
else:
|
160 |
+
self.upsample = Upsample2D(in_channels, use_conv=False)
|
161 |
+
elif self.down:
|
162 |
+
if kernel == "fir":
|
163 |
+
fir_kernel = (1, 3, 3, 1)
|
164 |
+
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
|
165 |
+
elif kernel == "sde_vp":
|
166 |
+
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
|
167 |
+
else:
|
168 |
+
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
|
169 |
+
|
170 |
+
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
|
171 |
+
|
172 |
+
self.conv_shortcut = None
|
173 |
+
if self.use_in_shortcut:
|
174 |
+
self.conv_shortcut = conv_cls(
|
175 |
+
in_channels,
|
176 |
+
conv_2d_out_channels,
|
177 |
+
kernel_size=1,
|
178 |
+
stride=1,
|
179 |
+
padding=0,
|
180 |
+
bias=conv_shortcut_bias,
|
181 |
+
)
|
182 |
+
|
183 |
+
def forward(
|
184 |
+
self,
|
185 |
+
input_tensor: torch.FloatTensor,
|
186 |
+
temb: torch.FloatTensor,
|
187 |
+
scale: float = 1.0,
|
188 |
+
) -> torch.FloatTensor:
|
189 |
+
hidden_states = input_tensor
|
190 |
+
|
191 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
192 |
+
hidden_states = self.norm1(hidden_states, temb)
|
193 |
+
else:
|
194 |
+
hidden_states = self.norm1(hidden_states)
|
195 |
+
|
196 |
+
hidden_states = self.nonlinearity(hidden_states)
|
197 |
+
|
198 |
+
if self.upsample is not None:
|
199 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
200 |
+
if hidden_states.shape[0] >= 64:
|
201 |
+
input_tensor = input_tensor.contiguous()
|
202 |
+
hidden_states = hidden_states.contiguous()
|
203 |
+
input_tensor = (
|
204 |
+
self.upsample(input_tensor, scale=scale)
|
205 |
+
if isinstance(self.upsample, Upsample2D)
|
206 |
+
else self.upsample(input_tensor)
|
207 |
+
)
|
208 |
+
hidden_states = (
|
209 |
+
self.upsample(hidden_states, scale=scale)
|
210 |
+
if isinstance(self.upsample, Upsample2D)
|
211 |
+
else self.upsample(hidden_states)
|
212 |
+
)
|
213 |
+
elif self.downsample is not None:
|
214 |
+
input_tensor = (
|
215 |
+
self.downsample(input_tensor, scale=scale)
|
216 |
+
if isinstance(self.downsample, Downsample2D)
|
217 |
+
else self.downsample(input_tensor)
|
218 |
+
)
|
219 |
+
hidden_states = (
|
220 |
+
self.downsample(hidden_states, scale=scale)
|
221 |
+
if isinstance(self.downsample, Downsample2D)
|
222 |
+
else self.downsample(hidden_states)
|
223 |
+
)
|
224 |
+
|
225 |
+
hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states)
|
226 |
+
|
227 |
+
if self.time_emb_proj is not None:
|
228 |
+
if not self.skip_time_act:
|
229 |
+
temb = self.nonlinearity(temb)
|
230 |
+
temb = (
|
231 |
+
self.time_emb_proj(temb, scale)[:, :, None, None]
|
232 |
+
if not USE_PEFT_BACKEND
|
233 |
+
# NOTE: Maybe we can use different prompt in different time
|
234 |
+
else self.time_emb_proj(temb)[:, :, None, None]
|
235 |
+
)
|
236 |
+
|
237 |
+
if temb is not None and self.time_embedding_norm == "default":
|
238 |
+
hidden_states = hidden_states + temb
|
239 |
+
|
240 |
+
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
|
241 |
+
hidden_states = self.norm2(hidden_states, temb)
|
242 |
+
else:
|
243 |
+
hidden_states = self.norm2(hidden_states)
|
244 |
+
|
245 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
246 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
247 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
248 |
+
|
249 |
+
hidden_states = self.nonlinearity(hidden_states)
|
250 |
+
|
251 |
+
hidden_states = self.dropout(hidden_states)
|
252 |
+
hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states)
|
253 |
+
|
254 |
+
if self.conv_shortcut is not None:
|
255 |
+
input_tensor = (
|
256 |
+
self.conv_shortcut(input_tensor, scale) if not USE_PEFT_BACKEND else self.conv_shortcut(input_tensor)
|
257 |
+
)
|
258 |
+
|
259 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
260 |
+
|
261 |
+
return output_tensor
|
262 |
+
|
263 |
+
|
264 |
+
# unet_rl.py
|
265 |
+
def rearrange_dims(tensor: torch.Tensor) -> torch.Tensor:
|
266 |
+
if len(tensor.shape) == 2:
|
267 |
+
return tensor[:, :, None]
|
268 |
+
if len(tensor.shape) == 3:
|
269 |
+
return tensor[:, :, None, :]
|
270 |
+
elif len(tensor.shape) == 4:
|
271 |
+
return tensor[:, :, 0, :]
|
272 |
+
else:
|
273 |
+
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")
|
274 |
+
|
275 |
+
|
276 |
+
class Conv1dBlock(nn.Module):
|
277 |
+
"""
|
278 |
+
Conv1d --> GroupNorm --> Mish
|
279 |
+
|
280 |
+
Parameters:
|
281 |
+
inp_channels (`int`): Number of input channels.
|
282 |
+
out_channels (`int`): Number of output channels.
|
283 |
+
kernel_size (`int` or `tuple`): Size of the convolving kernel.
|
284 |
+
n_groups (`int`, default `8`): Number of groups to separate the channels into.
|
285 |
+
activation (`str`, defaults to `mish`): Name of the activation function.
|
286 |
+
"""
|
287 |
+
|
288 |
+
def __init__(
|
289 |
+
self,
|
290 |
+
inp_channels: int,
|
291 |
+
out_channels: int,
|
292 |
+
kernel_size: Union[int, Tuple[int, int]],
|
293 |
+
n_groups: int = 8,
|
294 |
+
activation: str = "mish",
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
|
298 |
+
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
|
299 |
+
self.group_norm = nn.GroupNorm(n_groups, out_channels)
|
300 |
+
self.mish = get_activation(activation)
|
301 |
+
|
302 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
303 |
+
intermediate_repr = self.conv1d(inputs)
|
304 |
+
intermediate_repr = rearrange_dims(intermediate_repr)
|
305 |
+
intermediate_repr = self.group_norm(intermediate_repr)
|
306 |
+
intermediate_repr = rearrange_dims(intermediate_repr)
|
307 |
+
output = self.mish(intermediate_repr)
|
308 |
+
return output
|
309 |
+
|
310 |
+
|
311 |
+
# unet_rl.py
|
312 |
+
class ResidualTemporalBlock1D(nn.Module):
|
313 |
+
"""
|
314 |
+
Residual 1D block with temporal convolutions.
|
315 |
+
|
316 |
+
Parameters:
|
317 |
+
inp_channels (`int`): Number of input channels.
|
318 |
+
out_channels (`int`): Number of output channels.
|
319 |
+
embed_dim (`int`): Embedding dimension.
|
320 |
+
kernel_size (`int` or `tuple`): Size of the convolving kernel.
|
321 |
+
activation (`str`, defaults `mish`): It is possible to choose the right activation function.
|
322 |
+
"""
|
323 |
+
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
inp_channels: int,
|
327 |
+
out_channels: int,
|
328 |
+
embed_dim: int,
|
329 |
+
kernel_size: Union[int, Tuple[int, int]] = 5,
|
330 |
+
activation: str = "mish",
|
331 |
+
):
|
332 |
+
super().__init__()
|
333 |
+
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
|
334 |
+
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)
|
335 |
+
|
336 |
+
self.time_emb_act = get_activation(activation)
|
337 |
+
self.time_emb = nn.Linear(embed_dim, out_channels)
|
338 |
+
|
339 |
+
self.residual_conv = (
|
340 |
+
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
|
341 |
+
)
|
342 |
+
|
343 |
+
def forward(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
344 |
+
"""
|
345 |
+
Args:
|
346 |
+
inputs : [ batch_size x inp_channels x horizon ]
|
347 |
+
t : [ batch_size x embed_dim ]
|
348 |
+
|
349 |
+
returns:
|
350 |
+
out : [ batch_size x out_channels x horizon ]
|
351 |
+
"""
|
352 |
+
t = self.time_emb_act(t)
|
353 |
+
t = self.time_emb(t)
|
354 |
+
out = self.conv_in(inputs) + rearrange_dims(t)
|
355 |
+
out = self.conv_out(out)
|
356 |
+
return out + self.residual_conv(inputs)
|
357 |
+
|
358 |
+
|
359 |
+
class TemporalConvLayer(nn.Module):
|
360 |
+
"""
|
361 |
+
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
|
362 |
+
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
|
363 |
+
|
364 |
+
Parameters:
|
365 |
+
in_dim (`int`): Number of input channels.
|
366 |
+
out_dim (`int`): Number of output channels.
|
367 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
368 |
+
"""
|
369 |
+
|
370 |
+
def __init__(
|
371 |
+
self,
|
372 |
+
in_dim: int,
|
373 |
+
out_dim: Optional[int] = None,
|
374 |
+
dropout: float = 0.0,
|
375 |
+
norm_num_groups: int = 32,
|
376 |
+
):
|
377 |
+
super().__init__()
|
378 |
+
out_dim = out_dim or in_dim
|
379 |
+
self.in_dim = in_dim
|
380 |
+
self.out_dim = out_dim
|
381 |
+
|
382 |
+
# conv layers
|
383 |
+
self.conv1 = nn.Sequential(
|
384 |
+
nn.GroupNorm(norm_num_groups, in_dim),
|
385 |
+
nn.SiLU(),
|
386 |
+
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)),
|
387 |
+
)
|
388 |
+
self.conv2 = nn.Sequential(
|
389 |
+
nn.GroupNorm(norm_num_groups, out_dim),
|
390 |
+
nn.SiLU(),
|
391 |
+
nn.Dropout(dropout),
|
392 |
+
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
393 |
+
)
|
394 |
+
self.conv3 = nn.Sequential(
|
395 |
+
nn.GroupNorm(norm_num_groups, out_dim),
|
396 |
+
nn.SiLU(),
|
397 |
+
nn.Dropout(dropout),
|
398 |
+
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
399 |
+
)
|
400 |
+
self.conv4 = nn.Sequential(
|
401 |
+
nn.GroupNorm(norm_num_groups, out_dim),
|
402 |
+
nn.SiLU(),
|
403 |
+
nn.Dropout(dropout),
|
404 |
+
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
|
405 |
+
)
|
406 |
+
|
407 |
+
# zero out the last layer params,so the conv block is identity
|
408 |
+
nn.init.zeros_(self.conv4[-1].weight)
|
409 |
+
nn.init.zeros_(self.conv4[-1].bias)
|
410 |
+
|
411 |
+
def forward(self, hidden_states: torch.Tensor, num_frames: int = 1) -> torch.Tensor:
|
412 |
+
hidden_states = (
|
413 |
+
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4)
|
414 |
+
)
|
415 |
+
|
416 |
+
identity = hidden_states
|
417 |
+
hidden_states = self.conv1(hidden_states)
|
418 |
+
hidden_states = self.conv2(hidden_states)
|
419 |
+
hidden_states = self.conv3(hidden_states)
|
420 |
+
hidden_states = self.conv4(hidden_states)
|
421 |
+
|
422 |
+
hidden_states = identity + hidden_states
|
423 |
+
|
424 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(
|
425 |
+
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
|
426 |
+
)
|
427 |
+
return hidden_states
|
428 |
+
|
429 |
+
|
430 |
+
class TemporalResnetBlock(nn.Module):
|
431 |
+
r"""
|
432 |
+
A Resnet block.
|
433 |
+
|
434 |
+
Parameters:
|
435 |
+
in_channels (`int`): The number of channels in the input.
|
436 |
+
out_channels (`int`, *optional*, default to be `None`):
|
437 |
+
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
|
438 |
+
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
|
439 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
440 |
+
"""
|
441 |
+
|
442 |
+
def __init__(
|
443 |
+
self,
|
444 |
+
in_channels: int,
|
445 |
+
out_channels: Optional[int] = None,
|
446 |
+
temb_channels: int = 512,
|
447 |
+
eps: float = 1e-6,
|
448 |
+
):
|
449 |
+
super().__init__()
|
450 |
+
self.in_channels = in_channels
|
451 |
+
out_channels = in_channels if out_channels is None else out_channels
|
452 |
+
self.out_channels = out_channels
|
453 |
+
|
454 |
+
kernel_size = (3, 1, 1)
|
455 |
+
padding = [k // 2 for k in kernel_size]
|
456 |
+
|
457 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True)
|
458 |
+
self.conv1 = nn.Conv3d(
|
459 |
+
in_channels,
|
460 |
+
out_channels,
|
461 |
+
kernel_size=kernel_size,
|
462 |
+
stride=1,
|
463 |
+
padding=padding,
|
464 |
+
)
|
465 |
+
|
466 |
+
if temb_channels is not None:
|
467 |
+
self.time_emb_proj = nn.Linear(temb_channels, out_channels)
|
468 |
+
else:
|
469 |
+
self.time_emb_proj = None
|
470 |
+
|
471 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True)
|
472 |
+
|
473 |
+
self.dropout = torch.nn.Dropout(0.0)
|
474 |
+
self.conv2 = nn.Conv3d(
|
475 |
+
out_channels,
|
476 |
+
out_channels,
|
477 |
+
kernel_size=kernel_size,
|
478 |
+
stride=1,
|
479 |
+
padding=padding,
|
480 |
+
)
|
481 |
+
|
482 |
+
self.nonlinearity = get_activation("silu")
|
483 |
+
|
484 |
+
self.use_in_shortcut = self.in_channels != out_channels
|
485 |
+
|
486 |
+
self.conv_shortcut = None
|
487 |
+
if self.use_in_shortcut:
|
488 |
+
self.conv_shortcut = nn.Conv3d(
|
489 |
+
in_channels,
|
490 |
+
out_channels,
|
491 |
+
kernel_size=1,
|
492 |
+
stride=1,
|
493 |
+
padding=0,
|
494 |
+
)
|
495 |
+
|
496 |
+
def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
|
497 |
+
hidden_states = input_tensor
|
498 |
+
|
499 |
+
hidden_states = self.norm1(hidden_states)
|
500 |
+
hidden_states = self.nonlinearity(hidden_states)
|
501 |
+
hidden_states = self.conv1(hidden_states)
|
502 |
+
|
503 |
+
if self.time_emb_proj is not None:
|
504 |
+
temb = self.nonlinearity(temb)
|
505 |
+
temb = self.time_emb_proj(temb)[:, :, :, None, None]
|
506 |
+
temb = temb.permute(0, 2, 1, 3, 4)
|
507 |
+
hidden_states = hidden_states + temb
|
508 |
+
|
509 |
+
hidden_states = self.norm2(hidden_states)
|
510 |
+
hidden_states = self.nonlinearity(hidden_states)
|
511 |
+
hidden_states = self.dropout(hidden_states)
|
512 |
+
hidden_states = self.conv2(hidden_states)
|
513 |
+
|
514 |
+
if self.conv_shortcut is not None:
|
515 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
516 |
+
|
517 |
+
output_tensor = input_tensor + hidden_states
|
518 |
+
|
519 |
+
return output_tensor
|
520 |
+
|
521 |
+
|
522 |
+
# VideoResBlock
|
523 |
+
class SpatioTemporalResBlock(nn.Module):
|
524 |
+
r"""
|
525 |
+
A SpatioTemporal Resnet block.
|
526 |
+
|
527 |
+
Parameters:
|
528 |
+
in_channels (`int`): The number of channels in the input.
|
529 |
+
out_channels (`int`, *optional*, default to be `None`):
|
530 |
+
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
|
531 |
+
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
|
532 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet.
|
533 |
+
temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet.
|
534 |
+
merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing.
|
535 |
+
merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
|
536 |
+
The merge strategy to use for the temporal mixing.
|
537 |
+
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
|
538 |
+
If `True`, switch the spatial and temporal mixing.
|
539 |
+
"""
|
540 |
+
|
541 |
+
def __init__(
|
542 |
+
self,
|
543 |
+
in_channels: int,
|
544 |
+
out_channels: Optional[int] = None,
|
545 |
+
temb_channels: int = 512,
|
546 |
+
eps: float = 1e-6,
|
547 |
+
temporal_eps: Optional[float] = None,
|
548 |
+
merge_factor: float = 0.5,
|
549 |
+
merge_strategy="learned_with_images",
|
550 |
+
switch_spatial_to_temporal_mix: bool = False,
|
551 |
+
):
|
552 |
+
super().__init__()
|
553 |
+
|
554 |
+
self.spatial_res_block = ResnetBlock2D(
|
555 |
+
in_channels=in_channels,
|
556 |
+
out_channels=out_channels,
|
557 |
+
temb_channels=temb_channels,
|
558 |
+
eps=eps,
|
559 |
+
)
|
560 |
+
|
561 |
+
self.temporal_res_block = TemporalResnetBlock(
|
562 |
+
in_channels=out_channels if out_channels is not None else in_channels,
|
563 |
+
out_channels=out_channels if out_channels is not None else in_channels,
|
564 |
+
temb_channels=temb_channels,
|
565 |
+
eps=temporal_eps if temporal_eps is not None else eps,
|
566 |
+
)
|
567 |
+
|
568 |
+
self.time_mixer = AlphaBlender(
|
569 |
+
alpha=merge_factor,
|
570 |
+
merge_strategy=merge_strategy,
|
571 |
+
switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix,
|
572 |
+
)
|
573 |
+
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
hidden_states: torch.FloatTensor,
|
577 |
+
temb: Optional[torch.FloatTensor] = None,
|
578 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
579 |
+
):
|
580 |
+
num_frames = image_only_indicator.shape[-1]
|
581 |
+
hidden_states = self.spatial_res_block(hidden_states, temb)
|
582 |
+
|
583 |
+
batch_frames, channels, height, width = hidden_states.shape
|
584 |
+
batch_size = batch_frames // num_frames
|
585 |
+
|
586 |
+
hidden_states_mix = (
|
587 |
+
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
|
588 |
+
)
|
589 |
+
hidden_states = (
|
590 |
+
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
|
591 |
+
)
|
592 |
+
|
593 |
+
if temb is not None:
|
594 |
+
temb = temb.reshape(batch_size, num_frames, -1)
|
595 |
+
|
596 |
+
hidden_states = self.temporal_res_block(hidden_states, temb)
|
597 |
+
hidden_states = self.time_mixer(
|
598 |
+
x_spatial=hidden_states_mix,
|
599 |
+
x_temporal=hidden_states,
|
600 |
+
image_only_indicator=image_only_indicator,
|
601 |
+
)
|
602 |
+
|
603 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
|
604 |
+
return hidden_states
|
605 |
+
|
606 |
+
|
607 |
+
class AlphaBlender(nn.Module):
|
608 |
+
r"""
|
609 |
+
A module to blend spatial and temporal features.
|
610 |
+
|
611 |
+
Parameters:
|
612 |
+
alpha (`float`): The initial value of the blending factor.
|
613 |
+
merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
|
614 |
+
The merge strategy to use for the temporal mixing.
|
615 |
+
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
|
616 |
+
If `True`, switch the spatial and temporal mixing.
|
617 |
+
"""
|
618 |
+
|
619 |
+
strategies = ["learned", "fixed", "learned_with_images"]
|
620 |
+
|
621 |
+
def __init__(
|
622 |
+
self,
|
623 |
+
alpha: float,
|
624 |
+
merge_strategy: str = "learned_with_images",
|
625 |
+
switch_spatial_to_temporal_mix: bool = False,
|
626 |
+
):
|
627 |
+
super().__init__()
|
628 |
+
self.merge_strategy = merge_strategy
|
629 |
+
self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix # For TemporalVAE
|
630 |
+
|
631 |
+
if merge_strategy not in self.strategies:
|
632 |
+
raise ValueError(f"merge_strategy needs to be in {self.strategies}")
|
633 |
+
|
634 |
+
if self.merge_strategy == "fixed":
|
635 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
636 |
+
elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images":
|
637 |
+
self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha])))
|
638 |
+
else:
|
639 |
+
raise ValueError(f"Unknown merge strategy {self.merge_strategy}")
|
640 |
+
|
641 |
+
def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor:
|
642 |
+
if self.merge_strategy == "fixed":
|
643 |
+
alpha = self.mix_factor
|
644 |
+
|
645 |
+
elif self.merge_strategy == "learned":
|
646 |
+
alpha = torch.sigmoid(self.mix_factor)
|
647 |
+
|
648 |
+
elif self.merge_strategy == "learned_with_images":
|
649 |
+
if image_only_indicator is None:
|
650 |
+
raise ValueError("Please provide image_only_indicator to use learned_with_images merge strategy")
|
651 |
+
|
652 |
+
alpha = torch.where(
|
653 |
+
image_only_indicator.bool(),
|
654 |
+
torch.ones(1, 1, device=image_only_indicator.device),
|
655 |
+
torch.sigmoid(self.mix_factor)[..., None],
|
656 |
+
)
|
657 |
+
|
658 |
+
# (batch, channel, frames, height, width)
|
659 |
+
if ndims == 5:
|
660 |
+
alpha = alpha[:, None, :, None, None]
|
661 |
+
# (batch*frames, height*width, channels)
|
662 |
+
elif ndims == 3:
|
663 |
+
alpha = alpha.reshape(-1)[:, None, None]
|
664 |
+
else:
|
665 |
+
raise ValueError(f"Unexpected ndims {ndims}. Dimensions should be 3 or 5")
|
666 |
+
|
667 |
+
else:
|
668 |
+
raise NotImplementedError
|
669 |
+
|
670 |
+
return alpha
|
671 |
+
|
672 |
+
def forward(
|
673 |
+
self,
|
674 |
+
x_spatial: torch.Tensor,
|
675 |
+
x_temporal: torch.Tensor,
|
676 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
677 |
+
) -> torch.Tensor:
|
678 |
+
alpha = self.get_alpha(image_only_indicator, x_spatial.ndim)
|
679 |
+
alpha = alpha.to(x_spatial.dtype)
|
680 |
+
|
681 |
+
if self.switch_spatial_to_temporal_mix:
|
682 |
+
alpha = 1.0 - alpha
|
683 |
+
|
684 |
+
x = alpha * x_spatial + (1.0 - alpha) * x_temporal
|
685 |
+
return x
|
foleycrafter/models/auffusion/transformer_2d.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
24 |
+
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
|
25 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
26 |
+
from diffusers.models.modeling_utils import ModelMixin
|
27 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
28 |
+
|
29 |
+
from foleycrafter.models.auffusion.attention import BasicTransformerBlock
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class Transformer2DModelOutput(BaseOutput):
|
33 |
+
"""
|
34 |
+
The output of [`Transformer2DModel`].
|
35 |
+
|
36 |
+
Args:
|
37 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
38 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
39 |
+
distributions for the unnoised latent pixels.
|
40 |
+
"""
|
41 |
+
|
42 |
+
sample: torch.FloatTensor
|
43 |
+
|
44 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
45 |
+
"""
|
46 |
+
A 2D Transformer model for image-like data.
|
47 |
+
|
48 |
+
Parameters:
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
50 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
51 |
+
in_channels (`int`, *optional*):
|
52 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
53 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
54 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
55 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
56 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
57 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
58 |
+
num_vector_embeds (`int`, *optional*):
|
59 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
60 |
+
Includes the class for the masked latent pixel.
|
61 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
62 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
63 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
64 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
65 |
+
added to the hidden states.
|
66 |
+
|
67 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
68 |
+
attention_bias (`bool`, *optional*):
|
69 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
70 |
+
"""
|
71 |
+
|
72 |
+
_supports_gradient_checkpointing = True
|
73 |
+
|
74 |
+
@register_to_config
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
num_attention_heads: int = 16,
|
78 |
+
attention_head_dim: int = 88,
|
79 |
+
in_channels: Optional[int] = None,
|
80 |
+
out_channels: Optional[int] = None,
|
81 |
+
num_layers: int = 1,
|
82 |
+
dropout: float = 0.0,
|
83 |
+
norm_num_groups: int = 32,
|
84 |
+
cross_attention_dim: Optional[int] = None,
|
85 |
+
attention_bias: bool = False,
|
86 |
+
sample_size: Optional[int] = None,
|
87 |
+
num_vector_embeds: Optional[int] = None,
|
88 |
+
patch_size: Optional[int] = None,
|
89 |
+
activation_fn: str = "geglu",
|
90 |
+
num_embeds_ada_norm: Optional[int] = None,
|
91 |
+
use_linear_projection: bool = False,
|
92 |
+
only_cross_attention: bool = False,
|
93 |
+
double_self_attention: bool = False,
|
94 |
+
upcast_attention: bool = False,
|
95 |
+
norm_type: str = "layer_norm",
|
96 |
+
norm_elementwise_affine: bool = True,
|
97 |
+
norm_eps: float = 1e-5,
|
98 |
+
attention_type: str = "default",
|
99 |
+
caption_channels: int = None,
|
100 |
+
):
|
101 |
+
super().__init__()
|
102 |
+
self.use_linear_projection = use_linear_projection
|
103 |
+
self.num_attention_heads = num_attention_heads
|
104 |
+
self.attention_head_dim = attention_head_dim
|
105 |
+
inner_dim = num_attention_heads * attention_head_dim
|
106 |
+
|
107 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
108 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
109 |
+
|
110 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
111 |
+
# Define whether input is continuous or discrete depending on configuration
|
112 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
113 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
114 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
115 |
+
|
116 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
117 |
+
deprecation_message = (
|
118 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
119 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
120 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
121 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
122 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
123 |
+
)
|
124 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
125 |
+
norm_type = "ada_norm"
|
126 |
+
|
127 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
128 |
+
raise ValueError(
|
129 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
130 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
131 |
+
)
|
132 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
133 |
+
raise ValueError(
|
134 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
135 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
136 |
+
)
|
137 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
138 |
+
raise ValueError(
|
139 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
140 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
141 |
+
)
|
142 |
+
|
143 |
+
# 2. Define input layers
|
144 |
+
if self.is_input_continuous:
|
145 |
+
self.in_channels = in_channels
|
146 |
+
|
147 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
148 |
+
if use_linear_projection:
|
149 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
150 |
+
else:
|
151 |
+
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
152 |
+
elif self.is_input_vectorized:
|
153 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
154 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
155 |
+
|
156 |
+
self.height = sample_size
|
157 |
+
self.width = sample_size
|
158 |
+
self.num_vector_embeds = num_vector_embeds
|
159 |
+
self.num_latent_pixels = self.height * self.width
|
160 |
+
|
161 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
162 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
163 |
+
)
|
164 |
+
elif self.is_input_patches:
|
165 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
166 |
+
|
167 |
+
self.height = sample_size
|
168 |
+
self.width = sample_size
|
169 |
+
|
170 |
+
self.patch_size = patch_size
|
171 |
+
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
|
172 |
+
interpolation_scale = max(interpolation_scale, 1)
|
173 |
+
self.pos_embed = PatchEmbed(
|
174 |
+
height=sample_size,
|
175 |
+
width=sample_size,
|
176 |
+
patch_size=patch_size,
|
177 |
+
in_channels=in_channels,
|
178 |
+
embed_dim=inner_dim,
|
179 |
+
interpolation_scale=interpolation_scale,
|
180 |
+
)
|
181 |
+
|
182 |
+
# 3. Define transformers blocks
|
183 |
+
self.transformer_blocks = nn.ModuleList(
|
184 |
+
[
|
185 |
+
# NOTE: remember to change
|
186 |
+
BasicTransformerBlock(
|
187 |
+
inner_dim,
|
188 |
+
num_attention_heads,
|
189 |
+
attention_head_dim,
|
190 |
+
dropout=dropout,
|
191 |
+
cross_attention_dim=cross_attention_dim,
|
192 |
+
activation_fn=activation_fn,
|
193 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
194 |
+
attention_bias=attention_bias,
|
195 |
+
only_cross_attention=only_cross_attention,
|
196 |
+
double_self_attention=double_self_attention,
|
197 |
+
upcast_attention=upcast_attention,
|
198 |
+
norm_type=norm_type,
|
199 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
200 |
+
norm_eps=norm_eps,
|
201 |
+
attention_type=attention_type,
|
202 |
+
)
|
203 |
+
for d in range(num_layers)
|
204 |
+
]
|
205 |
+
)
|
206 |
+
|
207 |
+
# 4. Define output layers
|
208 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
209 |
+
if self.is_input_continuous:
|
210 |
+
# TODO: should use out_channels for continuous projections
|
211 |
+
if use_linear_projection:
|
212 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
213 |
+
else:
|
214 |
+
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
215 |
+
elif self.is_input_vectorized:
|
216 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
217 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
218 |
+
elif self.is_input_patches and norm_type != "ada_norm_single":
|
219 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
220 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
221 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
222 |
+
elif self.is_input_patches and norm_type == "ada_norm_single":
|
223 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
224 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
225 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
226 |
+
|
227 |
+
# 5. PixArt-Alpha blocks.
|
228 |
+
self.adaln_single = None
|
229 |
+
self.use_additional_conditions = False
|
230 |
+
if norm_type == "ada_norm_single":
|
231 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
232 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
233 |
+
# additional conditions until we find better name
|
234 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
235 |
+
|
236 |
+
self.caption_projection = None
|
237 |
+
if caption_channels is not None:
|
238 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
239 |
+
|
240 |
+
self.gradient_checkpointing = False
|
241 |
+
|
242 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
243 |
+
if hasattr(module, "gradient_checkpointing"):
|
244 |
+
module.gradient_checkpointing = value
|
245 |
+
|
246 |
+
def forward(
|
247 |
+
self,
|
248 |
+
hidden_states: torch.Tensor,
|
249 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
250 |
+
timestep: Optional[torch.LongTensor] = None,
|
251 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
252 |
+
class_labels: Optional[torch.LongTensor] = None,
|
253 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
254 |
+
attention_mask: Optional[torch.Tensor] = None,
|
255 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
256 |
+
return_dict: bool = True,
|
257 |
+
):
|
258 |
+
"""
|
259 |
+
The [`Transformer2DModel`] forward method.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
263 |
+
Input `hidden_states`.
|
264 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
265 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
266 |
+
self-attention.
|
267 |
+
timestep ( `torch.LongTensor`, *optional*):
|
268 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
269 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
270 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
271 |
+
`AdaLayerZeroNorm`.
|
272 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
273 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
274 |
+
`self.processor` in
|
275 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
276 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
277 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
278 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
279 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
280 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
281 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
282 |
+
|
283 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
284 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
285 |
+
|
286 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
287 |
+
above. This bias will be added to the cross-attention scores.
|
288 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
289 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
290 |
+
tuple.
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
294 |
+
`tuple` where the first element is the sample tensor.
|
295 |
+
"""
|
296 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
297 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
298 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
299 |
+
# expects mask of shape:
|
300 |
+
# [batch, key_tokens]
|
301 |
+
# adds singleton query_tokens dimension:
|
302 |
+
# [batch, 1, key_tokens]
|
303 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
304 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
305 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
306 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
307 |
+
# assume that mask is expressed as:
|
308 |
+
# (1 = keep, 0 = discard)
|
309 |
+
# convert mask into a bias that can be added to attention scores:
|
310 |
+
# (keep = +0, discard = -10000.0)
|
311 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
312 |
+
attention_mask = attention_mask.unsqueeze(1)
|
313 |
+
|
314 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
315 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
316 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
317 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
318 |
+
|
319 |
+
# Retrieve lora scale.
|
320 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
321 |
+
|
322 |
+
# 1. Input
|
323 |
+
if self.is_input_continuous:
|
324 |
+
batch, _, height, width = hidden_states.shape
|
325 |
+
inner_dim = hidden_states.shape[1]
|
326 |
+
residual = hidden_states
|
327 |
+
|
328 |
+
hidden_states = self.norm(hidden_states)
|
329 |
+
if not self.use_linear_projection:
|
330 |
+
hidden_states = (
|
331 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
332 |
+
if not USE_PEFT_BACKEND
|
333 |
+
else self.proj_in(hidden_states)
|
334 |
+
)
|
335 |
+
inner_dim = hidden_states.shape[1]
|
336 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
337 |
+
else:
|
338 |
+
inner_dim = hidden_states.shape[1]
|
339 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
340 |
+
hidden_states = (
|
341 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
342 |
+
if not USE_PEFT_BACKEND
|
343 |
+
else self.proj_in(hidden_states)
|
344 |
+
)
|
345 |
+
|
346 |
+
elif self.is_input_vectorized:
|
347 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
348 |
+
elif self.is_input_patches:
|
349 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
350 |
+
self.height, self.width = height, width
|
351 |
+
hidden_states = self.pos_embed(hidden_states)
|
352 |
+
|
353 |
+
if self.adaln_single is not None:
|
354 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
355 |
+
raise ValueError(
|
356 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
357 |
+
)
|
358 |
+
batch_size = hidden_states.shape[0]
|
359 |
+
timestep, embedded_timestep = self.adaln_single(
|
360 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
361 |
+
)
|
362 |
+
|
363 |
+
if self.caption_projection is not None:
|
364 |
+
batch_size = hidden_states.shape[0]
|
365 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
366 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
367 |
+
# 2. Blocks
|
368 |
+
for block in self.transformer_blocks:
|
369 |
+
if self.training and self.gradient_checkpointing:
|
370 |
+
|
371 |
+
def create_custom_forward(module, return_dict=None):
|
372 |
+
def custom_forward(*inputs):
|
373 |
+
if return_dict is not None:
|
374 |
+
return module(*inputs, return_dict=return_dict)
|
375 |
+
else:
|
376 |
+
return module(*inputs)
|
377 |
+
|
378 |
+
return custom_forward
|
379 |
+
|
380 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
381 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
382 |
+
create_custom_forward(block),
|
383 |
+
hidden_states,
|
384 |
+
attention_mask,
|
385 |
+
encoder_hidden_states,
|
386 |
+
encoder_attention_mask,
|
387 |
+
timestep,
|
388 |
+
cross_attention_kwargs,
|
389 |
+
class_labels,
|
390 |
+
**ckpt_kwargs,
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
hidden_states = block(
|
394 |
+
hidden_states,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
encoder_hidden_states=encoder_hidden_states,
|
397 |
+
encoder_attention_mask=encoder_attention_mask,
|
398 |
+
timestep=timestep,
|
399 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
400 |
+
class_labels=class_labels,
|
401 |
+
)
|
402 |
+
|
403 |
+
# 3. Output
|
404 |
+
if self.is_input_continuous:
|
405 |
+
if not self.use_linear_projection:
|
406 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
407 |
+
hidden_states = (
|
408 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
409 |
+
if not USE_PEFT_BACKEND
|
410 |
+
else self.proj_out(hidden_states)
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
hidden_states = (
|
414 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
415 |
+
if not USE_PEFT_BACKEND
|
416 |
+
else self.proj_out(hidden_states)
|
417 |
+
)
|
418 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
419 |
+
|
420 |
+
output = hidden_states + residual
|
421 |
+
elif self.is_input_vectorized:
|
422 |
+
hidden_states = self.norm_out(hidden_states)
|
423 |
+
logits = self.out(hidden_states)
|
424 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
425 |
+
logits = logits.permute(0, 2, 1)
|
426 |
+
|
427 |
+
# log(p(x_0))
|
428 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
429 |
+
|
430 |
+
if self.is_input_patches:
|
431 |
+
if self.config.norm_type != "ada_norm_single":
|
432 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
433 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
434 |
+
)
|
435 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
436 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
437 |
+
hidden_states = self.proj_out_2(hidden_states)
|
438 |
+
elif self.config.norm_type == "ada_norm_single":
|
439 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
440 |
+
hidden_states = self.norm_out(hidden_states)
|
441 |
+
# Modulation
|
442 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
443 |
+
hidden_states = self.proj_out(hidden_states)
|
444 |
+
hidden_states = hidden_states.squeeze(1)
|
445 |
+
|
446 |
+
# unpatchify
|
447 |
+
if self.adaln_single is None:
|
448 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
449 |
+
hidden_states = hidden_states.reshape(
|
450 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
451 |
+
)
|
452 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
453 |
+
output = hidden_states.reshape(
|
454 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
455 |
+
)
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
return (output,)
|
459 |
+
|
460 |
+
return Transformer2DModelOutput(sample=output)
|
foleycrafter/models/auffusion/unet_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
foleycrafter/models/auffusion_unet.py
ADDED
@@ -0,0 +1,1260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.utils.import_utils import is_xformers_available, is_torch_version
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
# from diffusers import StableDiffusionGLIGENPipeline
|
26 |
+
from diffusers.models.attention_processor import (
|
27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
28 |
+
CROSS_ATTENTION_PROCESSORS,
|
29 |
+
Attention,
|
30 |
+
AttentionProcessor,
|
31 |
+
AttnAddedKVProcessor,
|
32 |
+
AttnProcessor,
|
33 |
+
XFormersAttnProcessor,
|
34 |
+
)
|
35 |
+
from diffusers.models.embeddings import (
|
36 |
+
GaussianFourierProjection,
|
37 |
+
ImageHintTimeEmbedding,
|
38 |
+
ImageProjection,
|
39 |
+
ImageTimeEmbedding,
|
40 |
+
PositionNet,
|
41 |
+
TextImageProjection,
|
42 |
+
TextImageTimeEmbedding,
|
43 |
+
TextTimeEmbedding,
|
44 |
+
TimestepEmbedding,
|
45 |
+
Timesteps,
|
46 |
+
)
|
47 |
+
from diffusers.models.modeling_utils import ModelMixin
|
48 |
+
|
49 |
+
from foleycrafter.models.auffusion.unet_2d_blocks import (
|
50 |
+
UNetMidBlock2D,
|
51 |
+
UNetMidBlock2DCrossAttn,
|
52 |
+
UNetMidBlock2DSimpleCrossAttn,
|
53 |
+
get_down_block,
|
54 |
+
get_up_block,
|
55 |
+
)
|
56 |
+
|
57 |
+
from foleycrafter.models.auffusion.attention_processor\
|
58 |
+
import AttnProcessor2_0
|
59 |
+
from foleycrafter.models.adapters.ip_adapter import TimeProjModel
|
60 |
+
from foleycrafter.models.auffusion.loaders.unet import UNet2DConditionLoadersMixin
|
61 |
+
|
62 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class UNet2DConditionOutput(BaseOutput):
|
67 |
+
"""
|
68 |
+
The output of [`UNet2DConditionModel`].
|
69 |
+
|
70 |
+
Args:
|
71 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
72 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
73 |
+
"""
|
74 |
+
|
75 |
+
sample: torch.FloatTensor = None
|
76 |
+
|
77 |
+
|
78 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
79 |
+
r"""
|
80 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
81 |
+
shaped output.
|
82 |
+
|
83 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
84 |
+
for all models (such as downloading or saving).
|
85 |
+
|
86 |
+
Parameters:
|
87 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
88 |
+
Height and width of input/output sample.
|
89 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
90 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
91 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
92 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether to flip the sin to cos in the time embedding.
|
94 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
95 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
96 |
+
The tuple of downsample blocks to use.
|
97 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
98 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
99 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
100 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
101 |
+
The tuple of upsample blocks to use.
|
102 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
103 |
+
Whether to include self-attention in the basic transformer blocks, see
|
104 |
+
[`~models.attention.BasicTransformerBlock`].
|
105 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
106 |
+
The tuple of output channels for each block.
|
107 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
108 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
109 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
110 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
111 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
112 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
113 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
114 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
115 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
116 |
+
The dimension of the cross attention features.
|
117 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
118 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
119 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
120 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
121 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
122 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
123 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
124 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
125 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
126 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
127 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
128 |
+
dimension to `cross_attention_dim`.
|
129 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
130 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
131 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
132 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
133 |
+
num_attention_heads (`int`, *optional*):
|
134 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
135 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
136 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
137 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
138 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
139 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
140 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
141 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
142 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
143 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
144 |
+
Dimension for the timestep embeddings.
|
145 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
146 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
147 |
+
class conditioning with `class_embed_type` equal to `None`.
|
148 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
149 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
150 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
151 |
+
An optional override for the dimension of the projected time embedding.
|
152 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
153 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
154 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
155 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
156 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
157 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
158 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
159 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
160 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
161 |
+
*optional*): The dimension of the `class_labels` input when
|
162 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
163 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
164 |
+
embeddings with the class embeddings.
|
165 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
166 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
167 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
168 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
169 |
+
otherwise.
|
170 |
+
"""
|
171 |
+
|
172 |
+
_supports_gradient_checkpointing = True
|
173 |
+
|
174 |
+
@register_to_config
|
175 |
+
def __init__(
|
176 |
+
self,
|
177 |
+
sample_size: Optional[int] = None,
|
178 |
+
in_channels: int = 4,
|
179 |
+
out_channels: int = 4,
|
180 |
+
center_input_sample: bool = False,
|
181 |
+
flip_sin_to_cos: bool = True,
|
182 |
+
freq_shift: int = 0,
|
183 |
+
down_block_types: Tuple[str] = (
|
184 |
+
"CrossAttnDownBlock2D",
|
185 |
+
"CrossAttnDownBlock2D",
|
186 |
+
"CrossAttnDownBlock2D",
|
187 |
+
"DownBlock2D",
|
188 |
+
),
|
189 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
190 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
191 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
192 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
193 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
194 |
+
downsample_padding: int = 1,
|
195 |
+
mid_block_scale_factor: float = 1,
|
196 |
+
dropout: float = 0.0,
|
197 |
+
act_fn: str = "silu",
|
198 |
+
norm_num_groups: Optional[int] = 32,
|
199 |
+
norm_eps: float = 1e-5,
|
200 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
201 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
202 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
203 |
+
encoder_hid_dim: Optional[int] = None,
|
204 |
+
encoder_hid_dim_type: Optional[str] = None,
|
205 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
206 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
207 |
+
dual_cross_attention: bool = False,
|
208 |
+
use_linear_projection: bool = False,
|
209 |
+
class_embed_type: Optional[str] = None,
|
210 |
+
addition_embed_type: Optional[str] = None,
|
211 |
+
addition_time_embed_dim: Optional[int] = None,
|
212 |
+
num_class_embeds: Optional[int] = None,
|
213 |
+
upcast_attention: bool = False,
|
214 |
+
resnet_time_scale_shift: str = "default",
|
215 |
+
resnet_skip_time_act: bool = False,
|
216 |
+
resnet_out_scale_factor: int = 1.0,
|
217 |
+
time_embedding_type: str = "positional",
|
218 |
+
time_embedding_dim: Optional[int] = None,
|
219 |
+
time_embedding_act_fn: Optional[str] = None,
|
220 |
+
timestep_post_act: Optional[str] = None,
|
221 |
+
time_cond_proj_dim: Optional[int] = None,
|
222 |
+
conv_in_kernel: int = 3,
|
223 |
+
conv_out_kernel: int = 3,
|
224 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
225 |
+
attention_type: str = "default",
|
226 |
+
class_embeddings_concat: bool = False,
|
227 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
228 |
+
cross_attention_norm: Optional[str] = None,
|
229 |
+
addition_embed_type_num_heads=64,
|
230 |
+
|
231 |
+
# param for joint
|
232 |
+
video_feature_dim: tuple=(320, 640, 1280, 1280),
|
233 |
+
video_cross_attn_dim: int=1024,
|
234 |
+
video_frame_nums: int=16,
|
235 |
+
):
|
236 |
+
super().__init__()
|
237 |
+
|
238 |
+
self.sample_size = sample_size
|
239 |
+
|
240 |
+
if num_attention_heads is not None:
|
241 |
+
raise ValueError(
|
242 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
243 |
+
)
|
244 |
+
|
245 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
246 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
247 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
248 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
249 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
250 |
+
# which is why we correct for the naming here.
|
251 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
252 |
+
|
253 |
+
# Check inputs
|
254 |
+
if len(down_block_types) != len(up_block_types):
|
255 |
+
raise ValueError(
|
256 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
257 |
+
)
|
258 |
+
|
259 |
+
if len(block_out_channels) != len(down_block_types):
|
260 |
+
raise ValueError(
|
261 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
262 |
+
)
|
263 |
+
|
264 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
265 |
+
raise ValueError(
|
266 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
267 |
+
)
|
268 |
+
|
269 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
270 |
+
raise ValueError(
|
271 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
272 |
+
)
|
273 |
+
|
274 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
275 |
+
raise ValueError(
|
276 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
277 |
+
)
|
278 |
+
|
279 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
280 |
+
raise ValueError(
|
281 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
282 |
+
)
|
283 |
+
|
284 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
285 |
+
raise ValueError(
|
286 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
287 |
+
)
|
288 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
289 |
+
for layer_number_per_block in transformer_layers_per_block:
|
290 |
+
if isinstance(layer_number_per_block, list):
|
291 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
292 |
+
|
293 |
+
# input
|
294 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
295 |
+
self.conv_in = nn.Conv2d(
|
296 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
297 |
+
)
|
298 |
+
|
299 |
+
# time
|
300 |
+
if time_embedding_type == "fourier":
|
301 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
302 |
+
if time_embed_dim % 2 != 0:
|
303 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
304 |
+
self.time_proj = GaussianFourierProjection(
|
305 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
306 |
+
)
|
307 |
+
timestep_input_dim = time_embed_dim
|
308 |
+
elif time_embedding_type == "positional":
|
309 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
310 |
+
|
311 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
312 |
+
timestep_input_dim = block_out_channels[0]
|
313 |
+
else:
|
314 |
+
raise ValueError(
|
315 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
316 |
+
)
|
317 |
+
|
318 |
+
self.time_embedding = TimestepEmbedding(
|
319 |
+
timestep_input_dim,
|
320 |
+
time_embed_dim,
|
321 |
+
act_fn=act_fn,
|
322 |
+
post_act_fn=timestep_post_act,
|
323 |
+
cond_proj_dim=time_cond_proj_dim,
|
324 |
+
)
|
325 |
+
|
326 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
327 |
+
encoder_hid_dim_type = "text_proj"
|
328 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
329 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
330 |
+
|
331 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
332 |
+
raise ValueError(
|
333 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
334 |
+
)
|
335 |
+
|
336 |
+
if encoder_hid_dim_type == "text_proj":
|
337 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
338 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
339 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
340 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
341 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
342 |
+
self.encoder_hid_proj = TextImageProjection(
|
343 |
+
text_embed_dim=encoder_hid_dim,
|
344 |
+
image_embed_dim=cross_attention_dim,
|
345 |
+
cross_attention_dim=cross_attention_dim,
|
346 |
+
)
|
347 |
+
elif encoder_hid_dim_type == "image_proj":
|
348 |
+
# Kandinsky 2.2
|
349 |
+
self.encoder_hid_proj = ImageProjection(
|
350 |
+
image_embed_dim=encoder_hid_dim,
|
351 |
+
cross_attention_dim=cross_attention_dim,
|
352 |
+
)
|
353 |
+
elif encoder_hid_dim_type is not None:
|
354 |
+
raise ValueError(
|
355 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
self.encoder_hid_proj = None
|
359 |
+
|
360 |
+
# class embedding
|
361 |
+
if class_embed_type is None and num_class_embeds is not None:
|
362 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
363 |
+
elif class_embed_type == "timestep":
|
364 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
365 |
+
elif class_embed_type == "identity":
|
366 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
367 |
+
elif class_embed_type == "projection":
|
368 |
+
if projection_class_embeddings_input_dim is None:
|
369 |
+
raise ValueError(
|
370 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
371 |
+
)
|
372 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
373 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
374 |
+
# 2. it projects from an arbitrary input dimension.
|
375 |
+
#
|
376 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
377 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
378 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
379 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
380 |
+
elif class_embed_type == "simple_projection":
|
381 |
+
if projection_class_embeddings_input_dim is None:
|
382 |
+
raise ValueError(
|
383 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
384 |
+
)
|
385 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
386 |
+
else:
|
387 |
+
self.class_embedding = None
|
388 |
+
|
389 |
+
if addition_embed_type == "text":
|
390 |
+
if encoder_hid_dim is not None:
|
391 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
392 |
+
else:
|
393 |
+
text_time_embedding_from_dim = cross_attention_dim
|
394 |
+
|
395 |
+
self.add_embedding = TextTimeEmbedding(
|
396 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
397 |
+
)
|
398 |
+
elif addition_embed_type == "text_image":
|
399 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
400 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
401 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
402 |
+
self.add_embedding = TextImageTimeEmbedding(
|
403 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
404 |
+
)
|
405 |
+
elif addition_embed_type == "text_time":
|
406 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
407 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
408 |
+
elif addition_embed_type == "image":
|
409 |
+
# Kandinsky 2.2
|
410 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
411 |
+
elif addition_embed_type == "image_hint":
|
412 |
+
# Kandinsky 2.2 ControlNet
|
413 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
414 |
+
elif addition_embed_type is not None:
|
415 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
416 |
+
|
417 |
+
if time_embedding_act_fn is None:
|
418 |
+
self.time_embed_act = None
|
419 |
+
else:
|
420 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
421 |
+
|
422 |
+
self.down_blocks = nn.ModuleList([])
|
423 |
+
self.up_blocks = nn.ModuleList([])
|
424 |
+
|
425 |
+
if isinstance(only_cross_attention, bool):
|
426 |
+
if mid_block_only_cross_attention is None:
|
427 |
+
mid_block_only_cross_attention = only_cross_attention
|
428 |
+
|
429 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
430 |
+
|
431 |
+
if mid_block_only_cross_attention is None:
|
432 |
+
mid_block_only_cross_attention = False
|
433 |
+
|
434 |
+
if isinstance(num_attention_heads, int):
|
435 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
436 |
+
|
437 |
+
if isinstance(attention_head_dim, int):
|
438 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
439 |
+
|
440 |
+
if isinstance(cross_attention_dim, int):
|
441 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
442 |
+
|
443 |
+
if isinstance(layers_per_block, int):
|
444 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
445 |
+
|
446 |
+
if isinstance(transformer_layers_per_block, int):
|
447 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
448 |
+
|
449 |
+
if class_embeddings_concat:
|
450 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
451 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
452 |
+
# regular time embeddings
|
453 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
454 |
+
else:
|
455 |
+
blocks_time_embed_dim = time_embed_dim
|
456 |
+
|
457 |
+
# down
|
458 |
+
output_channel = block_out_channels[0]
|
459 |
+
for i, down_block_type in enumerate(down_block_types):
|
460 |
+
input_channel = output_channel
|
461 |
+
output_channel = block_out_channels[i]
|
462 |
+
is_final_block = i == len(block_out_channels) - 1
|
463 |
+
|
464 |
+
down_block = get_down_block(
|
465 |
+
down_block_type,
|
466 |
+
num_layers=layers_per_block[i],
|
467 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
468 |
+
in_channels=input_channel,
|
469 |
+
out_channels=output_channel,
|
470 |
+
temb_channels=blocks_time_embed_dim,
|
471 |
+
add_downsample=not is_final_block,
|
472 |
+
resnet_eps=norm_eps,
|
473 |
+
resnet_act_fn=act_fn,
|
474 |
+
resnet_groups=norm_num_groups,
|
475 |
+
cross_attention_dim=cross_attention_dim[i],
|
476 |
+
num_attention_heads=num_attention_heads[i],
|
477 |
+
downsample_padding=downsample_padding,
|
478 |
+
dual_cross_attention=dual_cross_attention,
|
479 |
+
use_linear_projection=use_linear_projection,
|
480 |
+
only_cross_attention=only_cross_attention[i],
|
481 |
+
upcast_attention=upcast_attention,
|
482 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
483 |
+
attention_type=attention_type,
|
484 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
485 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
486 |
+
cross_attention_norm=cross_attention_norm,
|
487 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
488 |
+
dropout=dropout,
|
489 |
+
)
|
490 |
+
self.down_blocks.append(down_block)
|
491 |
+
|
492 |
+
# mid
|
493 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
494 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
495 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
496 |
+
in_channels=block_out_channels[-1],
|
497 |
+
temb_channels=blocks_time_embed_dim,
|
498 |
+
dropout=dropout,
|
499 |
+
resnet_eps=norm_eps,
|
500 |
+
resnet_act_fn=act_fn,
|
501 |
+
output_scale_factor=mid_block_scale_factor,
|
502 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
503 |
+
cross_attention_dim=cross_attention_dim[-1],
|
504 |
+
num_attention_heads=num_attention_heads[-1],
|
505 |
+
resnet_groups=norm_num_groups,
|
506 |
+
dual_cross_attention=dual_cross_attention,
|
507 |
+
use_linear_projection=use_linear_projection,
|
508 |
+
upcast_attention=upcast_attention,
|
509 |
+
attention_type=attention_type,
|
510 |
+
)
|
511 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
512 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
513 |
+
in_channels=block_out_channels[-1],
|
514 |
+
temb_channels=blocks_time_embed_dim,
|
515 |
+
dropout=dropout,
|
516 |
+
resnet_eps=norm_eps,
|
517 |
+
resnet_act_fn=act_fn,
|
518 |
+
output_scale_factor=mid_block_scale_factor,
|
519 |
+
cross_attention_dim=cross_attention_dim[-1],
|
520 |
+
attention_head_dim=attention_head_dim[-1],
|
521 |
+
resnet_groups=norm_num_groups,
|
522 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
523 |
+
skip_time_act=resnet_skip_time_act,
|
524 |
+
only_cross_attention=mid_block_only_cross_attention,
|
525 |
+
cross_attention_norm=cross_attention_norm,
|
526 |
+
)
|
527 |
+
elif mid_block_type == "UNetMidBlock2D":
|
528 |
+
self.mid_block = UNetMidBlock2D(
|
529 |
+
in_channels=block_out_channels[-1],
|
530 |
+
temb_channels=blocks_time_embed_dim,
|
531 |
+
dropout=dropout,
|
532 |
+
num_layers=0,
|
533 |
+
resnet_eps=norm_eps,
|
534 |
+
resnet_act_fn=act_fn,
|
535 |
+
output_scale_factor=mid_block_scale_factor,
|
536 |
+
resnet_groups=norm_num_groups,
|
537 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
538 |
+
add_attention=False,
|
539 |
+
)
|
540 |
+
elif mid_block_type is None:
|
541 |
+
self.mid_block = None
|
542 |
+
else:
|
543 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
544 |
+
|
545 |
+
# count how many layers upsample the images
|
546 |
+
self.num_upsamplers = 0
|
547 |
+
|
548 |
+
# up
|
549 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
550 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
551 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
552 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
553 |
+
reversed_transformer_layers_per_block = (
|
554 |
+
list(reversed(transformer_layers_per_block))
|
555 |
+
if reverse_transformer_layers_per_block is None
|
556 |
+
else reverse_transformer_layers_per_block
|
557 |
+
)
|
558 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
559 |
+
|
560 |
+
output_channel = reversed_block_out_channels[0]
|
561 |
+
for i, up_block_type in enumerate(up_block_types):
|
562 |
+
is_final_block = i == len(block_out_channels) - 1
|
563 |
+
|
564 |
+
prev_output_channel = output_channel
|
565 |
+
output_channel = reversed_block_out_channels[i]
|
566 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
567 |
+
|
568 |
+
# add upsample block for all BUT final layer
|
569 |
+
if not is_final_block:
|
570 |
+
add_upsample = True
|
571 |
+
self.num_upsamplers += 1
|
572 |
+
else:
|
573 |
+
add_upsample = False
|
574 |
+
|
575 |
+
up_block = get_up_block(
|
576 |
+
up_block_type,
|
577 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
578 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
579 |
+
in_channels=input_channel,
|
580 |
+
out_channels=output_channel,
|
581 |
+
prev_output_channel=prev_output_channel,
|
582 |
+
temb_channels=blocks_time_embed_dim,
|
583 |
+
add_upsample=add_upsample,
|
584 |
+
resnet_eps=norm_eps,
|
585 |
+
resnet_act_fn=act_fn,
|
586 |
+
resolution_idx=i,
|
587 |
+
resnet_groups=norm_num_groups,
|
588 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
589 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
590 |
+
dual_cross_attention=dual_cross_attention,
|
591 |
+
use_linear_projection=use_linear_projection,
|
592 |
+
only_cross_attention=only_cross_attention[i],
|
593 |
+
upcast_attention=upcast_attention,
|
594 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
595 |
+
attention_type=attention_type,
|
596 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
597 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
598 |
+
cross_attention_norm=cross_attention_norm,
|
599 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
600 |
+
dropout=dropout,
|
601 |
+
)
|
602 |
+
self.up_blocks.append(up_block)
|
603 |
+
prev_output_channel = output_channel
|
604 |
+
|
605 |
+
# out
|
606 |
+
if norm_num_groups is not None:
|
607 |
+
self.conv_norm_out = nn.GroupNorm(
|
608 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
609 |
+
)
|
610 |
+
|
611 |
+
self.conv_act = get_activation(act_fn)
|
612 |
+
|
613 |
+
else:
|
614 |
+
self.conv_norm_out = None
|
615 |
+
self.conv_act = None
|
616 |
+
|
617 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
618 |
+
self.conv_out = nn.Conv2d(
|
619 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
620 |
+
)
|
621 |
+
|
622 |
+
if attention_type in ["gated", "gated-text-image"]:
|
623 |
+
positive_len = 768
|
624 |
+
if isinstance(cross_attention_dim, int):
|
625 |
+
positive_len = cross_attention_dim
|
626 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
627 |
+
positive_len = cross_attention_dim[0]
|
628 |
+
|
629 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
630 |
+
self.position_net = TimeProjModel(
|
631 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
632 |
+
)
|
633 |
+
|
634 |
+
# additional settings
|
635 |
+
self.video_feature_dim = video_feature_dim
|
636 |
+
self.cross_attention_dim = cross_attention_dim
|
637 |
+
self.video_cross_attn_dim = video_cross_attn_dim
|
638 |
+
self.video_frame_nums = video_frame_nums
|
639 |
+
|
640 |
+
self.multi_frames_condition = False
|
641 |
+
|
642 |
+
def load_attention(self):
|
643 |
+
attn_dict = {}
|
644 |
+
for name in self.attn_processors.keys():
|
645 |
+
# if self-attention, save feature
|
646 |
+
if name.endswith("attn1.processor"):
|
647 |
+
if is_xformers_available():
|
648 |
+
attn_dict[name] = XFormersAttnProcessor()
|
649 |
+
else:
|
650 |
+
attn_dict[name] = AttnProcessor()
|
651 |
+
else:
|
652 |
+
attn_dict[name] = AttnProcessor2_0()
|
653 |
+
self.set_attn_processor(attn_dict)
|
654 |
+
|
655 |
+
def get_writer_feature(self):
|
656 |
+
return self.attn_feature_writer.get_cross_attention_feature()
|
657 |
+
|
658 |
+
def clear_writer_feature(self):
|
659 |
+
self.attn_feature_writer.clear_cross_attention_feature()
|
660 |
+
|
661 |
+
def disable_feature_adapters(self):
|
662 |
+
raise NotImplementedError
|
663 |
+
|
664 |
+
def set_reader_feature(self, features:list):
|
665 |
+
return self.attn_feature_reader.set_cross_attention_feature(features)
|
666 |
+
|
667 |
+
@property
|
668 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
669 |
+
r"""
|
670 |
+
Returns:
|
671 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
672 |
+
indexed by its weight name.
|
673 |
+
"""
|
674 |
+
# set recursively
|
675 |
+
processors = {}
|
676 |
+
|
677 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
678 |
+
if hasattr(module, "get_processor"):
|
679 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
680 |
+
|
681 |
+
for sub_name, child in module.named_children():
|
682 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
683 |
+
|
684 |
+
return processors
|
685 |
+
|
686 |
+
for name, module in self.named_children():
|
687 |
+
fn_recursive_add_processors(name, module, processors)
|
688 |
+
|
689 |
+
return processors
|
690 |
+
|
691 |
+
def set_attn_processor(
|
692 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
693 |
+
):
|
694 |
+
r"""
|
695 |
+
Sets the attention processor to use to compute attention.
|
696 |
+
|
697 |
+
Parameters:
|
698 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
699 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
700 |
+
for **all** `Attention` layers.
|
701 |
+
|
702 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
703 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
704 |
+
|
705 |
+
"""
|
706 |
+
count = len(self.attn_processors.keys())
|
707 |
+
|
708 |
+
if isinstance(processor, dict) and len(processor) != count:
|
709 |
+
raise ValueError(
|
710 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
711 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
712 |
+
)
|
713 |
+
|
714 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
715 |
+
if hasattr(module, "set_processor"):
|
716 |
+
if not isinstance(processor, dict):
|
717 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
718 |
+
else:
|
719 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
720 |
+
|
721 |
+
for sub_name, child in module.named_children():
|
722 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
723 |
+
|
724 |
+
for name, module in self.named_children():
|
725 |
+
fn_recursive_attn_processor(name, module, processor)
|
726 |
+
|
727 |
+
def set_default_attn_processor(self):
|
728 |
+
"""
|
729 |
+
Disables custom attention processors and sets the default attention implementation.
|
730 |
+
"""
|
731 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
732 |
+
processor = AttnAddedKVProcessor()
|
733 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
734 |
+
processor = AttnProcessor()
|
735 |
+
else:
|
736 |
+
raise ValueError(
|
737 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
738 |
+
)
|
739 |
+
|
740 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
741 |
+
|
742 |
+
def set_attention_slice(self, slice_size):
|
743 |
+
r"""
|
744 |
+
Enable sliced attention computation.
|
745 |
+
|
746 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
747 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
748 |
+
|
749 |
+
Args:
|
750 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
751 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
752 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
753 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
754 |
+
must be a multiple of `slice_size`.
|
755 |
+
"""
|
756 |
+
sliceable_head_dims = []
|
757 |
+
|
758 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
759 |
+
if hasattr(module, "set_attention_slice"):
|
760 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
761 |
+
|
762 |
+
for child in module.children():
|
763 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
764 |
+
|
765 |
+
# retrieve number of attention layers
|
766 |
+
for module in self.children():
|
767 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
768 |
+
|
769 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
770 |
+
|
771 |
+
if slice_size == "auto":
|
772 |
+
# half the attention head size is usually a good trade-off between
|
773 |
+
# speed and memory
|
774 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
775 |
+
elif slice_size == "max":
|
776 |
+
# make smallest slice possible
|
777 |
+
slice_size = num_sliceable_layers * [1]
|
778 |
+
|
779 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
780 |
+
|
781 |
+
if len(slice_size) != len(sliceable_head_dims):
|
782 |
+
raise ValueError(
|
783 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
784 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
785 |
+
)
|
786 |
+
|
787 |
+
for i in range(len(slice_size)):
|
788 |
+
size = slice_size[i]
|
789 |
+
dim = sliceable_head_dims[i]
|
790 |
+
if size is not None and size > dim:
|
791 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
792 |
+
|
793 |
+
# Recursively walk through all the children.
|
794 |
+
# Any children which exposes the set_attention_slice method
|
795 |
+
# gets the message
|
796 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
797 |
+
if hasattr(module, "set_attention_slice"):
|
798 |
+
module.set_attention_slice(slice_size.pop())
|
799 |
+
|
800 |
+
for child in module.children():
|
801 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
802 |
+
|
803 |
+
reversed_slice_size = list(reversed(slice_size))
|
804 |
+
for module in self.children():
|
805 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
806 |
+
|
807 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
808 |
+
if hasattr(module, "gradient_checkpointing"):
|
809 |
+
module.gradient_checkpointing = value
|
810 |
+
|
811 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
812 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
813 |
+
|
814 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
815 |
+
|
816 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
817 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
818 |
+
|
819 |
+
Args:
|
820 |
+
s1 (`float`):
|
821 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
822 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
823 |
+
s2 (`float`):
|
824 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
825 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
826 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
827 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
828 |
+
"""
|
829 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
830 |
+
setattr(upsample_block, "s1", s1)
|
831 |
+
setattr(upsample_block, "s2", s2)
|
832 |
+
setattr(upsample_block, "b1", b1)
|
833 |
+
setattr(upsample_block, "b2", b2)
|
834 |
+
|
835 |
+
def disable_freeu(self):
|
836 |
+
"""Disables the FreeU mechanism."""
|
837 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
838 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
839 |
+
for k in freeu_keys:
|
840 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
841 |
+
setattr(upsample_block, k, None)
|
842 |
+
|
843 |
+
def fuse_qkv_projections(self):
|
844 |
+
"""
|
845 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
846 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
847 |
+
|
848 |
+
<Tip warning={true}>
|
849 |
+
|
850 |
+
This API is 🧪 experimental.
|
851 |
+
|
852 |
+
</Tip>
|
853 |
+
"""
|
854 |
+
self.original_attn_processors = None
|
855 |
+
|
856 |
+
for _, attn_processor in self.attn_processors.items():
|
857 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
858 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
859 |
+
|
860 |
+
self.original_attn_processors = self.attn_processors
|
861 |
+
|
862 |
+
for module in self.modules():
|
863 |
+
if isinstance(module, Attention):
|
864 |
+
module.fuse_projections(fuse=True)
|
865 |
+
|
866 |
+
def unfuse_qkv_projections(self):
|
867 |
+
"""Disables the fused QKV projection if enabled.
|
868 |
+
|
869 |
+
<Tip warning={true}>
|
870 |
+
|
871 |
+
This API is 🧪 experimental.
|
872 |
+
|
873 |
+
</Tip>
|
874 |
+
|
875 |
+
"""
|
876 |
+
if self.original_attn_processors is not None:
|
877 |
+
self.set_attn_processor(self.original_attn_processors)
|
878 |
+
|
879 |
+
def forward(
|
880 |
+
self,
|
881 |
+
sample: torch.FloatTensor,
|
882 |
+
timestep: Union[torch.Tensor, float, int],
|
883 |
+
encoder_hidden_states: torch.Tensor,
|
884 |
+
class_labels: Optional[torch.Tensor] = None,
|
885 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
886 |
+
attention_mask: Optional[torch.Tensor] = None,
|
887 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
888 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
889 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
890 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
891 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
892 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
893 |
+
return_dict: bool = True,
|
894 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
895 |
+
# import ipdb; ipdb.set_trace()
|
896 |
+
r"""
|
897 |
+
The [`UNet2DConditionModel`] forward method.
|
898 |
+
|
899 |
+
Args:
|
900 |
+
sample (`torch.FloatTensor`):
|
901 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
902 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
903 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
904 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
905 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
906 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
907 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
908 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
909 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
910 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
911 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
912 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
913 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
914 |
+
cross_attention_kwargs (`dict`, *optional*):
|
915 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
916 |
+
`self.processor` in
|
917 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
918 |
+
added_cond_kwargs: (`dict`, *optional*):
|
919 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
920 |
+
are passed along to the UNet blocks.
|
921 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
922 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
923 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
924 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
925 |
+
encoder_attention_mask (`torch.Tensor`):
|
926 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
927 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
928 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
929 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
930 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
931 |
+
tuple.
|
932 |
+
cross_attention_kwargs (`dict`, *optional*):
|
933 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
934 |
+
added_cond_kwargs: (`dict`, *optional*):
|
935 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
936 |
+
are passed along to the UNet blocks.
|
937 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
938 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
939 |
+
example from ControlNet side model(s)
|
940 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
941 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
942 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
943 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
944 |
+
|
945 |
+
Returns:
|
946 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
947 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
948 |
+
a `tuple` is returned where the first element is the sample tensor.
|
949 |
+
"""
|
950 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
951 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
952 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
953 |
+
# on the fly if necessary.
|
954 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
955 |
+
|
956 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
957 |
+
forward_upsample_size = False
|
958 |
+
upsample_size = None
|
959 |
+
|
960 |
+
for dim in sample.shape[-2:]:
|
961 |
+
if dim % default_overall_up_factor != 0:
|
962 |
+
# Forward upsample size to force interpolation output size.
|
963 |
+
forward_upsample_size = True
|
964 |
+
break
|
965 |
+
|
966 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
967 |
+
# expects mask of shape:
|
968 |
+
# [batch, key_tokens]
|
969 |
+
# adds singleton query_tokens dimension:
|
970 |
+
# [batch, 1, key_tokens]
|
971 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
972 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
973 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
974 |
+
if attention_mask is not None:
|
975 |
+
# assume that mask is expressed as:
|
976 |
+
# (1 = keep, 0 = discard)
|
977 |
+
# convert mask into a bias that can be added to attention scores:
|
978 |
+
# (keep = +0, discard = -10000.0)
|
979 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
980 |
+
attention_mask = attention_mask.unsqueeze(1)
|
981 |
+
|
982 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
983 |
+
if encoder_attention_mask is not None:
|
984 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
985 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
986 |
+
|
987 |
+
# 0. center input if necessary
|
988 |
+
if self.config.center_input_sample:
|
989 |
+
sample = 2 * sample - 1.0
|
990 |
+
|
991 |
+
# 1. time
|
992 |
+
timesteps = timestep
|
993 |
+
if not torch.is_tensor(timesteps):
|
994 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
995 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
996 |
+
is_mps = sample.device.type == "mps"
|
997 |
+
if isinstance(timestep, float):
|
998 |
+
dtype = torch.float32 if is_mps else torch.float64
|
999 |
+
else:
|
1000 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1001 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1002 |
+
elif len(timesteps.shape) == 0:
|
1003 |
+
timesteps = timesteps[None].to(sample.device)
|
1004 |
+
|
1005 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1006 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1007 |
+
|
1008 |
+
t_emb = self.time_proj(timesteps)
|
1009 |
+
|
1010 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1011 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1012 |
+
# there might be better ways to encapsulate this.
|
1013 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1014 |
+
|
1015 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1016 |
+
aug_emb = None
|
1017 |
+
|
1018 |
+
if self.class_embedding is not None:
|
1019 |
+
if class_labels is None:
|
1020 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1021 |
+
|
1022 |
+
if self.config.class_embed_type == "timestep":
|
1023 |
+
class_labels = self.time_proj(class_labels)
|
1024 |
+
|
1025 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1026 |
+
# there might be better ways to encapsulate this.
|
1027 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1028 |
+
|
1029 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1030 |
+
|
1031 |
+
if self.config.class_embeddings_concat:
|
1032 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1033 |
+
else:
|
1034 |
+
emb = emb + class_emb
|
1035 |
+
|
1036 |
+
if self.config.addition_embed_type == "text":
|
1037 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1038 |
+
elif self.config.addition_embed_type == "text_image":
|
1039 |
+
# Kandinsky 2.1 - style
|
1040 |
+
if "image_embeds" not in added_cond_kwargs:
|
1041 |
+
raise ValueError(
|
1042 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1046 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1047 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1048 |
+
elif self.config.addition_embed_type == "text_time":
|
1049 |
+
# SDXL - style
|
1050 |
+
if "text_embeds" not in added_cond_kwargs:
|
1051 |
+
raise ValueError(
|
1052 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1053 |
+
)
|
1054 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1055 |
+
if "time_ids" not in added_cond_kwargs:
|
1056 |
+
raise ValueError(
|
1057 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1058 |
+
)
|
1059 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1060 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1061 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1062 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1063 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1064 |
+
aug_emb = self.add_embedding(add_embeds)
|
1065 |
+
elif self.config.addition_embed_type == "image":
|
1066 |
+
# Kandinsky 2.2 - style
|
1067 |
+
if "image_embeds" not in added_cond_kwargs:
|
1068 |
+
raise ValueError(
|
1069 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1070 |
+
)
|
1071 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1072 |
+
aug_emb = self.add_embedding(image_embs)
|
1073 |
+
elif self.config.addition_embed_type == "image_hint":
|
1074 |
+
# Kandinsky 2.2 - style
|
1075 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1076 |
+
raise ValueError(
|
1077 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1078 |
+
)
|
1079 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1080 |
+
hint = added_cond_kwargs.get("hint")
|
1081 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1082 |
+
sample = torch.cat([sample, hint], dim=1)
|
1083 |
+
|
1084 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1085 |
+
|
1086 |
+
if self.time_embed_act is not None:
|
1087 |
+
emb = self.time_embed_act(emb)
|
1088 |
+
|
1089 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1090 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1091 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1092 |
+
# Kadinsky 2.1 - style
|
1093 |
+
if "image_embeds" not in added_cond_kwargs:
|
1094 |
+
raise ValueError(
|
1095 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1099 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1100 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1101 |
+
# Kandinsky 2.2 - style
|
1102 |
+
if "image_embeds" not in added_cond_kwargs:
|
1103 |
+
raise ValueError(
|
1104 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1105 |
+
)
|
1106 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1107 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1108 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1109 |
+
if "image_embeds" not in added_cond_kwargs:
|
1110 |
+
raise ValueError(
|
1111 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1112 |
+
)
|
1113 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1114 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1115 |
+
if isinstance(image_embeds, list):
|
1116 |
+
image_embeds = [image_embed.to(encoder_hidden_states.dtype) for image_embed in image_embeds]
|
1117 |
+
else:
|
1118 |
+
image_embeds = image_embeds.to(encoder_hidden_states.dtype)
|
1119 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1120 |
+
# encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
|
1121 |
+
# import ipdb; ipdb.set_trace()
|
1122 |
+
# 2. pre-process
|
1123 |
+
sample = self.conv_in(sample)
|
1124 |
+
|
1125 |
+
# 2.5 GLIGEN position net
|
1126 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1127 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1128 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1129 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1130 |
+
|
1131 |
+
# 3. down
|
1132 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1133 |
+
if USE_PEFT_BACKEND:
|
1134 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1135 |
+
scale_lora_layers(self, lora_scale)
|
1136 |
+
|
1137 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1138 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1139 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1140 |
+
# maintain backward compatibility for legacy usage, where
|
1141 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1142 |
+
# but can only use one or the other
|
1143 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1144 |
+
deprecate(
|
1145 |
+
"T2I should not use down_block_additional_residuals",
|
1146 |
+
"1.3.0",
|
1147 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1148 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1149 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1150 |
+
standard_warn=False,
|
1151 |
+
)
|
1152 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1153 |
+
is_adapter = True
|
1154 |
+
# import ipdb; ipdb.set_trace()
|
1155 |
+
down_block_res_samples = (sample,)
|
1156 |
+
for downsample_block in self.down_blocks:
|
1157 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1158 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1159 |
+
additional_residuals = {}
|
1160 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1161 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1162 |
+
|
1163 |
+
sample, res_samples = downsample_block(
|
1164 |
+
hidden_states=sample,
|
1165 |
+
temb=emb,
|
1166 |
+
encoder_hidden_states=encoder_hidden_states,
|
1167 |
+
attention_mask=attention_mask,
|
1168 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1169 |
+
encoder_attention_mask=encoder_attention_mask,
|
1170 |
+
**additional_residuals,
|
1171 |
+
)
|
1172 |
+
# import ipdb; ipdb.set_trace()
|
1173 |
+
else:
|
1174 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
1175 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1176 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1177 |
+
|
1178 |
+
down_block_res_samples += res_samples
|
1179 |
+
|
1180 |
+
if is_controlnet:
|
1181 |
+
new_down_block_res_samples = ()
|
1182 |
+
|
1183 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1184 |
+
down_block_res_samples, down_block_additional_residuals
|
1185 |
+
):
|
1186 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1187 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1188 |
+
|
1189 |
+
down_block_res_samples = new_down_block_res_samples
|
1190 |
+
# 4. mid
|
1191 |
+
if self.mid_block is not None:
|
1192 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1193 |
+
sample = self.mid_block(
|
1194 |
+
sample,
|
1195 |
+
emb,
|
1196 |
+
encoder_hidden_states=encoder_hidden_states,
|
1197 |
+
attention_mask=attention_mask,
|
1198 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1199 |
+
encoder_attention_mask=encoder_attention_mask,
|
1200 |
+
)
|
1201 |
+
else:
|
1202 |
+
sample = self.mid_block(sample, emb)
|
1203 |
+
|
1204 |
+
# To support T2I-Adapter-XL
|
1205 |
+
if (
|
1206 |
+
is_adapter
|
1207 |
+
and len(down_intrablock_additional_residuals) > 0
|
1208 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1209 |
+
):
|
1210 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1211 |
+
|
1212 |
+
if is_controlnet:
|
1213 |
+
sample = sample + mid_block_additional_residual
|
1214 |
+
# import ipdb; ipdb.set_trace()
|
1215 |
+
# 5. up
|
1216 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1217 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1218 |
+
|
1219 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1220 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1221 |
+
|
1222 |
+
# if we have not reached the final block and need to forward the
|
1223 |
+
# upsample size, we do it here
|
1224 |
+
if not is_final_block and forward_upsample_size:
|
1225 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1226 |
+
|
1227 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1228 |
+
sample = upsample_block(
|
1229 |
+
hidden_states=sample,
|
1230 |
+
temb=emb,
|
1231 |
+
res_hidden_states_tuple=res_samples,
|
1232 |
+
encoder_hidden_states=encoder_hidden_states,
|
1233 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1234 |
+
upsample_size=upsample_size,
|
1235 |
+
attention_mask=attention_mask,
|
1236 |
+
encoder_attention_mask=encoder_attention_mask,
|
1237 |
+
)
|
1238 |
+
else:
|
1239 |
+
sample = upsample_block(
|
1240 |
+
hidden_states=sample,
|
1241 |
+
temb=emb,
|
1242 |
+
res_hidden_states_tuple=res_samples,
|
1243 |
+
upsample_size=upsample_size,
|
1244 |
+
scale=lora_scale,
|
1245 |
+
)
|
1246 |
+
# import ipdb; ipdb.set_trace()
|
1247 |
+
# 6. post-process
|
1248 |
+
if self.conv_norm_out:
|
1249 |
+
sample = self.conv_norm_out(sample)
|
1250 |
+
sample = self.conv_act(sample)
|
1251 |
+
sample = self.conv_out(sample)
|
1252 |
+
|
1253 |
+
if USE_PEFT_BACKEND:
|
1254 |
+
# remove `lora_scale` from each PEFT layer
|
1255 |
+
unscale_lora_layers(self, lora_scale)
|
1256 |
+
|
1257 |
+
if not return_dict:
|
1258 |
+
return (sample,)
|
1259 |
+
# import ipdb; ipdb.set_trace()
|
1260 |
+
return UNet2DConditionOutput(sample=sample)
|
foleycrafter/models/specvqgan/data/greatesthit.py
ADDED
@@ -0,0 +1,993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from matplotlib import collections
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import copy
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
import numpy as np
|
9 |
+
from tqdm import tqdm
|
10 |
+
from random import sample
|
11 |
+
import torchaudio
|
12 |
+
import logging
|
13 |
+
import collections
|
14 |
+
from glob import glob
|
15 |
+
import sys
|
16 |
+
import albumentations
|
17 |
+
import soundfile
|
18 |
+
|
19 |
+
sys.path.insert(0, '.') # nopep8
|
20 |
+
from train import instantiate_from_config
|
21 |
+
from foleycrafter.models.specvqgan.data.transforms import *
|
22 |
+
|
23 |
+
torchaudio.set_audio_backend("sox_io")
|
24 |
+
logger = logging.getLogger(f'main.{__name__}')
|
25 |
+
|
26 |
+
SR = 22050
|
27 |
+
FPS = 15
|
28 |
+
MAX_SAMPLE_ITER = 10
|
29 |
+
|
30 |
+
def non_negative(x): return int(np.round(max(0, x), 0))
|
31 |
+
|
32 |
+
def rms(x): return np.sqrt(np.mean(x**2))
|
33 |
+
|
34 |
+
def get_GH_data_identifier(video_name, start_idx, split='_'):
|
35 |
+
if isinstance(start_idx, str):
|
36 |
+
return video_name + split + start_idx
|
37 |
+
elif isinstance(start_idx, int):
|
38 |
+
return video_name + split + str(start_idx)
|
39 |
+
else:
|
40 |
+
raise NotImplementedError
|
41 |
+
|
42 |
+
|
43 |
+
class Crop(object):
|
44 |
+
|
45 |
+
def __init__(self, cropped_shape=None, random_crop=False):
|
46 |
+
self.cropped_shape = cropped_shape
|
47 |
+
if cropped_shape is not None:
|
48 |
+
mel_num, spec_len = cropped_shape
|
49 |
+
if random_crop:
|
50 |
+
self.cropper = albumentations.RandomCrop
|
51 |
+
else:
|
52 |
+
self.cropper = albumentations.CenterCrop
|
53 |
+
self.preprocessor = albumentations.Compose([self.cropper(mel_num, spec_len)])
|
54 |
+
else:
|
55 |
+
self.preprocessor = lambda **kwargs: kwargs
|
56 |
+
|
57 |
+
def __call__(self, item):
|
58 |
+
item['image'] = self.preprocessor(image=item['image'])['image']
|
59 |
+
if 'cond_image' in item.keys():
|
60 |
+
item['cond_image'] = self.preprocessor(image=item['cond_image'])['image']
|
61 |
+
return item
|
62 |
+
|
63 |
+
class CropImage(Crop):
|
64 |
+
def __init__(self, *crop_args):
|
65 |
+
super().__init__(*crop_args)
|
66 |
+
|
67 |
+
class CropFeats(Crop):
|
68 |
+
def __init__(self, *crop_args):
|
69 |
+
super().__init__(*crop_args)
|
70 |
+
|
71 |
+
def __call__(self, item):
|
72 |
+
item['feature'] = self.preprocessor(image=item['feature'])['image']
|
73 |
+
return item
|
74 |
+
|
75 |
+
class CropCoords(Crop):
|
76 |
+
def __init__(self, *crop_args):
|
77 |
+
super().__init__(*crop_args)
|
78 |
+
|
79 |
+
def __call__(self, item):
|
80 |
+
item['coord'] = self.preprocessor(image=item['coord'])['image']
|
81 |
+
return item
|
82 |
+
|
83 |
+
class ResampleFrames(object):
|
84 |
+
def __init__(self, feat_sample_size, times_to_repeat_after_resample=None):
|
85 |
+
self.feat_sample_size = feat_sample_size
|
86 |
+
self.times_to_repeat_after_resample = times_to_repeat_after_resample
|
87 |
+
|
88 |
+
def __call__(self, item):
|
89 |
+
feat_len = item['feature'].shape[0]
|
90 |
+
|
91 |
+
## resample
|
92 |
+
assert feat_len >= self.feat_sample_size
|
93 |
+
# evenly spaced points (abcdefghkl -> aoooofoooo)
|
94 |
+
idx = np.linspace(0, feat_len, self.feat_sample_size, dtype=np.int, endpoint=False)
|
95 |
+
# xoooo xoooo -> ooxoo ooxoo
|
96 |
+
shift = feat_len // (self.feat_sample_size + 1)
|
97 |
+
idx = idx + shift
|
98 |
+
|
99 |
+
## repeat after resampling (abc -> aaaabbbbcccc)
|
100 |
+
if self.times_to_repeat_after_resample is not None and self.times_to_repeat_after_resample > 1:
|
101 |
+
idx = np.repeat(idx, self.times_to_repeat_after_resample)
|
102 |
+
|
103 |
+
item['feature'] = item['feature'][idx, :]
|
104 |
+
return item
|
105 |
+
|
106 |
+
|
107 |
+
class GreatestHitSpecs(torch.utils.data.Dataset):
|
108 |
+
|
109 |
+
def __init__(self, split, spec_dir_path, spec_len, random_crop, mel_num,
|
110 |
+
spec_crop_len, L=2.0, rand_shift=False, spec_transforms=None, splits_path='./data',
|
111 |
+
meta_path='./data/info_r2plus1d_dim1024_15fps.json'):
|
112 |
+
super().__init__()
|
113 |
+
self.split = split
|
114 |
+
self.specs_dir = spec_dir_path
|
115 |
+
self.spec_transforms = spec_transforms
|
116 |
+
self.splits_path = splits_path
|
117 |
+
self.meta_path = meta_path
|
118 |
+
self.spec_len = spec_len
|
119 |
+
self.rand_shift = rand_shift
|
120 |
+
self.L = L
|
121 |
+
self.spec_take_first = int(math.ceil(860 * (L / 10.) / 32) * 32)
|
122 |
+
self.spec_take_first = 860 if self.spec_take_first > 860 else self.spec_take_first
|
123 |
+
|
124 |
+
greatesthit_meta = json.load(open(self.meta_path, 'r'))
|
125 |
+
unique_classes = sorted(list(set(ht for ht in greatesthit_meta['hit_type'])))
|
126 |
+
self.label2target = {label: target for target, label in enumerate(unique_classes)}
|
127 |
+
self.target2label = {target: label for label, target in self.label2target.items()}
|
128 |
+
self.video_idx2label = {
|
129 |
+
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
|
130 |
+
greatesthit_meta['hit_type'][i] for i in range(len(greatesthit_meta['video_name']))
|
131 |
+
}
|
132 |
+
self.available_video_hit = list(self.video_idx2label.keys())
|
133 |
+
self.video_idx2path = {
|
134 |
+
vh: os.path.join(self.specs_dir,
|
135 |
+
vh.replace('_', '_denoised_') + '_' + self.video_idx2label[vh].replace(' ', '_') +'_mel.npy')
|
136 |
+
for vh in self.available_video_hit
|
137 |
+
}
|
138 |
+
self.video_idx2idx = {
|
139 |
+
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
|
140 |
+
i for i in range(len(greatesthit_meta['video_name']))
|
141 |
+
}
|
142 |
+
|
143 |
+
split_clip_ids_path = os.path.join(splits_path, f'greatesthit_{split}.json')
|
144 |
+
if not os.path.exists(split_clip_ids_path):
|
145 |
+
raise NotImplementedError()
|
146 |
+
clip_video_hit = json.load(open(split_clip_ids_path, 'r'))
|
147 |
+
self.dataset = clip_video_hit
|
148 |
+
spec_crop_len = self.spec_take_first if self.spec_take_first <= spec_crop_len else spec_crop_len
|
149 |
+
self.spec_transforms = transforms.Compose([
|
150 |
+
CropImage([mel_num, spec_crop_len], random_crop),
|
151 |
+
# transforms.RandomApply([FrequencyMasking(freq_mask_param=20)], p=0),
|
152 |
+
# transforms.RandomApply([TimeMasking(time_mask_param=int(32 * self.L))], p=0)
|
153 |
+
])
|
154 |
+
|
155 |
+
self.video2indexes = {}
|
156 |
+
for video_idx in self.dataset:
|
157 |
+
video, start_idx = video_idx.split('_')
|
158 |
+
if video not in self.video2indexes.keys():
|
159 |
+
self.video2indexes[video] = []
|
160 |
+
self.video2indexes[video].append(start_idx)
|
161 |
+
for video in self.video2indexes.keys():
|
162 |
+
if len(self.video2indexes[video]) == 1: # given video contains only one hit
|
163 |
+
self.dataset.remove(
|
164 |
+
get_GH_data_identifier(video, self.video2indexes[video][0])
|
165 |
+
)
|
166 |
+
|
167 |
+
def __len__(self):
|
168 |
+
return len(self.dataset)
|
169 |
+
|
170 |
+
def __getitem__(self, idx):
|
171 |
+
item = {}
|
172 |
+
|
173 |
+
video_idx = self.dataset[idx]
|
174 |
+
spec_path = self.video_idx2path[video_idx]
|
175 |
+
spec = np.load(spec_path) # (80, 860)
|
176 |
+
|
177 |
+
if self.rand_shift:
|
178 |
+
shift = random.uniform(0, 0.5)
|
179 |
+
spec_shift = int(shift * spec.shape[1] // 10)
|
180 |
+
# Since only the first second is used
|
181 |
+
spec = np.roll(spec, -spec_shift, 1)
|
182 |
+
|
183 |
+
# concat spec outside dataload
|
184 |
+
item['image'] = 2 * spec - 1 # (80, 860)
|
185 |
+
item['image'] = item['image'][:, :self.spec_take_first]
|
186 |
+
item['file_path'] = spec_path
|
187 |
+
|
188 |
+
item['label'] = self.video_idx2label[video_idx]
|
189 |
+
item['target'] = self.label2target[item['label']]
|
190 |
+
|
191 |
+
if self.spec_transforms is not None:
|
192 |
+
item = self.spec_transforms(item)
|
193 |
+
|
194 |
+
return item
|
195 |
+
|
196 |
+
|
197 |
+
class GreatestHitSpecsTrain(GreatestHitSpecs):
|
198 |
+
def __init__(self, specs_dataset_cfg):
|
199 |
+
super().__init__('train', **specs_dataset_cfg)
|
200 |
+
|
201 |
+
class GreatestHitSpecsValidation(GreatestHitSpecs):
|
202 |
+
def __init__(self, specs_dataset_cfg):
|
203 |
+
super().__init__('val', **specs_dataset_cfg)
|
204 |
+
|
205 |
+
class GreatestHitSpecsTest(GreatestHitSpecs):
|
206 |
+
def __init__(self, specs_dataset_cfg):
|
207 |
+
super().__init__('test', **specs_dataset_cfg)
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
class GreatestHitWave(torch.utils.data.Dataset):
|
212 |
+
|
213 |
+
def __init__(self, split, wav_dir, random_crop, mel_num, spec_crop_len, spec_len,
|
214 |
+
L=2.0, splits_path='./data', rand_shift=True,
|
215 |
+
data_path='data/greatesthit/greatesthit-process-resized'):
|
216 |
+
super().__init__()
|
217 |
+
self.split = split
|
218 |
+
self.wav_dir = wav_dir
|
219 |
+
self.splits_path = splits_path
|
220 |
+
self.data_path = data_path
|
221 |
+
self.L = L
|
222 |
+
self.rand_shift = rand_shift
|
223 |
+
|
224 |
+
split_clip_ids_path = os.path.join(splits_path, f'greatesthit_{split}.json')
|
225 |
+
if not os.path.exists(split_clip_ids_path):
|
226 |
+
raise NotImplementedError()
|
227 |
+
clip_video_hit = json.load(open(split_clip_ids_path, 'r'))
|
228 |
+
|
229 |
+
video_name = list(set([vidx.split('_')[0] for vidx in clip_video_hit]))
|
230 |
+
|
231 |
+
self.video_frame_cnt = {v: len(os.listdir(os.path.join(self.data_path, v, 'frames'))) // 2 for v in video_name}
|
232 |
+
self.left_over = int(FPS * L + 1)
|
233 |
+
self.video_audio_path = {v: os.path.join(self.data_path, v, f'audio/{v}_denoised_resampled.wav') for v in video_name}
|
234 |
+
self.dataset = clip_video_hit
|
235 |
+
|
236 |
+
self.video2indexes = {}
|
237 |
+
for video_idx in self.dataset:
|
238 |
+
video, start_idx = video_idx.split('_')
|
239 |
+
if video not in self.video2indexes.keys():
|
240 |
+
self.video2indexes[video] = []
|
241 |
+
self.video2indexes[video].append(start_idx)
|
242 |
+
for video in self.video2indexes.keys():
|
243 |
+
if len(self.video2indexes[video]) == 1: # given video contains only one hit
|
244 |
+
self.dataset.remove(
|
245 |
+
get_GH_data_identifier(video, self.video2indexes[video][0])
|
246 |
+
)
|
247 |
+
|
248 |
+
self.wav_transforms = transforms.Compose([
|
249 |
+
MakeMono(),
|
250 |
+
Padding(target_len=int(SR * self.L)),
|
251 |
+
])
|
252 |
+
|
253 |
+
def __len__(self):
|
254 |
+
return len(self.dataset)
|
255 |
+
|
256 |
+
def __getitem__(self, idx):
|
257 |
+
item = {}
|
258 |
+
video_idx = self.dataset[idx]
|
259 |
+
video, start_idx = video_idx.split('_')
|
260 |
+
start_idx = int(start_idx)
|
261 |
+
if self.rand_shift:
|
262 |
+
shift = int(random.uniform(-0.5, 0.5) * SR)
|
263 |
+
start_idx = non_negative(start_idx + shift)
|
264 |
+
|
265 |
+
wave_path = self.video_audio_path[video]
|
266 |
+
wav, sr = soundfile.read(wave_path, frames=int(SR * self.L), start=start_idx)
|
267 |
+
assert sr == SR
|
268 |
+
wav = self.wav_transforms(wav)
|
269 |
+
|
270 |
+
item['image'] = wav # (44100,)
|
271 |
+
# item['wav'] = wav
|
272 |
+
item['file_path_wav_'] = wave_path
|
273 |
+
|
274 |
+
item['label'] = 'None'
|
275 |
+
item['target'] = 'None'
|
276 |
+
|
277 |
+
return item
|
278 |
+
|
279 |
+
|
280 |
+
class GreatestHitWaveTrain(GreatestHitWave):
|
281 |
+
def __init__(self, specs_dataset_cfg):
|
282 |
+
super().__init__('train', **specs_dataset_cfg)
|
283 |
+
|
284 |
+
class GreatestHitWaveValidation(GreatestHitWave):
|
285 |
+
def __init__(self, specs_dataset_cfg):
|
286 |
+
super().__init__('val', **specs_dataset_cfg)
|
287 |
+
|
288 |
+
class GreatestHitWaveTest(GreatestHitWave):
|
289 |
+
def __init__(self, specs_dataset_cfg):
|
290 |
+
super().__init__('test', **specs_dataset_cfg)
|
291 |
+
|
292 |
+
|
293 |
+
class CondGreatestHitSpecsCondOnImage(torch.utils.data.Dataset):
|
294 |
+
|
295 |
+
def __init__(self, split, specs_dir, spec_len, feat_len, feat_depth, feat_crop_len, random_crop, mel_num, spec_crop_len,
|
296 |
+
vqgan_L=10.0, L=1.0, rand_shift=False, spec_transforms=None, frame_transforms=None, splits_path='./data',
|
297 |
+
meta_path='./data/info_r2plus1d_dim1024_15fps.json', frame_path='data/greatesthit/greatesthit_processed',
|
298 |
+
p_outside_cond=0., p_audio_aug=0.5):
|
299 |
+
super().__init__()
|
300 |
+
self.split = split
|
301 |
+
self.specs_dir = specs_dir
|
302 |
+
self.spec_transforms = spec_transforms
|
303 |
+
self.frame_transforms = frame_transforms
|
304 |
+
self.splits_path = splits_path
|
305 |
+
self.meta_path = meta_path
|
306 |
+
self.frame_path = frame_path
|
307 |
+
self.feat_len = feat_len
|
308 |
+
self.feat_depth = feat_depth
|
309 |
+
self.feat_crop_len = feat_crop_len
|
310 |
+
self.spec_len = spec_len
|
311 |
+
self.rand_shift = rand_shift
|
312 |
+
self.L = L
|
313 |
+
self.spec_take_first = int(math.ceil(860 * (vqgan_L / 10.) / 32) * 32)
|
314 |
+
self.spec_take_first = 860 if self.spec_take_first > 860 else self.spec_take_first
|
315 |
+
self.p_outside_cond = torch.tensor(p_outside_cond)
|
316 |
+
|
317 |
+
greatesthit_meta = json.load(open(self.meta_path, 'r'))
|
318 |
+
unique_classes = sorted(list(set(ht for ht in greatesthit_meta['hit_type'])))
|
319 |
+
self.label2target = {label: target for target, label in enumerate(unique_classes)}
|
320 |
+
self.target2label = {target: label for label, target in self.label2target.items()}
|
321 |
+
self.video_idx2label = {
|
322 |
+
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
|
323 |
+
greatesthit_meta['hit_type'][i] for i in range(len(greatesthit_meta['video_name']))
|
324 |
+
}
|
325 |
+
self.available_video_hit = list(self.video_idx2label.keys())
|
326 |
+
self.video_idx2path = {
|
327 |
+
vh: os.path.join(self.specs_dir,
|
328 |
+
vh.replace('_', '_denoised_') + '_' + self.video_idx2label[vh].replace(' ', '_') +'_mel.npy')
|
329 |
+
for vh in self.available_video_hit
|
330 |
+
}
|
331 |
+
for value in self.video_idx2path.values():
|
332 |
+
assert os.path.exists(value)
|
333 |
+
self.video_idx2idx = {
|
334 |
+
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
|
335 |
+
i for i in range(len(greatesthit_meta['video_name']))
|
336 |
+
}
|
337 |
+
|
338 |
+
split_clip_ids_path = os.path.join(splits_path, f'greatesthit_{split}.json')
|
339 |
+
if not os.path.exists(split_clip_ids_path):
|
340 |
+
self.make_split_files()
|
341 |
+
clip_video_hit = json.load(open(split_clip_ids_path, 'r'))
|
342 |
+
self.dataset = clip_video_hit
|
343 |
+
spec_crop_len = self.spec_take_first if self.spec_take_first <= spec_crop_len else spec_crop_len
|
344 |
+
self.spec_transforms = transforms.Compose([
|
345 |
+
CropImage([mel_num, spec_crop_len], random_crop),
|
346 |
+
# transforms.RandomApply([FrequencyMasking(freq_mask_param=20)], p=p_audio_aug),
|
347 |
+
# transforms.RandomApply([TimeMasking(time_mask_param=int(32 * self.L))], p=p_audio_aug)
|
348 |
+
])
|
349 |
+
if self.frame_transforms == None:
|
350 |
+
self.frame_transforms = transforms.Compose([
|
351 |
+
Resize3D(128),
|
352 |
+
RandomResizedCrop3D(112, scale=(0.5, 1.0)),
|
353 |
+
RandomHorizontalFlip3D(),
|
354 |
+
ColorJitter3D(brightness=0.1, saturation=0.1),
|
355 |
+
ToTensor3D(),
|
356 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
357 |
+
std=[0.229, 0.224, 0.225]),
|
358 |
+
])
|
359 |
+
|
360 |
+
self.video2indexes = {}
|
361 |
+
for video_idx in self.dataset:
|
362 |
+
video, start_idx = video_idx.split('_')
|
363 |
+
if video not in self.video2indexes.keys():
|
364 |
+
self.video2indexes[video] = []
|
365 |
+
self.video2indexes[video].append(start_idx)
|
366 |
+
for video in self.video2indexes.keys():
|
367 |
+
if len(self.video2indexes[video]) == 1: # given video contains only one hit
|
368 |
+
self.dataset.remove(
|
369 |
+
get_GH_data_identifier(video, self.video2indexes[video][0])
|
370 |
+
)
|
371 |
+
|
372 |
+
clip_classes = [self.label2target[self.video_idx2label[vh]] for vh in clip_video_hit]
|
373 |
+
class2count = collections.Counter(clip_classes)
|
374 |
+
self.class_counts = torch.tensor([class2count[cls] for cls in range(len(class2count))])
|
375 |
+
if self.L != 1.0:
|
376 |
+
print(split, L)
|
377 |
+
self.validate_data()
|
378 |
+
self.video2indexes = {}
|
379 |
+
for video_idx in self.dataset:
|
380 |
+
video, start_idx = video_idx.split('_')
|
381 |
+
if video not in self.video2indexes.keys():
|
382 |
+
self.video2indexes[video] = []
|
383 |
+
self.video2indexes[video].append(start_idx)
|
384 |
+
|
385 |
+
def __len__(self):
|
386 |
+
return len(self.dataset)
|
387 |
+
|
388 |
+
def __getitem__(self, idx):
|
389 |
+
item = {}
|
390 |
+
|
391 |
+
try:
|
392 |
+
video_idx = self.dataset[idx]
|
393 |
+
spec_path = self.video_idx2path[video_idx]
|
394 |
+
spec = np.load(spec_path) # (80, 860)
|
395 |
+
|
396 |
+
video, start_idx = video_idx.split('_')
|
397 |
+
frame_path = os.path.join(self.frame_path, video, 'frames')
|
398 |
+
start_frame_idx = non_negative(FPS * int(start_idx)/SR)
|
399 |
+
end_frame_idx = non_negative(start_frame_idx + FPS * self.L)
|
400 |
+
|
401 |
+
if self.rand_shift:
|
402 |
+
shift = random.uniform(0, 0.5)
|
403 |
+
spec_shift = int(shift * spec.shape[1] // 10)
|
404 |
+
# Since only the first second is used
|
405 |
+
spec = np.roll(spec, -spec_shift, 1)
|
406 |
+
start_frame_idx += int(FPS * shift)
|
407 |
+
end_frame_idx += int(FPS * shift)
|
408 |
+
|
409 |
+
frames = [Image.open(os.path.join(
|
410 |
+
frame_path, f'frame{i+1:0>6d}.jpg')).convert('RGB') for i in
|
411 |
+
range(start_frame_idx, end_frame_idx)]
|
412 |
+
|
413 |
+
# Sample condition
|
414 |
+
if torch.all(torch.bernoulli(self.p_outside_cond) == 1.):
|
415 |
+
# Sample condition from outside video
|
416 |
+
all_idx = set(list(range(len(self.dataset))))
|
417 |
+
all_idx.remove(idx)
|
418 |
+
cond_video_idx = self.dataset[sample(all_idx, k=1)[0]]
|
419 |
+
cond_video, cond_start_idx = cond_video_idx.split('_')
|
420 |
+
else:
|
421 |
+
cond_video = video
|
422 |
+
video_hits_idx = copy.copy(self.video2indexes[video])
|
423 |
+
video_hits_idx.remove(start_idx)
|
424 |
+
cond_start_idx = sample(video_hits_idx, k=1)[0]
|
425 |
+
cond_video_idx = get_GH_data_identifier(cond_video, cond_start_idx)
|
426 |
+
|
427 |
+
cond_spec_path = self.video_idx2path[cond_video_idx]
|
428 |
+
cond_spec = np.load(cond_spec_path) # (80, 860)
|
429 |
+
|
430 |
+
cond_video, cond_start_idx = cond_video_idx.split('_')
|
431 |
+
cond_frame_path = os.path.join(self.frame_path, cond_video, 'frames')
|
432 |
+
cond_start_frame_idx = non_negative(FPS * int(cond_start_idx)/SR)
|
433 |
+
cond_end_frame_idx = non_negative(cond_start_frame_idx + FPS * self.L)
|
434 |
+
|
435 |
+
if self.rand_shift:
|
436 |
+
cond_shift = random.uniform(0, 0.5)
|
437 |
+
cond_spec_shift = int(cond_shift * cond_spec.shape[1] // 10)
|
438 |
+
# Since only the first second is used
|
439 |
+
cond_spec = np.roll(cond_spec, -cond_spec_shift, 1)
|
440 |
+
cond_start_frame_idx += int(FPS * cond_shift)
|
441 |
+
cond_end_frame_idx += int(FPS * cond_shift)
|
442 |
+
|
443 |
+
cond_frames = [Image.open(os.path.join(
|
444 |
+
cond_frame_path, f'frame{i+1:0>6d}.jpg')).convert('RGB') for i in
|
445 |
+
range(cond_start_frame_idx, cond_end_frame_idx)]
|
446 |
+
|
447 |
+
# concat spec outside dataload
|
448 |
+
item['image'] = 2 * spec - 1 # (80, 860)
|
449 |
+
item['cond_image'] = 2 * cond_spec - 1 # (80, 860)
|
450 |
+
item['image'] = item['image'][:, :self.spec_take_first]
|
451 |
+
item['cond_image'] = item['cond_image'][:, :self.spec_take_first]
|
452 |
+
item['file_path_specs_'] = spec_path
|
453 |
+
item['file_path_cond_specs_'] = cond_spec_path
|
454 |
+
|
455 |
+
if self.frame_transforms is not None:
|
456 |
+
cond_frames = self.frame_transforms(cond_frames)
|
457 |
+
frames = self.frame_transforms(frames)
|
458 |
+
|
459 |
+
item['feature'] = np.stack(cond_frames + frames, axis=0) # (30 * L, 112, 112, 3)
|
460 |
+
item['file_path_feats_'] = (frame_path, start_frame_idx)
|
461 |
+
item['file_path_cond_feats_'] = (cond_frame_path, cond_start_frame_idx)
|
462 |
+
|
463 |
+
item['label'] = self.video_idx2label[video_idx]
|
464 |
+
item['target'] = self.label2target[item['label']]
|
465 |
+
|
466 |
+
if self.spec_transforms is not None:
|
467 |
+
item = self.spec_transforms(item)
|
468 |
+
except Exception:
|
469 |
+
print(sys.exc_info()[2])
|
470 |
+
print('!!!!!!!!!!!!!!!!!!!!', video_idx, cond_video_idx)
|
471 |
+
print('!!!!!!!!!!!!!!!!!!!!', end_frame_idx, cond_end_frame_idx)
|
472 |
+
exit(1)
|
473 |
+
|
474 |
+
return item
|
475 |
+
|
476 |
+
|
477 |
+
def validate_data(self):
|
478 |
+
original_len = len(self.dataset)
|
479 |
+
valid_dataset = []
|
480 |
+
for video_idx in tqdm(self.dataset):
|
481 |
+
video, start_idx = video_idx.split('_')
|
482 |
+
frame_path = os.path.join(self.frame_path, video, 'frames')
|
483 |
+
start_frame_idx = non_negative(FPS * int(start_idx)/SR)
|
484 |
+
end_frame_idx = non_negative(start_frame_idx + FPS * (self.L + 0.6))
|
485 |
+
if os.path.exists(os.path.join(frame_path, f'frame{end_frame_idx:0>6d}.jpg')):
|
486 |
+
valid_dataset.append(video_idx)
|
487 |
+
else:
|
488 |
+
self.video2indexes[video].remove(start_idx)
|
489 |
+
for video_idx in valid_dataset:
|
490 |
+
video, start_idx = video_idx.split('_')
|
491 |
+
if len(self.video2indexes[video]) == 1:
|
492 |
+
valid_dataset.remove(video_idx)
|
493 |
+
if original_len != len(valid_dataset):
|
494 |
+
print(f'Validated dataset with enough frames: {len(valid_dataset)}')
|
495 |
+
self.dataset = valid_dataset
|
496 |
+
split_clip_ids_path = os.path.join(self.splits_path, f'greatesthit_{self.split}_{self.L:.2f}.json')
|
497 |
+
if not os.path.exists(split_clip_ids_path):
|
498 |
+
with open(split_clip_ids_path, 'w') as f:
|
499 |
+
json.dump(valid_dataset, f)
|
500 |
+
|
501 |
+
|
502 |
+
def make_split_files(self, ratio=[0.85, 0.1, 0.05]):
|
503 |
+
random.seed(1337)
|
504 |
+
print(f'The split files do not exist @ {self.splits_path}. Calculating the new ones.')
|
505 |
+
# The downloaded videos (some went missing on YouTube and no longer available)
|
506 |
+
available_mel_paths = set(glob(os.path.join(self.specs_dir, '*_mel.npy')))
|
507 |
+
self.available_video_hit = [vh for vh in self.available_video_hit if self.video_idx2path[vh] in available_mel_paths]
|
508 |
+
|
509 |
+
all_video = list(self.video2indexes.keys())
|
510 |
+
|
511 |
+
print(f'The number of clips available after download: {len(self.available_video_hit)}')
|
512 |
+
print(f'The number of videos available after download: {len(all_video)}')
|
513 |
+
|
514 |
+
available_idx = list(range(len(all_video)))
|
515 |
+
random.shuffle(available_idx)
|
516 |
+
assert sum(ratio) == 1.
|
517 |
+
cut_train = int(ratio[0] * len(all_video))
|
518 |
+
cut_test = cut_train + int(ratio[1] * len(all_video))
|
519 |
+
|
520 |
+
train_idx = available_idx[:cut_train]
|
521 |
+
test_idx = available_idx[cut_train:cut_test]
|
522 |
+
valid_idx = available_idx[cut_test:]
|
523 |
+
|
524 |
+
train_video = [all_video[i] for i in train_idx]
|
525 |
+
test_video = [all_video[i] for i in test_idx]
|
526 |
+
valid_video = [all_video[i] for i in valid_idx]
|
527 |
+
|
528 |
+
train_video_hit = []
|
529 |
+
for v in train_video:
|
530 |
+
train_video_hit += [get_GH_data_identifier(v, hit_idx) for hit_idx in self.video2indexes[v]]
|
531 |
+
test_video_hit = []
|
532 |
+
for v in test_video:
|
533 |
+
test_video_hit += [get_GH_data_identifier(v, hit_idx) for hit_idx in self.video2indexes[v]]
|
534 |
+
valid_video_hit = []
|
535 |
+
for v in valid_video:
|
536 |
+
valid_video_hit += [get_GH_data_identifier(v, hit_idx) for hit_idx in self.video2indexes[v]]
|
537 |
+
|
538 |
+
# mix train and valid for better validation loss
|
539 |
+
mixed = train_video_hit + valid_video_hit
|
540 |
+
random.shuffle(mixed)
|
541 |
+
split = int(len(mixed) * ratio[0] / (ratio[0] + ratio[2]))
|
542 |
+
train_video_hit = mixed[:split]
|
543 |
+
valid_video_hit = mixed[split:]
|
544 |
+
|
545 |
+
with open(os.path.join(self.splits_path, 'greatesthit_train.json'), 'w') as train_file,\
|
546 |
+
open(os.path.join(self.splits_path, 'greatesthit_test.json'), 'w') as test_file,\
|
547 |
+
open(os.path.join(self.splits_path, 'greatesthit_valid.json'), 'w') as valid_file:
|
548 |
+
json.dump(train_video_hit, train_file)
|
549 |
+
json.dump(test_video_hit, test_file)
|
550 |
+
json.dump(valid_video_hit, valid_file)
|
551 |
+
|
552 |
+
print(f'Put {len(train_idx)} clips to the train set and saved it to ./data/greatesthit_train.json')
|
553 |
+
print(f'Put {len(test_idx)} clips to the test set and saved it to ./data/greatesthit_test.json')
|
554 |
+
print(f'Put {len(valid_idx)} clips to the valid set and saved it to ./data/greatesthit_valid.json')
|
555 |
+
|
556 |
+
|
557 |
+
class CondGreatestHitSpecsCondOnImageTrain(CondGreatestHitSpecsCondOnImage):
|
558 |
+
def __init__(self, dataset_cfg):
|
559 |
+
train_transforms = transforms.Compose([
|
560 |
+
Resize3D(256),
|
561 |
+
RandomResizedCrop3D(224, scale=(0.5, 1.0)),
|
562 |
+
RandomHorizontalFlip3D(),
|
563 |
+
ColorJitter3D(brightness=0.1, saturation=0.1),
|
564 |
+
ToTensor3D(),
|
565 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
566 |
+
std=[0.229, 0.224, 0.225]),
|
567 |
+
])
|
568 |
+
super().__init__('train', frame_transforms=train_transforms, **dataset_cfg)
|
569 |
+
|
570 |
+
class CondGreatestHitSpecsCondOnImageValidation(CondGreatestHitSpecsCondOnImage):
|
571 |
+
def __init__(self, dataset_cfg):
|
572 |
+
valid_transforms = transforms.Compose([
|
573 |
+
Resize3D(256),
|
574 |
+
CenterCrop3D(224),
|
575 |
+
ToTensor3D(),
|
576 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
577 |
+
std=[0.229, 0.224, 0.225]),
|
578 |
+
])
|
579 |
+
super().__init__('val', frame_transforms=valid_transforms, **dataset_cfg)
|
580 |
+
|
581 |
+
class CondGreatestHitSpecsCondOnImageTest(CondGreatestHitSpecsCondOnImage):
|
582 |
+
def __init__(self, dataset_cfg):
|
583 |
+
test_transforms = transforms.Compose([
|
584 |
+
Resize3D(256),
|
585 |
+
CenterCrop3D(224),
|
586 |
+
ToTensor3D(),
|
587 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
588 |
+
std=[0.229, 0.224, 0.225]),
|
589 |
+
])
|
590 |
+
super().__init__('test', frame_transforms=test_transforms, **dataset_cfg)
|
591 |
+
|
592 |
+
|
593 |
+
class CondGreatestHitWaveCondOnImage(torch.utils.data.Dataset):
|
594 |
+
|
595 |
+
def __init__(self, split, wav_dir, spec_len, random_crop, mel_num, spec_crop_len,
|
596 |
+
L=2.0, frame_transforms=None, splits_path='./data',
|
597 |
+
data_path='data/greatesthit/greatesthit-process-resized',
|
598 |
+
p_outside_cond=0., p_audio_aug=0.5, rand_shift=True):
|
599 |
+
super().__init__()
|
600 |
+
self.split = split
|
601 |
+
self.wav_dir = wav_dir
|
602 |
+
self.frame_transforms = frame_transforms
|
603 |
+
self.splits_path = splits_path
|
604 |
+
self.data_path = data_path
|
605 |
+
self.spec_len = spec_len
|
606 |
+
self.L = L
|
607 |
+
self.rand_shift = rand_shift
|
608 |
+
self.p_outside_cond = torch.tensor(p_outside_cond)
|
609 |
+
|
610 |
+
split_clip_ids_path = os.path.join(splits_path, f'greatesthit_{split}.json')
|
611 |
+
if not os.path.exists(split_clip_ids_path):
|
612 |
+
raise NotImplementedError()
|
613 |
+
clip_video_hit = json.load(open(split_clip_ids_path, 'r'))
|
614 |
+
|
615 |
+
video_name = list(set([vidx.split('_')[0] for vidx in clip_video_hit]))
|
616 |
+
|
617 |
+
self.video_frame_cnt = {v: len(os.listdir(os.path.join(self.data_path, v, 'frames')))//2 for v in video_name}
|
618 |
+
self.left_over = int(FPS * L + 1)
|
619 |
+
self.video_audio_path = {v: os.path.join(self.data_path, v, f'audio/{v}_denoised_resampled.wav') for v in video_name}
|
620 |
+
self.dataset = clip_video_hit
|
621 |
+
|
622 |
+
self.video2indexes = {}
|
623 |
+
for video_idx in self.dataset:
|
624 |
+
video, start_idx = video_idx.split('_')
|
625 |
+
if video not in self.video2indexes.keys():
|
626 |
+
self.video2indexes[video] = []
|
627 |
+
self.video2indexes[video].append(start_idx)
|
628 |
+
for video in self.video2indexes.keys():
|
629 |
+
if len(self.video2indexes[video]) == 1: # given video contains only one hit
|
630 |
+
self.dataset.remove(
|
631 |
+
get_GH_data_identifier(video, self.video2indexes[video][0])
|
632 |
+
)
|
633 |
+
|
634 |
+
self.wav_transforms = transforms.Compose([
|
635 |
+
MakeMono(),
|
636 |
+
Padding(target_len=int(SR * self.L)),
|
637 |
+
])
|
638 |
+
if self.frame_transforms == None:
|
639 |
+
self.frame_transforms = transforms.Compose([
|
640 |
+
Resize3D(256),
|
641 |
+
RandomResizedCrop3D(224, scale=(0.5, 1.0)),
|
642 |
+
RandomHorizontalFlip3D(),
|
643 |
+
ColorJitter3D(brightness=0.1, saturation=0.1),
|
644 |
+
ToTensor3D(),
|
645 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
646 |
+
std=[0.229, 0.224, 0.225]),
|
647 |
+
])
|
648 |
+
|
649 |
+
def __len__(self):
|
650 |
+
return len(self.dataset)
|
651 |
+
|
652 |
+
def __getitem__(self, idx):
|
653 |
+
item = {}
|
654 |
+
video_idx = self.dataset[idx]
|
655 |
+
video, start_idx = video_idx.split('_')
|
656 |
+
start_idx = int(start_idx)
|
657 |
+
frame_path = os.path.join(self.data_path, video, 'frames')
|
658 |
+
start_frame_idx = non_negative(FPS * int(start_idx)/SR)
|
659 |
+
if self.rand_shift:
|
660 |
+
shift = random.uniform(-0.5, 0.5)
|
661 |
+
start_frame_idx = non_negative(start_frame_idx + int(FPS * shift))
|
662 |
+
start_idx = non_negative(start_idx + int(SR * shift))
|
663 |
+
if start_frame_idx > self.video_frame_cnt[video] - self.left_over:
|
664 |
+
start_frame_idx = self.video_frame_cnt[video] - self.left_over
|
665 |
+
start_idx = non_negative(SR * (start_frame_idx / FPS))
|
666 |
+
|
667 |
+
end_frame_idx = non_negative(start_frame_idx + FPS * self.L)
|
668 |
+
|
669 |
+
# target
|
670 |
+
wave_path = self.video_audio_path[video]
|
671 |
+
frames = [Image.open(os.path.join(
|
672 |
+
frame_path, f'frame{i+1:0>6d}')).convert('RGB') for i in
|
673 |
+
range(start_frame_idx, end_frame_idx)]
|
674 |
+
wav, sr = soundfile.read(wave_path, frames=int(SR * self.L), start=start_idx)
|
675 |
+
assert sr == SR
|
676 |
+
wav = self.wav_transforms(wav)
|
677 |
+
|
678 |
+
# cond
|
679 |
+
if torch.all(torch.bernoulli(self.p_outside_cond) == 1.):
|
680 |
+
all_idx = set(list(range(len(self.dataset))))
|
681 |
+
all_idx.remove(idx)
|
682 |
+
cond_video_idx = self.dataset[sample(all_idx, k=1)[0]]
|
683 |
+
cond_video, cond_start_idx = cond_video_idx.split('_')
|
684 |
+
else:
|
685 |
+
cond_video = video
|
686 |
+
video_hits_idx = copy.copy(self.video2indexes[video])
|
687 |
+
if str(start_idx) in video_hits_idx:
|
688 |
+
video_hits_idx.remove(str(start_idx))
|
689 |
+
cond_start_idx = sample(video_hits_idx, k=1)[0]
|
690 |
+
cond_video_idx = get_GH_data_identifier(cond_video, cond_start_idx)
|
691 |
+
|
692 |
+
cond_video, cond_start_idx = cond_video_idx.split('_')
|
693 |
+
cond_start_idx = int(cond_start_idx)
|
694 |
+
cond_frame_path = os.path.join(self.data_path, cond_video, 'frames')
|
695 |
+
cond_start_frame_idx = non_negative(FPS * int(cond_start_idx)/SR)
|
696 |
+
cond_wave_path = self.video_audio_path[cond_video]
|
697 |
+
|
698 |
+
if self.rand_shift:
|
699 |
+
cond_shift = random.uniform(-0.5, 0.5)
|
700 |
+
cond_start_frame_idx = non_negative(cond_start_frame_idx + int(FPS * cond_shift))
|
701 |
+
cond_start_idx = non_negative(cond_start_idx + int(shift * SR))
|
702 |
+
if cond_start_frame_idx > self.video_frame_cnt[cond_video] - self.left_over:
|
703 |
+
cond_start_frame_idx = self.video_frame_cnt[cond_video] - self.left_over
|
704 |
+
cond_start_idx = non_negative(SR * (cond_start_frame_idx / FPS))
|
705 |
+
cond_end_frame_idx = non_negative(cond_start_frame_idx + FPS * self.L)
|
706 |
+
|
707 |
+
cond_frames = [Image.open(os.path.join(
|
708 |
+
cond_frame_path, f'frame{i+1:0>6d}')).convert('RGB') for i in
|
709 |
+
range(cond_start_frame_idx, cond_end_frame_idx)]
|
710 |
+
cond_wav, _ = soundfile.read(cond_wave_path, frames=int(SR * self.L), start=cond_start_idx)
|
711 |
+
cond_wav = self.wav_transforms(cond_wav)
|
712 |
+
|
713 |
+
item['image'] = wav # (44100,)
|
714 |
+
item['cond_image'] = cond_wav # (44100,)
|
715 |
+
item['file_path_wav_'] = wave_path
|
716 |
+
item['file_path_cond_wav_'] = cond_wave_path
|
717 |
+
|
718 |
+
if self.frame_transforms is not None:
|
719 |
+
cond_frames = self.frame_transforms(cond_frames)
|
720 |
+
frames = self.frame_transforms(frames)
|
721 |
+
|
722 |
+
item['feature'] = np.stack(cond_frames + frames, axis=0) # (30 * L, 112, 112, 3)
|
723 |
+
item['file_path_feats_'] = (frame_path, start_idx)
|
724 |
+
item['file_path_cond_feats_'] = (cond_frame_path, cond_start_idx)
|
725 |
+
|
726 |
+
item['label'] = 'None'
|
727 |
+
item['target'] = 'None'
|
728 |
+
|
729 |
+
return item
|
730 |
+
|
731 |
+
def validate_data(self):
|
732 |
+
raise NotImplementedError()
|
733 |
+
|
734 |
+
def make_split_files(self, ratio=[0.85, 0.1, 0.05]):
|
735 |
+
random.seed(1337)
|
736 |
+
print(f'The split files do not exist @ {self.splits_path}. Calculating the new ones.')
|
737 |
+
|
738 |
+
all_video = sorted(os.listdir(self.data_path))
|
739 |
+
print(f'The number of videos available after download: {len(all_video)}')
|
740 |
+
|
741 |
+
available_idx = list(range(len(all_video)))
|
742 |
+
random.shuffle(available_idx)
|
743 |
+
assert sum(ratio) == 1.
|
744 |
+
cut_train = int(ratio[0] * len(all_video))
|
745 |
+
cut_test = cut_train + int(ratio[1] * len(all_video))
|
746 |
+
|
747 |
+
train_idx = available_idx[:cut_train]
|
748 |
+
test_idx = available_idx[cut_train:cut_test]
|
749 |
+
valid_idx = available_idx[cut_test:]
|
750 |
+
|
751 |
+
train_video = [all_video[i] for i in train_idx]
|
752 |
+
test_video = [all_video[i] for i in test_idx]
|
753 |
+
valid_video = [all_video[i] for i in valid_idx]
|
754 |
+
|
755 |
+
with open(os.path.join(self.splits_path, 'greatesthit_video_train.json'), 'w') as train_file,\
|
756 |
+
open(os.path.join(self.splits_path, 'greatesthit_video_test.json'), 'w') as test_file,\
|
757 |
+
open(os.path.join(self.splits_path, 'greatesthit_video_valid.json'), 'w') as valid_file:
|
758 |
+
json.dump(train_video, train_file)
|
759 |
+
json.dump(test_video, test_file)
|
760 |
+
json.dump(valid_video, valid_file)
|
761 |
+
|
762 |
+
print(f'Put {len(train_idx)} videos to the train set and saved it to ./data/greatesthit_video_train.json')
|
763 |
+
print(f'Put {len(test_idx)} videos to the test set and saved it to ./data/greatesthit_video_test.json')
|
764 |
+
print(f'Put {len(valid_idx)} videos to the valid set and saved it to ./data/greatesthit_video_valid.json')
|
765 |
+
|
766 |
+
|
767 |
+
class CondGreatestHitWaveCondOnImageTrain(CondGreatestHitWaveCondOnImage):
|
768 |
+
def __init__(self, dataset_cfg):
|
769 |
+
train_transforms = transforms.Compose([
|
770 |
+
Resize3D(128),
|
771 |
+
RandomResizedCrop3D(112, scale=(0.5, 1.0)),
|
772 |
+
RandomHorizontalFlip3D(),
|
773 |
+
ColorJitter3D(brightness=0.4, saturation=0.4, contrast=0.2, hue=0.1),
|
774 |
+
ToTensor3D(),
|
775 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
776 |
+
std=[0.229, 0.224, 0.225]),
|
777 |
+
])
|
778 |
+
super().__init__('train', frame_transforms=train_transforms, **dataset_cfg)
|
779 |
+
|
780 |
+
class CondGreatestHitWaveCondOnImageValidation(CondGreatestHitWaveCondOnImage):
|
781 |
+
def __init__(self, dataset_cfg):
|
782 |
+
valid_transforms = transforms.Compose([
|
783 |
+
Resize3D(128),
|
784 |
+
CenterCrop3D(112),
|
785 |
+
ToTensor3D(),
|
786 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
787 |
+
std=[0.229, 0.224, 0.225]),
|
788 |
+
])
|
789 |
+
super().__init__('val', frame_transforms=valid_transforms, **dataset_cfg)
|
790 |
+
|
791 |
+
class CondGreatestHitWaveCondOnImageTest(CondGreatestHitWaveCondOnImage):
|
792 |
+
def __init__(self, dataset_cfg):
|
793 |
+
test_transforms = transforms.Compose([
|
794 |
+
Resize3D(128),
|
795 |
+
CenterCrop3D(112),
|
796 |
+
ToTensor3D(),
|
797 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
798 |
+
std=[0.229, 0.224, 0.225]),
|
799 |
+
])
|
800 |
+
super().__init__('test', frame_transforms=test_transforms, **dataset_cfg)
|
801 |
+
|
802 |
+
|
803 |
+
|
804 |
+
class GreatestHitWaveCondOnImage(torch.utils.data.Dataset):
|
805 |
+
|
806 |
+
def __init__(self, split, wav_dir, spec_len, random_crop, mel_num, spec_crop_len,
|
807 |
+
L=2.0, frame_transforms=None, splits_path='./data',
|
808 |
+
data_path='data/greatesthit/greatesthit-process-resized',
|
809 |
+
p_outside_cond=0., p_audio_aug=0.5, rand_shift=True):
|
810 |
+
super().__init__()
|
811 |
+
self.split = split
|
812 |
+
self.wav_dir = wav_dir
|
813 |
+
self.frame_transforms = frame_transforms
|
814 |
+
self.splits_path = splits_path
|
815 |
+
self.data_path = data_path
|
816 |
+
self.spec_len = spec_len
|
817 |
+
self.L = L
|
818 |
+
self.rand_shift = rand_shift
|
819 |
+
self.p_outside_cond = torch.tensor(p_outside_cond)
|
820 |
+
|
821 |
+
split_clip_ids_path = os.path.join(splits_path, f'greatesthit_{split}.json')
|
822 |
+
if not os.path.exists(split_clip_ids_path):
|
823 |
+
raise NotImplementedError()
|
824 |
+
clip_video_hit = json.load(open(split_clip_ids_path, 'r'))
|
825 |
+
|
826 |
+
video_name = list(set([vidx.split('_')[0] for vidx in clip_video_hit]))
|
827 |
+
|
828 |
+
self.video_frame_cnt = {v: len(os.listdir(os.path.join(self.data_path, v, 'frames')))//2 for v in video_name}
|
829 |
+
self.left_over = int(FPS * L + 1)
|
830 |
+
self.video_audio_path = {v: os.path.join(self.data_path, v, f'audio/{v}_denoised_resampled.wav') for v in video_name}
|
831 |
+
self.dataset = clip_video_hit
|
832 |
+
|
833 |
+
self.video2indexes = {}
|
834 |
+
for video_idx in self.dataset:
|
835 |
+
video, start_idx = video_idx.split('_')
|
836 |
+
if video not in self.video2indexes.keys():
|
837 |
+
self.video2indexes[video] = []
|
838 |
+
self.video2indexes[video].append(start_idx)
|
839 |
+
for video in self.video2indexes.keys():
|
840 |
+
if len(self.video2indexes[video]) == 1: # given video contains only one hit
|
841 |
+
self.dataset.remove(
|
842 |
+
get_GH_data_identifier(video, self.video2indexes[video][0])
|
843 |
+
)
|
844 |
+
|
845 |
+
self.wav_transforms = transforms.Compose([
|
846 |
+
MakeMono(),
|
847 |
+
Padding(target_len=int(SR * self.L)),
|
848 |
+
])
|
849 |
+
if self.frame_transforms == None:
|
850 |
+
self.frame_transforms = transforms.Compose([
|
851 |
+
Resize3D(256),
|
852 |
+
RandomResizedCrop3D(224, scale=(0.5, 1.0)),
|
853 |
+
RandomHorizontalFlip3D(),
|
854 |
+
ColorJitter3D(brightness=0.1, saturation=0.1),
|
855 |
+
ToTensor3D(),
|
856 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
857 |
+
std=[0.229, 0.224, 0.225]),
|
858 |
+
])
|
859 |
+
|
860 |
+
def __len__(self):
|
861 |
+
return len(self.dataset)
|
862 |
+
|
863 |
+
def __getitem__(self, idx):
|
864 |
+
item = {}
|
865 |
+
video_idx = self.dataset[idx]
|
866 |
+
video, start_idx = video_idx.split('_')
|
867 |
+
start_idx = int(start_idx)
|
868 |
+
frame_path = os.path.join(self.data_path, video, 'frames')
|
869 |
+
start_frame_idx = non_negative(FPS * int(start_idx)/SR)
|
870 |
+
if self.rand_shift:
|
871 |
+
shift = random.uniform(-0.5, 0.5)
|
872 |
+
start_frame_idx = non_negative(start_frame_idx + int(FPS * shift))
|
873 |
+
start_idx = non_negative(start_idx + int(SR * shift))
|
874 |
+
if start_frame_idx > self.video_frame_cnt[video] - self.left_over:
|
875 |
+
start_frame_idx = self.video_frame_cnt[video] - self.left_over
|
876 |
+
start_idx = non_negative(SR * (start_frame_idx / FPS))
|
877 |
+
|
878 |
+
end_frame_idx = non_negative(start_frame_idx + FPS * self.L)
|
879 |
+
|
880 |
+
# target
|
881 |
+
wave_path = self.video_audio_path[video]
|
882 |
+
frames = [Image.open(os.path.join(
|
883 |
+
frame_path, f'frame{i+1:0>6d}')).convert('RGB') for i in
|
884 |
+
range(start_frame_idx, end_frame_idx)]
|
885 |
+
wav, sr = soundfile.read(wave_path, frames=int(SR * self.L), start=start_idx)
|
886 |
+
assert sr == SR
|
887 |
+
wav = self.wav_transforms(wav)
|
888 |
+
|
889 |
+
item['image'] = wav # (44100,)
|
890 |
+
item['file_path_wav_'] = wave_path
|
891 |
+
|
892 |
+
if self.frame_transforms is not None:
|
893 |
+
frames = self.frame_transforms(frames)
|
894 |
+
|
895 |
+
item['feature'] = torch.stack(frames, dim=0) # (15 * L, 112, 112, 3)
|
896 |
+
item['file_path_feats_'] = (frame_path, start_idx)
|
897 |
+
|
898 |
+
item['label'] = 'None'
|
899 |
+
item['target'] = 'None'
|
900 |
+
|
901 |
+
return item
|
902 |
+
|
903 |
+
def validate_data(self):
|
904 |
+
raise NotImplementedError()
|
905 |
+
|
906 |
+
def make_split_files(self, ratio=[0.85, 0.1, 0.05]):
|
907 |
+
random.seed(1337)
|
908 |
+
print(f'The split files do not exist @ {self.splits_path}. Calculating the new ones.')
|
909 |
+
|
910 |
+
all_video = sorted(os.listdir(self.data_path))
|
911 |
+
print(f'The number of videos available after download: {len(all_video)}')
|
912 |
+
|
913 |
+
available_idx = list(range(len(all_video)))
|
914 |
+
random.shuffle(available_idx)
|
915 |
+
assert sum(ratio) == 1.
|
916 |
+
cut_train = int(ratio[0] * len(all_video))
|
917 |
+
cut_test = cut_train + int(ratio[1] * len(all_video))
|
918 |
+
|
919 |
+
train_idx = available_idx[:cut_train]
|
920 |
+
test_idx = available_idx[cut_train:cut_test]
|
921 |
+
valid_idx = available_idx[cut_test:]
|
922 |
+
|
923 |
+
train_video = [all_video[i] for i in train_idx]
|
924 |
+
test_video = [all_video[i] for i in test_idx]
|
925 |
+
valid_video = [all_video[i] for i in valid_idx]
|
926 |
+
|
927 |
+
with open(os.path.join(self.splits_path, 'greatesthit_video_train.json'), 'w') as train_file,\
|
928 |
+
open(os.path.join(self.splits_path, 'greatesthit_video_test.json'), 'w') as test_file,\
|
929 |
+
open(os.path.join(self.splits_path, 'greatesthit_video_valid.json'), 'w') as valid_file:
|
930 |
+
json.dump(train_video, train_file)
|
931 |
+
json.dump(test_video, test_file)
|
932 |
+
json.dump(valid_video, valid_file)
|
933 |
+
|
934 |
+
print(f'Put {len(train_idx)} videos to the train set and saved it to ./data/greatesthit_video_train.json')
|
935 |
+
print(f'Put {len(test_idx)} videos to the test set and saved it to ./data/greatesthit_video_test.json')
|
936 |
+
print(f'Put {len(valid_idx)} videos to the valid set and saved it to ./data/greatesthit_video_valid.json')
|
937 |
+
|
938 |
+
|
939 |
+
class GreatestHitWaveCondOnImageTrain(GreatestHitWaveCondOnImage):
|
940 |
+
def __init__(self, dataset_cfg):
|
941 |
+
train_transforms = transforms.Compose([
|
942 |
+
Resize3D(128),
|
943 |
+
RandomResizedCrop3D(112, scale=(0.5, 1.0)),
|
944 |
+
RandomHorizontalFlip3D(),
|
945 |
+
ColorJitter3D(brightness=0.4, saturation=0.4, contrast=0.2, hue=0.1),
|
946 |
+
ToTensor3D(),
|
947 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
948 |
+
std=[0.229, 0.224, 0.225]),
|
949 |
+
])
|
950 |
+
super().__init__('train', frame_transforms=train_transforms, **dataset_cfg)
|
951 |
+
|
952 |
+
class GreatestHitWaveCondOnImageValidation(GreatestHitWaveCondOnImage):
|
953 |
+
def __init__(self, dataset_cfg):
|
954 |
+
valid_transforms = transforms.Compose([
|
955 |
+
Resize3D(128),
|
956 |
+
CenterCrop3D(112),
|
957 |
+
ToTensor3D(),
|
958 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
959 |
+
std=[0.229, 0.224, 0.225]),
|
960 |
+
])
|
961 |
+
super().__init__('val', frame_transforms=valid_transforms, **dataset_cfg)
|
962 |
+
|
963 |
+
class GreatestHitWaveCondOnImageTest(GreatestHitWaveCondOnImage):
|
964 |
+
def __init__(self, dataset_cfg):
|
965 |
+
test_transforms = transforms.Compose([
|
966 |
+
Resize3D(128),
|
967 |
+
CenterCrop3D(112),
|
968 |
+
ToTensor3D(),
|
969 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
970 |
+
std=[0.229, 0.224, 0.225]),
|
971 |
+
])
|
972 |
+
super().__init__('test', frame_transforms=test_transforms, **dataset_cfg)
|
973 |
+
|
974 |
+
|
975 |
+
def draw_spec(spec, dest, cmap='magma'):
|
976 |
+
plt.imshow(spec, cmap=cmap, origin='lower')
|
977 |
+
plt.axis('off')
|
978 |
+
plt.savefig(dest, bbox_inches='tight', pad_inches=0., dpi=300)
|
979 |
+
plt.close()
|
980 |
+
|
981 |
+
if __name__ == '__main__':
|
982 |
+
import sys
|
983 |
+
|
984 |
+
from omegaconf import OmegaConf
|
985 |
+
|
986 |
+
# cfg = OmegaConf.load('configs/greatesthit_transformer_with_vNet_randshift_2s_GH_vqgan_no_earlystop.yaml')
|
987 |
+
cfg = OmegaConf.load('configs/greatesthit_codebook.yaml')
|
988 |
+
data = instantiate_from_config(cfg.data)
|
989 |
+
data.prepare_data()
|
990 |
+
data.setup()
|
991 |
+
print(len(data.datasets['train']))
|
992 |
+
print(data.datasets['train'][24])
|
993 |
+
|
foleycrafter/models/specvqgan/data/impactset.py
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
from random import sample
|
9 |
+
import torchaudio
|
10 |
+
import logging
|
11 |
+
from glob import glob
|
12 |
+
import sys
|
13 |
+
import soundfile
|
14 |
+
import copy
|
15 |
+
import csv
|
16 |
+
import noisereduce as nr
|
17 |
+
|
18 |
+
sys.path.insert(0, '.') # nopep8
|
19 |
+
from train import instantiate_from_config
|
20 |
+
from foleycrafter.models.specvqgan.data.transforms import *
|
21 |
+
|
22 |
+
torchaudio.set_audio_backend("sox_io")
|
23 |
+
logger = logging.getLogger(f'main.{__name__}')
|
24 |
+
|
25 |
+
SR = 22050
|
26 |
+
FPS = 15
|
27 |
+
MAX_SAMPLE_ITER = 10
|
28 |
+
|
29 |
+
def non_negative(x): return int(np.round(max(0, x), 0))
|
30 |
+
|
31 |
+
def rms(x): return np.sqrt(np.mean(x**2))
|
32 |
+
|
33 |
+
def get_GH_data_identifier(video_name, start_idx, split='_'):
|
34 |
+
if isinstance(start_idx, str):
|
35 |
+
return video_name + split + start_idx
|
36 |
+
elif isinstance(start_idx, int):
|
37 |
+
return video_name + split + str(start_idx)
|
38 |
+
else:
|
39 |
+
raise NotImplementedError
|
40 |
+
|
41 |
+
def draw_spec(spec, dest, cmap='magma'):
|
42 |
+
plt.imshow(spec, cmap=cmap, origin='lower')
|
43 |
+
plt.axis('off')
|
44 |
+
plt.savefig(dest, bbox_inches='tight', pad_inches=0., dpi=300)
|
45 |
+
plt.close()
|
46 |
+
|
47 |
+
def convert_to_decibel(arr):
|
48 |
+
ref = 1
|
49 |
+
return 20 * np.log10(abs(arr + 1e-4) / ref)
|
50 |
+
|
51 |
+
class ResampleFrames(object):
|
52 |
+
def __init__(self, feat_sample_size, times_to_repeat_after_resample=None):
|
53 |
+
self.feat_sample_size = feat_sample_size
|
54 |
+
self.times_to_repeat_after_resample = times_to_repeat_after_resample
|
55 |
+
|
56 |
+
def __call__(self, item):
|
57 |
+
feat_len = item['feature'].shape[0]
|
58 |
+
|
59 |
+
## resample
|
60 |
+
assert feat_len >= self.feat_sample_size
|
61 |
+
# evenly spaced points (abcdefghkl -> aoooofoooo)
|
62 |
+
idx = np.linspace(0, feat_len, self.feat_sample_size, dtype=np.int, endpoint=False)
|
63 |
+
# xoooo xoooo -> ooxoo ooxoo
|
64 |
+
shift = feat_len // (self.feat_sample_size + 1)
|
65 |
+
idx = idx + shift
|
66 |
+
|
67 |
+
## repeat after resampling (abc -> aaaabbbbcccc)
|
68 |
+
if self.times_to_repeat_after_resample is not None and self.times_to_repeat_after_resample > 1:
|
69 |
+
idx = np.repeat(idx, self.times_to_repeat_after_resample)
|
70 |
+
|
71 |
+
item['feature'] = item['feature'][idx, :]
|
72 |
+
return item
|
73 |
+
|
74 |
+
|
75 |
+
class ImpactSetWave(torch.utils.data.Dataset):
|
76 |
+
|
77 |
+
def __init__(self, split, random_crop, mel_num, spec_crop_len,
|
78 |
+
L=2.0, denoise=False, splits_path='./data',
|
79 |
+
data_path='data/ImpactSet/impactset-proccess-resize'):
|
80 |
+
super().__init__()
|
81 |
+
self.split = split
|
82 |
+
self.splits_path = splits_path
|
83 |
+
self.data_path = data_path
|
84 |
+
self.L = L
|
85 |
+
self.denoise = denoise
|
86 |
+
|
87 |
+
video_name_split_path = os.path.join(splits_path, f'countixAV_{split}.json')
|
88 |
+
if not os.path.exists(video_name_split_path):
|
89 |
+
self.make_split_files()
|
90 |
+
video_name = json.load(open(video_name_split_path, 'r'))
|
91 |
+
self.video_frame_cnt = {v: len(os.listdir(os.path.join(self.data_path, v, 'frames'))) for v in video_name}
|
92 |
+
self.left_over = int(FPS * L + 1)
|
93 |
+
self.video_audio_path = {v: os.path.join(self.data_path, v, f'audio/{v}_resampled.wav') for v in video_name}
|
94 |
+
self.dataset = video_name
|
95 |
+
|
96 |
+
self.wav_transforms = transforms.Compose([
|
97 |
+
MakeMono(),
|
98 |
+
Padding(target_len=int(SR * self.L)),
|
99 |
+
])
|
100 |
+
|
101 |
+
self.spec_transforms = CropImage([mel_num, spec_crop_len], random_crop)
|
102 |
+
|
103 |
+
def __len__(self):
|
104 |
+
return len(self.dataset)
|
105 |
+
|
106 |
+
def __getitem__(self, idx):
|
107 |
+
item = {}
|
108 |
+
video = self.dataset[idx]
|
109 |
+
|
110 |
+
available_frame_idx = self.video_frame_cnt[video] - self.left_over
|
111 |
+
wav = None
|
112 |
+
spec = None
|
113 |
+
max_db = -np.inf
|
114 |
+
wave_path = ''
|
115 |
+
cur_wave_path = self.video_audio_path[video]
|
116 |
+
if self.denoise:
|
117 |
+
cur_wave_path = cur_wave_path.replace('.wav', '_denoised.wav')
|
118 |
+
for _ in range(10):
|
119 |
+
start_idx = torch.randint(0, available_frame_idx, (1,)).tolist()[0]
|
120 |
+
# target
|
121 |
+
start_t = (start_idx + 0.5) / FPS
|
122 |
+
start_audio_idx = non_negative(start_t * SR)
|
123 |
+
|
124 |
+
cur_wav, _ = soundfile.read(cur_wave_path, frames=int(SR * self.L), start=start_audio_idx)
|
125 |
+
|
126 |
+
decibel = convert_to_decibel(cur_wav)
|
127 |
+
if float(np.mean(decibel)) > max_db:
|
128 |
+
wav = cur_wav
|
129 |
+
wave_path = cur_wave_path
|
130 |
+
max_db = float(np.mean(decibel))
|
131 |
+
if max_db >= -40:
|
132 |
+
break
|
133 |
+
|
134 |
+
# print(max_db)
|
135 |
+
wav = self.wav_transforms(wav)
|
136 |
+
item['image'] = wav # (80, 173)
|
137 |
+
# item['wav'] = wav
|
138 |
+
item['file_path_wav_'] = wave_path
|
139 |
+
|
140 |
+
item['label'] = 'None'
|
141 |
+
item['target'] = 'None'
|
142 |
+
|
143 |
+
return item
|
144 |
+
|
145 |
+
def make_split_files(self):
|
146 |
+
raise NotImplementedError
|
147 |
+
|
148 |
+
class ImpactSetWaveTrain(ImpactSetWave):
|
149 |
+
def __init__(self, specs_dataset_cfg):
|
150 |
+
super().__init__('train', **specs_dataset_cfg)
|
151 |
+
|
152 |
+
class ImpactSetWaveValidation(ImpactSetWave):
|
153 |
+
def __init__(self, specs_dataset_cfg):
|
154 |
+
super().__init__('val', **specs_dataset_cfg)
|
155 |
+
|
156 |
+
class ImpactSetWaveTest(ImpactSetWave):
|
157 |
+
def __init__(self, specs_dataset_cfg):
|
158 |
+
super().__init__('test', **specs_dataset_cfg)
|
159 |
+
|
160 |
+
|
161 |
+
class ImpactSetSpec(torch.utils.data.Dataset):
|
162 |
+
|
163 |
+
def __init__(self, split, random_crop, mel_num, spec_crop_len,
|
164 |
+
L=2.0, denoise=False, splits_path='./data',
|
165 |
+
data_path='data/ImpactSet/impactset-proccess-resize'):
|
166 |
+
super().__init__()
|
167 |
+
self.split = split
|
168 |
+
self.splits_path = splits_path
|
169 |
+
self.data_path = data_path
|
170 |
+
self.L = L
|
171 |
+
self.denoise = denoise
|
172 |
+
|
173 |
+
video_name_split_path = os.path.join(splits_path, f'countixAV_{split}.json')
|
174 |
+
if not os.path.exists(video_name_split_path):
|
175 |
+
self.make_split_files()
|
176 |
+
video_name = json.load(open(video_name_split_path, 'r'))
|
177 |
+
self.video_frame_cnt = {v: len(os.listdir(os.path.join(self.data_path, v, 'frames'))) for v in video_name}
|
178 |
+
self.left_over = int(FPS * L + 1)
|
179 |
+
self.video_audio_path = {v: os.path.join(self.data_path, v, f'audio/{v}_resampled.wav') for v in video_name}
|
180 |
+
self.dataset = video_name
|
181 |
+
|
182 |
+
self.wav_transforms = transforms.Compose([
|
183 |
+
MakeMono(),
|
184 |
+
SpectrogramTorchAudio(nfft=1024, hoplen=1024//4, spec_power=1),
|
185 |
+
MelScaleTorchAudio(sr=SR, stft=513, fmin=125, fmax=7600, nmels=80),
|
186 |
+
LowerThresh(1e-5),
|
187 |
+
Log10(),
|
188 |
+
Multiply(20),
|
189 |
+
Subtract(20),
|
190 |
+
Add(100),
|
191 |
+
Divide(100),
|
192 |
+
Clip(0, 1.0),
|
193 |
+
TrimSpec(173),
|
194 |
+
])
|
195 |
+
|
196 |
+
self.spec_transforms = CropImage([mel_num, spec_crop_len], random_crop)
|
197 |
+
|
198 |
+
def __len__(self):
|
199 |
+
return len(self.dataset)
|
200 |
+
|
201 |
+
def __getitem__(self, idx):
|
202 |
+
item = {}
|
203 |
+
video = self.dataset[idx]
|
204 |
+
|
205 |
+
available_frame_idx = self.video_frame_cnt[video] - self.left_over
|
206 |
+
wav = None
|
207 |
+
spec = None
|
208 |
+
max_rms = -np.inf
|
209 |
+
wave_path = ''
|
210 |
+
cur_wave_path = self.video_audio_path[video]
|
211 |
+
if self.denoise:
|
212 |
+
cur_wave_path = cur_wave_path.replace('.wav', '_denoised.wav')
|
213 |
+
for _ in range(10):
|
214 |
+
start_idx = torch.randint(0, available_frame_idx, (1,)).tolist()[0]
|
215 |
+
# target
|
216 |
+
start_t = (start_idx + 0.5) / FPS
|
217 |
+
start_audio_idx = non_negative(start_t * SR)
|
218 |
+
|
219 |
+
cur_wav, _ = soundfile.read(cur_wave_path, frames=int(SR * self.L), start=start_audio_idx)
|
220 |
+
|
221 |
+
if self.wav_transforms is not None:
|
222 |
+
spec_tensor = self.wav_transforms(torch.tensor(cur_wav).float())
|
223 |
+
cur_spec = spec_tensor.numpy()
|
224 |
+
# zeros padding if not enough spec t steps
|
225 |
+
if cur_spec.shape[1] < 173:
|
226 |
+
pad = np.zeros((80, 173), dtype=cur_spec.dtype)
|
227 |
+
pad[:, :cur_spec.shape[1]] = cur_spec
|
228 |
+
cur_spec = pad
|
229 |
+
rms_val = rms(cur_spec)
|
230 |
+
if rms_val > max_rms:
|
231 |
+
wav = cur_wav
|
232 |
+
spec = cur_spec
|
233 |
+
wave_path = cur_wave_path
|
234 |
+
max_rms = rms_val
|
235 |
+
# print(rms_val)
|
236 |
+
if max_rms >= 0.1:
|
237 |
+
break
|
238 |
+
|
239 |
+
item['image'] = 2 * spec - 1 # (80, 173)
|
240 |
+
# item['wav'] = wav
|
241 |
+
item['file_path_wav_'] = wave_path
|
242 |
+
|
243 |
+
item['label'] = 'None'
|
244 |
+
item['target'] = 'None'
|
245 |
+
|
246 |
+
if self.spec_transforms is not None:
|
247 |
+
item = self.spec_transforms(item)
|
248 |
+
return item
|
249 |
+
|
250 |
+
def make_split_files(self):
|
251 |
+
raise NotImplementedError
|
252 |
+
|
253 |
+
class ImpactSetSpecTrain(ImpactSetSpec):
|
254 |
+
def __init__(self, specs_dataset_cfg):
|
255 |
+
super().__init__('train', **specs_dataset_cfg)
|
256 |
+
|
257 |
+
class ImpactSetSpecValidation(ImpactSetSpec):
|
258 |
+
def __init__(self, specs_dataset_cfg):
|
259 |
+
super().__init__('val', **specs_dataset_cfg)
|
260 |
+
|
261 |
+
class ImpactSetSpecTest(ImpactSetSpec):
|
262 |
+
def __init__(self, specs_dataset_cfg):
|
263 |
+
super().__init__('test', **specs_dataset_cfg)
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
class ImpactSetWaveTestTime(torch.utils.data.Dataset):
|
268 |
+
|
269 |
+
def __init__(self, split, random_crop, mel_num, spec_crop_len,
|
270 |
+
L=2.0, denoise=False, splits_path='./data',
|
271 |
+
data_path='data/ImpactSet/impactset-proccess-resize'):
|
272 |
+
super().__init__()
|
273 |
+
self.split = split
|
274 |
+
self.splits_path = splits_path
|
275 |
+
self.data_path = data_path
|
276 |
+
self.L = L
|
277 |
+
self.denoise = denoise
|
278 |
+
|
279 |
+
self.video_list = glob('data/ImpactSet/RawVideos/StockVideo_sound/*.wav') + [
|
280 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/1_ckbCU5aQs/1_ckbCU5aQs_0013_0016_resize.wav',
|
281 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/GFmuVBiwz6k/GFmuVBiwz6k_0034_0054_resize.wav',
|
282 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/OsPcY316h1M/OsPcY316h1M_0000_0005_resize.wav',
|
283 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/SExIpBIBj_k/SExIpBIBj_k_0009_0019_resize.wav',
|
284 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/S6TkbV4B4QI/S6TkbV4B4QI_0028_0036_resize.wav',
|
285 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/2Ld24pPIn3k/2Ld24pPIn3k_0005_0011_resize.wav',
|
286 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/6d1YS7fdBK4/6d1YS7fdBK4_0007_0019_resize.wav',
|
287 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/JnBsmJgEkiw/JnBsmJgEkiw_0008_0016_resize.wav',
|
288 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/xcUyiXt0gjo/xcUyiXt0gjo_0015_0021_resize.wav',
|
289 |
+
'data/ImpactSet/RawVideos/YouTube-impact-ccl/4DRFJnZjpMM/4DRFJnZjpMM_0000_0010_resize.wav'
|
290 |
+
] + glob('data/ImpactSet/RawVideos/self_recorded/*_resize.wav')
|
291 |
+
|
292 |
+
self.wav_transforms = transforms.Compose([
|
293 |
+
MakeMono(),
|
294 |
+
SpectrogramTorchAudio(nfft=1024, hoplen=1024//4, spec_power=1),
|
295 |
+
MelScaleTorchAudio(sr=SR, stft=513, fmin=125, fmax=7600, nmels=80),
|
296 |
+
LowerThresh(1e-5),
|
297 |
+
Log10(),
|
298 |
+
Multiply(20),
|
299 |
+
Subtract(20),
|
300 |
+
Add(100),
|
301 |
+
Divide(100),
|
302 |
+
Clip(0, 1.0),
|
303 |
+
TrimSpec(173),
|
304 |
+
])
|
305 |
+
self.spec_transforms = CropImage([mel_num, spec_crop_len], random_crop)
|
306 |
+
|
307 |
+
def __len__(self):
|
308 |
+
return len(self.video_list)
|
309 |
+
|
310 |
+
def __getitem__(self, idx):
|
311 |
+
item = {}
|
312 |
+
|
313 |
+
wave_path = self.video_list[idx]
|
314 |
+
|
315 |
+
wav, _ = soundfile.read(wave_path)
|
316 |
+
start_idx = random.randint(0, min(4, wav.shape[0] - int(SR * self.L)))
|
317 |
+
wav = wav[start_idx:start_idx+int(SR * self.L)]
|
318 |
+
|
319 |
+
if self.denoise:
|
320 |
+
if len(wav.shape) == 1:
|
321 |
+
wav = wav[None, :]
|
322 |
+
wav = nr.reduce_noise(y=wav, sr=SR, n_fft=1024, hop_length=1024//4)
|
323 |
+
wav = wav.squeeze()
|
324 |
+
if self.wav_transforms is not None:
|
325 |
+
spec_tensor = self.wav_transforms(torch.tensor(wav).float())
|
326 |
+
spec = spec_tensor.numpy()
|
327 |
+
if spec.shape[1] < 173:
|
328 |
+
pad = np.zeros((80, 173), dtype=spec.dtype)
|
329 |
+
pad[:, :spec.shape[1]] = spec
|
330 |
+
spec = pad
|
331 |
+
|
332 |
+
item['image'] = 2 * spec - 1 # (80, 173)
|
333 |
+
# item['wav'] = wav
|
334 |
+
item['file_path_wav_'] = wave_path
|
335 |
+
|
336 |
+
item['label'] = 'None'
|
337 |
+
item['target'] = 'None'
|
338 |
+
|
339 |
+
if self.spec_transforms is not None:
|
340 |
+
item = self.spec_transforms(item)
|
341 |
+
return item
|
342 |
+
|
343 |
+
def make_split_files(self):
|
344 |
+
raise NotImplementedError
|
345 |
+
|
346 |
+
class ImpactSetWaveTestTimeTrain(ImpactSetWaveTestTime):
|
347 |
+
def __init__(self, specs_dataset_cfg):
|
348 |
+
super().__init__('train', **specs_dataset_cfg)
|
349 |
+
|
350 |
+
class ImpactSetWaveTestTimeValidation(ImpactSetWaveTestTime):
|
351 |
+
def __init__(self, specs_dataset_cfg):
|
352 |
+
super().__init__('val', **specs_dataset_cfg)
|
353 |
+
|
354 |
+
class ImpactSetWaveTestTimeTest(ImpactSetWaveTestTime):
|
355 |
+
def __init__(self, specs_dataset_cfg):
|
356 |
+
super().__init__('test', **specs_dataset_cfg)
|
357 |
+
|
358 |
+
|
359 |
+
class ImpactSetWaveWithSilent(torch.utils.data.Dataset):
|
360 |
+
|
361 |
+
def __init__(self, split, random_crop, mel_num, spec_crop_len,
|
362 |
+
L=2.0, denoise=False, splits_path='./data',
|
363 |
+
data_path='data/ImpactSet/impactset-proccess-resize'):
|
364 |
+
super().__init__()
|
365 |
+
self.split = split
|
366 |
+
self.splits_path = splits_path
|
367 |
+
self.data_path = data_path
|
368 |
+
self.L = L
|
369 |
+
self.denoise = denoise
|
370 |
+
|
371 |
+
video_name_split_path = os.path.join(splits_path, f'countixAV_{split}.json')
|
372 |
+
if not os.path.exists(video_name_split_path):
|
373 |
+
self.make_split_files()
|
374 |
+
video_name = json.load(open(video_name_split_path, 'r'))
|
375 |
+
self.video_frame_cnt = {v: len(os.listdir(os.path.join(self.data_path, v, 'frames'))) for v in video_name}
|
376 |
+
self.left_over = int(FPS * L + 1)
|
377 |
+
self.video_audio_path = {v: os.path.join(self.data_path, v, f'audio/{v}_resampled.wav') for v in video_name}
|
378 |
+
self.dataset = video_name
|
379 |
+
|
380 |
+
self.wav_transforms = transforms.Compose([
|
381 |
+
MakeMono(),
|
382 |
+
Padding(target_len=int(SR * self.L)),
|
383 |
+
])
|
384 |
+
|
385 |
+
self.spec_transforms = CropImage([mel_num, spec_crop_len], random_crop)
|
386 |
+
|
387 |
+
def __len__(self):
|
388 |
+
return len(self.dataset)
|
389 |
+
|
390 |
+
def __getitem__(self, idx):
|
391 |
+
item = {}
|
392 |
+
video = self.dataset[idx]
|
393 |
+
|
394 |
+
available_frame_idx = self.video_frame_cnt[video] - self.left_over
|
395 |
+
wave_path = self.video_audio_path[video]
|
396 |
+
if self.denoise:
|
397 |
+
wave_path = wave_path.replace('.wav', '_denoised.wav')
|
398 |
+
start_idx = torch.randint(0, available_frame_idx, (1,)).tolist()[0]
|
399 |
+
# target
|
400 |
+
start_t = (start_idx + 0.5) / FPS
|
401 |
+
start_audio_idx = non_negative(start_t * SR)
|
402 |
+
|
403 |
+
wav, _ = soundfile.read(wave_path, frames=int(SR * self.L), start=start_audio_idx)
|
404 |
+
|
405 |
+
wav = self.wav_transforms(wav)
|
406 |
+
|
407 |
+
item['image'] = wav # (44100,)
|
408 |
+
# item['wav'] = wav
|
409 |
+
item['file_path_wav_'] = wave_path
|
410 |
+
|
411 |
+
item['label'] = 'None'
|
412 |
+
item['target'] = 'None'
|
413 |
+
return item
|
414 |
+
|
415 |
+
def make_split_files(self):
|
416 |
+
raise NotImplementedError
|
417 |
+
|
418 |
+
class ImpactSetWaveWithSilentTrain(ImpactSetWaveWithSilent):
|
419 |
+
def __init__(self, specs_dataset_cfg):
|
420 |
+
super().__init__('train', **specs_dataset_cfg)
|
421 |
+
|
422 |
+
class ImpactSetWaveWithSilentValidation(ImpactSetWaveWithSilent):
|
423 |
+
def __init__(self, specs_dataset_cfg):
|
424 |
+
super().__init__('val', **specs_dataset_cfg)
|
425 |
+
|
426 |
+
class ImpactSetWaveWithSilentTest(ImpactSetWaveWithSilent):
|
427 |
+
def __init__(self, specs_dataset_cfg):
|
428 |
+
super().__init__('test', **specs_dataset_cfg)
|
429 |
+
|
430 |
+
|
431 |
+
class ImpactSetWaveCondOnImage(torch.utils.data.Dataset):
|
432 |
+
|
433 |
+
def __init__(self, split,
|
434 |
+
L=2.0, frame_transforms=None, denoise=False, splits_path='./data',
|
435 |
+
data_path='data/ImpactSet/impactset-proccess-resize',
|
436 |
+
p_outside_cond=0.):
|
437 |
+
super().__init__()
|
438 |
+
self.split = split
|
439 |
+
self.splits_path = splits_path
|
440 |
+
self.frame_transforms = frame_transforms
|
441 |
+
self.data_path = data_path
|
442 |
+
self.L = L
|
443 |
+
self.denoise = denoise
|
444 |
+
self.p_outside_cond = torch.tensor(p_outside_cond)
|
445 |
+
|
446 |
+
video_name_split_path = os.path.join(splits_path, f'countixAV_{split}.json')
|
447 |
+
if not os.path.exists(video_name_split_path):
|
448 |
+
self.make_split_files()
|
449 |
+
video_name = json.load(open(video_name_split_path, 'r'))
|
450 |
+
self.video_frame_cnt = {v: len(os.listdir(os.path.join(self.data_path, v, 'frames'))) for v in video_name}
|
451 |
+
self.left_over = int(FPS * L + 1)
|
452 |
+
for v, cnt in self.video_frame_cnt.items():
|
453 |
+
if cnt - (3*self.left_over) <= 0:
|
454 |
+
video_name.remove(v)
|
455 |
+
self.video_audio_path = {v: os.path.join(self.data_path, v, f'audio/{v}_resampled.wav') for v in video_name}
|
456 |
+
self.dataset = video_name
|
457 |
+
|
458 |
+
video_timing_split_path = os.path.join(splits_path, f'countixAV_{split}_timing.json')
|
459 |
+
self.video_timing = json.load(open(video_timing_split_path, 'r'))
|
460 |
+
self.video_timing = {v: [int(float(t) * FPS) for t in ts] for v, ts in self.video_timing.items()}
|
461 |
+
|
462 |
+
if split != 'test':
|
463 |
+
video_class_path = os.path.join(splits_path, f'countixAV_{split}_class.json')
|
464 |
+
if not os.path.exists(video_class_path):
|
465 |
+
self.make_video_class()
|
466 |
+
self.video_class = json.load(open(video_class_path, 'r'))
|
467 |
+
self.class2video = {}
|
468 |
+
for v, c in self.video_class.items():
|
469 |
+
if c not in self.class2video.keys():
|
470 |
+
self.class2video[c] = []
|
471 |
+
self.class2video[c].append(v)
|
472 |
+
|
473 |
+
self.wav_transforms = transforms.Compose([
|
474 |
+
MakeMono(),
|
475 |
+
Padding(target_len=int(SR * self.L)),
|
476 |
+
])
|
477 |
+
if self.frame_transforms == None:
|
478 |
+
self.frame_transforms = transforms.Compose([
|
479 |
+
Resize3D(128),
|
480 |
+
RandomResizedCrop3D(112, scale=(0.5, 1.0)),
|
481 |
+
RandomHorizontalFlip3D(),
|
482 |
+
ColorJitter3D(brightness=0.1, saturation=0.1),
|
483 |
+
ToTensor3D(),
|
484 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
485 |
+
std=[0.229, 0.224, 0.225]),
|
486 |
+
])
|
487 |
+
|
488 |
+
def make_video_class(self):
|
489 |
+
meta_path = f'data/ImpactSet/data-info/CountixAV_{self.split}.csv'
|
490 |
+
video_class = {}
|
491 |
+
with open(meta_path, 'r') as f:
|
492 |
+
reader = csv.reader(f)
|
493 |
+
for i, row in enumerate(reader):
|
494 |
+
if i == 0:
|
495 |
+
continue
|
496 |
+
vid, k_st, k_et = row[:3]
|
497 |
+
video_name = f'{vid}_{int(k_st):0>4d}_{int(k_et):0>4d}'
|
498 |
+
if video_name not in self.dataset:
|
499 |
+
continue
|
500 |
+
video_class[video_name] = row[-1]
|
501 |
+
with open(os.path.join(self.splits_path, f'countixAV_{self.split}_class.json'), 'w') as f:
|
502 |
+
json.dump(video_class, f)
|
503 |
+
|
504 |
+
def __len__(self):
|
505 |
+
return len(self.dataset)
|
506 |
+
|
507 |
+
def __getitem__(self, idx):
|
508 |
+
item = {}
|
509 |
+
video = self.dataset[idx]
|
510 |
+
|
511 |
+
available_frame_idx = self.video_frame_cnt[video] - self.left_over
|
512 |
+
rep_start_idx, rep_end_idx = self.video_timing[video]
|
513 |
+
rep_end_idx = min(available_frame_idx, rep_end_idx)
|
514 |
+
if available_frame_idx <= rep_start_idx + self.L * FPS:
|
515 |
+
idx_set = list(range(0, available_frame_idx))
|
516 |
+
else:
|
517 |
+
idx_set = list(range(rep_start_idx, rep_end_idx))
|
518 |
+
start_idx = sample(idx_set, k=1)[0]
|
519 |
+
|
520 |
+
wave_path = self.video_audio_path[video]
|
521 |
+
if self.denoise:
|
522 |
+
wave_path = wave_path.replace('.wav', '_denoised.wav')
|
523 |
+
|
524 |
+
# target
|
525 |
+
start_t = (start_idx + 0.5) / FPS
|
526 |
+
end_idx= non_negative(start_idx + FPS * self.L)
|
527 |
+
start_audio_idx = non_negative(start_t * SR)
|
528 |
+
wav, sr = soundfile.read(wave_path, frames=int(SR * self.L), start=start_audio_idx)
|
529 |
+
assert sr == SR
|
530 |
+
wav = self.wav_transforms(wav)
|
531 |
+
frame_path = os.path.join(self.data_path, video, 'frames')
|
532 |
+
frames = [Image.open(os.path.join(
|
533 |
+
frame_path, f'frame{i+1:0>6d}.jpg')).convert('RGB') for i in
|
534 |
+
range(start_idx, end_idx)]
|
535 |
+
|
536 |
+
if torch.all(torch.bernoulli(self.p_outside_cond) == 1.) and self.split != 'test':
|
537 |
+
# outside from the same class
|
538 |
+
cur_class = self.video_class[video]
|
539 |
+
tmp_video = copy.copy(self.class2video[cur_class])
|
540 |
+
if len(tmp_video) > 1:
|
541 |
+
# if only 1 video in the class, use itself
|
542 |
+
tmp_video.remove(video)
|
543 |
+
cond_video = sample(tmp_video, k=1)[0]
|
544 |
+
cond_available_frame_idx = self.video_frame_cnt[cond_video] - self.left_over
|
545 |
+
cond_start_idx = torch.randint(0, cond_available_frame_idx, (1,)).tolist()[0]
|
546 |
+
else:
|
547 |
+
cond_video = video
|
548 |
+
idx_set = list(range(0, start_idx)) + list(range(end_idx, available_frame_idx))
|
549 |
+
cond_start_idx = random.sample(idx_set, k=1)[0]
|
550 |
+
|
551 |
+
cond_end_idx = non_negative(cond_start_idx + FPS * self.L)
|
552 |
+
cond_start_t = (cond_start_idx + 0.5) / FPS
|
553 |
+
cond_audio_idx = non_negative(cond_start_t * SR)
|
554 |
+
cond_frame_path = os.path.join(self.data_path, cond_video, 'frames')
|
555 |
+
cond_wave_path = self.video_audio_path[cond_video]
|
556 |
+
|
557 |
+
cond_frames = [Image.open(os.path.join(
|
558 |
+
cond_frame_path, f'frame{i+1:0>6d}.jpg')).convert('RGB') for i in
|
559 |
+
range(cond_start_idx, cond_end_idx)]
|
560 |
+
cond_wav, sr = soundfile.read(cond_wave_path, frames=int(SR * self.L), start=cond_audio_idx)
|
561 |
+
assert sr == SR
|
562 |
+
cond_wav = self.wav_transforms(cond_wav)
|
563 |
+
|
564 |
+
item['image'] = wav # (44100,)
|
565 |
+
item['cond_image'] = cond_wav # (44100,)
|
566 |
+
item['file_path_wav_'] = wave_path
|
567 |
+
item['file_path_cond_wav_'] = cond_wave_path
|
568 |
+
|
569 |
+
if self.frame_transforms is not None:
|
570 |
+
cond_frames = self.frame_transforms(cond_frames)
|
571 |
+
frames = self.frame_transforms(frames)
|
572 |
+
|
573 |
+
item['feature'] = np.stack(cond_frames + frames, axis=0) # (30 * L, 112, 112, 3)
|
574 |
+
item['file_path_feats_'] = (frame_path, start_idx)
|
575 |
+
item['file_path_cond_feats_'] = (cond_frame_path, cond_start_idx)
|
576 |
+
|
577 |
+
item['label'] = 'None'
|
578 |
+
item['target'] = 'None'
|
579 |
+
|
580 |
+
return item
|
581 |
+
|
582 |
+
def make_split_files(self):
|
583 |
+
raise NotImplementedError
|
584 |
+
|
585 |
+
|
586 |
+
class ImpactSetWaveCondOnImageTrain(ImpactSetWaveCondOnImage):
|
587 |
+
def __init__(self, dataset_cfg):
|
588 |
+
train_transforms = transforms.Compose([
|
589 |
+
Resize3D(128),
|
590 |
+
RandomResizedCrop3D(112, scale=(0.5, 1.0)),
|
591 |
+
RandomHorizontalFlip3D(),
|
592 |
+
ColorJitter3D(brightness=0.4, saturation=0.4, contrast=0.2, hue=0.1),
|
593 |
+
ToTensor3D(),
|
594 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
595 |
+
std=[0.229, 0.224, 0.225]),
|
596 |
+
])
|
597 |
+
super().__init__('train', frame_transforms=train_transforms, **dataset_cfg)
|
598 |
+
|
599 |
+
class ImpactSetWaveCondOnImageValidation(ImpactSetWaveCondOnImage):
|
600 |
+
def __init__(self, dataset_cfg):
|
601 |
+
valid_transforms = transforms.Compose([
|
602 |
+
Resize3D(128),
|
603 |
+
CenterCrop3D(112),
|
604 |
+
ToTensor3D(),
|
605 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
606 |
+
std=[0.229, 0.224, 0.225]),
|
607 |
+
])
|
608 |
+
super().__init__('val', frame_transforms=valid_transforms, **dataset_cfg)
|
609 |
+
|
610 |
+
class ImpactSetWaveCondOnImageTest(ImpactSetWaveCondOnImage):
|
611 |
+
def __init__(self, dataset_cfg):
|
612 |
+
test_transforms = transforms.Compose([
|
613 |
+
Resize3D(128),
|
614 |
+
CenterCrop3D(112),
|
615 |
+
ToTensor3D(),
|
616 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
617 |
+
std=[0.229, 0.224, 0.225]),
|
618 |
+
])
|
619 |
+
super().__init__('test', frame_transforms=test_transforms, **dataset_cfg)
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
class ImpactSetCleanWaveCondOnImage(ImpactSetWaveCondOnImage):
|
624 |
+
def __init__(self, split, L=2, frame_transforms=None, denoise=False, splits_path='./data', data_path='data/ImpactSet/impactset-proccess-resize', p_outside_cond=0):
|
625 |
+
super().__init__(split, L, frame_transforms, denoise, splits_path, data_path, p_outside_cond)
|
626 |
+
pred_timing_path = f'data/countixAV_{split}_timing_processed_0.20.json'
|
627 |
+
assert os.path.exists(pred_timing_path)
|
628 |
+
self.pred_timing = json.load(open(pred_timing_path, 'r'))
|
629 |
+
|
630 |
+
self.dataset = []
|
631 |
+
for v, ts in self.pred_timing.items():
|
632 |
+
if v in self.video_audio_path.keys():
|
633 |
+
for t in ts:
|
634 |
+
self.dataset.append([v, t])
|
635 |
+
|
636 |
+
def __getitem__(self, idx):
|
637 |
+
item = {}
|
638 |
+
video, start_t = self.dataset[idx]
|
639 |
+
available_frame_idx = self.video_frame_cnt[video] - self.left_over
|
640 |
+
available_timing = (available_frame_idx + 0.5) / FPS
|
641 |
+
start_t = float(start_t)
|
642 |
+
start_t = min(start_t, available_timing)
|
643 |
+
|
644 |
+
start_idx = non_negative(start_t * FPS - 0.5)
|
645 |
+
|
646 |
+
wave_path = self.video_audio_path[video]
|
647 |
+
if self.denoise:
|
648 |
+
wave_path = wave_path.replace('.wav', '_denoised.wav')
|
649 |
+
|
650 |
+
# target
|
651 |
+
end_idx= non_negative(start_idx + FPS * self.L)
|
652 |
+
start_audio_idx = non_negative(start_t * SR)
|
653 |
+
wav, sr = soundfile.read(wave_path, frames=int(SR * self.L), start=start_audio_idx)
|
654 |
+
assert sr == SR
|
655 |
+
wav = self.wav_transforms(wav)
|
656 |
+
frame_path = os.path.join(self.data_path, video, 'frames')
|
657 |
+
frames = [Image.open(os.path.join(
|
658 |
+
frame_path, f'frame{i+1:0>6d}.jpg')).convert('RGB') for i in
|
659 |
+
range(start_idx, end_idx)]
|
660 |
+
|
661 |
+
if torch.all(torch.bernoulli(self.p_outside_cond) == 1.):
|
662 |
+
other_video = list(self.pred_timing.keys())
|
663 |
+
other_video.remove(video)
|
664 |
+
cond_video = sample(other_video, k=1)[0]
|
665 |
+
cond_available_frame_idx = self.video_frame_cnt[cond_video] - self.left_over
|
666 |
+
cond_available_timing = (cond_available_frame_idx + 0.5) / FPS
|
667 |
+
else:
|
668 |
+
cond_video = video
|
669 |
+
cond_available_timing = available_timing
|
670 |
+
|
671 |
+
cond_start_t = sample(self.pred_timing[cond_video], k=1)[0]
|
672 |
+
cond_start_t = float(cond_start_t)
|
673 |
+
cond_start_t = min(cond_start_t, cond_available_timing)
|
674 |
+
cond_start_idx = non_negative(cond_start_t * FPS - 0.5)
|
675 |
+
cond_end_idx = non_negative(cond_start_idx + FPS * self.L)
|
676 |
+
cond_audio_idx = non_negative(cond_start_t * SR)
|
677 |
+
cond_frame_path = os.path.join(self.data_path, cond_video, 'frames')
|
678 |
+
cond_wave_path = self.video_audio_path[cond_video]
|
679 |
+
|
680 |
+
cond_frames = [Image.open(os.path.join(
|
681 |
+
cond_frame_path, f'frame{i+1:0>6d}.jpg')).convert('RGB') for i in
|
682 |
+
range(cond_start_idx, cond_end_idx)]
|
683 |
+
cond_wav, sr = soundfile.read(cond_wave_path, frames=int(SR * self.L), start=cond_audio_idx)
|
684 |
+
assert sr == SR
|
685 |
+
cond_wav = self.wav_transforms(cond_wav)
|
686 |
+
|
687 |
+
item['image'] = wav # (44100,)
|
688 |
+
item['cond_image'] = cond_wav # (44100,)
|
689 |
+
item['file_path_wav_'] = wave_path
|
690 |
+
item['file_path_cond_wav_'] = cond_wave_path
|
691 |
+
|
692 |
+
if self.frame_transforms is not None:
|
693 |
+
cond_frames = self.frame_transforms(cond_frames)
|
694 |
+
frames = self.frame_transforms(frames)
|
695 |
+
|
696 |
+
item['feature'] = np.stack(cond_frames + frames, axis=0) # (30 * L, 112, 112, 3)
|
697 |
+
item['file_path_feats_'] = (frame_path, start_idx)
|
698 |
+
item['file_path_cond_feats_'] = (cond_frame_path, cond_start_idx)
|
699 |
+
|
700 |
+
item['label'] = 'None'
|
701 |
+
item['target'] = 'None'
|
702 |
+
|
703 |
+
return item
|
704 |
+
|
705 |
+
|
706 |
+
class ImpactSetCleanWaveCondOnImageTrain(ImpactSetCleanWaveCondOnImage):
|
707 |
+
def __init__(self, dataset_cfg):
|
708 |
+
train_transforms = transforms.Compose([
|
709 |
+
Resize3D(128),
|
710 |
+
RandomResizedCrop3D(112, scale=(0.5, 1.0)),
|
711 |
+
RandomHorizontalFlip3D(),
|
712 |
+
ColorJitter3D(brightness=0.4, saturation=0.4, contrast=0.2, hue=0.1),
|
713 |
+
ToTensor3D(),
|
714 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
715 |
+
std=[0.229, 0.224, 0.225]),
|
716 |
+
])
|
717 |
+
super().__init__('train', frame_transforms=train_transforms, **dataset_cfg)
|
718 |
+
|
719 |
+
class ImpactSetCleanWaveCondOnImageValidation(ImpactSetCleanWaveCondOnImage):
|
720 |
+
def __init__(self, dataset_cfg):
|
721 |
+
valid_transforms = transforms.Compose([
|
722 |
+
Resize3D(128),
|
723 |
+
CenterCrop3D(112),
|
724 |
+
ToTensor3D(),
|
725 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
726 |
+
std=[0.229, 0.224, 0.225]),
|
727 |
+
])
|
728 |
+
super().__init__('val', frame_transforms=valid_transforms, **dataset_cfg)
|
729 |
+
|
730 |
+
class ImpactSetCleanWaveCondOnImageTest(ImpactSetCleanWaveCondOnImage):
|
731 |
+
def __init__(self, dataset_cfg):
|
732 |
+
test_transforms = transforms.Compose([
|
733 |
+
Resize3D(128),
|
734 |
+
CenterCrop3D(112),
|
735 |
+
ToTensor3D(),
|
736 |
+
Normalize3D(mean=[0.485, 0.456, 0.406],
|
737 |
+
std=[0.229, 0.224, 0.225]),
|
738 |
+
])
|
739 |
+
super().__init__('test', frame_transforms=test_transforms, **dataset_cfg)
|
740 |
+
|
741 |
+
|
742 |
+
if __name__ == '__main__':
|
743 |
+
import sys
|
744 |
+
|
745 |
+
from omegaconf import OmegaConf
|
746 |
+
cfg = OmegaConf.load('configs/countixAV_transformer_denoise_clean.yaml')
|
747 |
+
data = instantiate_from_config(cfg.data)
|
748 |
+
data.prepare_data()
|
749 |
+
data.setup()
|
750 |
+
|
751 |
+
print(data.datasets['train'])
|
752 |
+
print(len(data.datasets['train']))
|
753 |
+
# print(data.datasets['train'][24])
|
754 |
+
exit()
|
755 |
+
|
756 |
+
stats = []
|
757 |
+
torch.manual_seed(0)
|
758 |
+
np.random.seed(0)
|
759 |
+
random.seed = 0
|
760 |
+
for k in range(1):
|
761 |
+
x = np.arange(SR * 2)
|
762 |
+
for i in tqdm(range(len(data.datasets['train']))):
|
763 |
+
wav = data.datasets['train'][i]['wav']
|
764 |
+
spec = data.datasets['train'][i]['image']
|
765 |
+
spec = 0.5 * (spec + 1)
|
766 |
+
spec_rms = rms(spec)
|
767 |
+
stats.append(float(spec_rms))
|
768 |
+
# plt.plot(x, wav)
|
769 |
+
# plt.ylim(-1, 1)
|
770 |
+
# plt.savefig(f'tmp/th0.1_wav_e_{k}_{i}_{mean_val:.3f}_{spec_rms:.3f}.png')
|
771 |
+
# plt.close()
|
772 |
+
# plt.cla()
|
773 |
+
soundfile.write(f'tmp/wav_e_{k}_{i}_{spec_rms:.3f}.wav', wav, SR)
|
774 |
+
draw_spec(spec, f'tmp/wav_spec_e_{k}_{i}_{spec_rms:.3f}.png')
|
775 |
+
if i == 100:
|
776 |
+
break
|
777 |
+
# plt.hist(stats, bins=50)
|
778 |
+
# plt.savefig(f'tmp/rms_spec_stats.png')
|
foleycrafter/models/specvqgan/data/transforms.py
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import torchaudio.functional
|
4 |
+
from torchvision import transforms
|
5 |
+
import torchvision.transforms.functional as F
|
6 |
+
import torch.nn as nn
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
import random
|
11 |
+
import soundfile
|
12 |
+
import os
|
13 |
+
import librosa
|
14 |
+
import albumentations
|
15 |
+
from torch_pitch_shift import *
|
16 |
+
|
17 |
+
SR = 22050
|
18 |
+
|
19 |
+
class ResizeShortSide(object):
|
20 |
+
def __init__(self, size):
|
21 |
+
super().__init__()
|
22 |
+
self.size = size
|
23 |
+
|
24 |
+
def __call__(self, x):
|
25 |
+
'''
|
26 |
+
x must be PIL.Image
|
27 |
+
'''
|
28 |
+
w, h = x.size
|
29 |
+
short_side = min(w, h)
|
30 |
+
w_target = int((w / short_side) * self.size)
|
31 |
+
h_target = int((h / short_side) * self.size)
|
32 |
+
return x.resize((w_target, h_target))
|
33 |
+
|
34 |
+
|
35 |
+
class Crop(object):
|
36 |
+
def __init__(self, cropped_shape=None, random_crop=False):
|
37 |
+
self.cropped_shape = cropped_shape
|
38 |
+
if cropped_shape is not None:
|
39 |
+
mel_num, spec_len = cropped_shape
|
40 |
+
if random_crop:
|
41 |
+
self.cropper = albumentations.RandomCrop
|
42 |
+
else:
|
43 |
+
self.cropper = albumentations.CenterCrop
|
44 |
+
self.preprocessor = albumentations.Compose([self.cropper(mel_num, spec_len)])
|
45 |
+
else:
|
46 |
+
self.preprocessor = lambda **kwargs: kwargs
|
47 |
+
|
48 |
+
def __call__(self, item):
|
49 |
+
item['image'] = self.preprocessor(image=item['image'])['image']
|
50 |
+
if 'cond_image' in item.keys():
|
51 |
+
item['cond_image'] = self.preprocessor(image=item['cond_image'])['image']
|
52 |
+
return item
|
53 |
+
|
54 |
+
class CropImage(Crop):
|
55 |
+
def __init__(self, *crop_args):
|
56 |
+
super().__init__(*crop_args)
|
57 |
+
|
58 |
+
class CropFeats(Crop):
|
59 |
+
def __init__(self, *crop_args):
|
60 |
+
super().__init__(*crop_args)
|
61 |
+
|
62 |
+
def __call__(self, item):
|
63 |
+
item['feature'] = self.preprocessor(image=item['feature'])['image']
|
64 |
+
return item
|
65 |
+
|
66 |
+
class CropCoords(Crop):
|
67 |
+
def __init__(self, *crop_args):
|
68 |
+
super().__init__(*crop_args)
|
69 |
+
|
70 |
+
def __call__(self, item):
|
71 |
+
item['coord'] = self.preprocessor(image=item['coord'])['image']
|
72 |
+
return item
|
73 |
+
|
74 |
+
|
75 |
+
class RandomResizedCrop3D(nn.Module):
|
76 |
+
"""Crop the given series of images to random size and aspect ratio.
|
77 |
+
The image can be a PIL Images or a Tensor, in which case it is expected
|
78 |
+
to have [N, ..., H, W] shape, where ... means an arbitrary number of leading dimensions
|
79 |
+
|
80 |
+
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
|
81 |
+
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
|
82 |
+
is finally resized to given size.
|
83 |
+
This is popularly used to train the Inception networks.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
size (int or sequence): expected output size of each edge. If size is an
|
87 |
+
int instead of sequence like (h, w), a square output size ``(size, size)`` is
|
88 |
+
made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
|
89 |
+
scale (tuple of float): range of size of the origin size cropped
|
90 |
+
ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
|
91 |
+
interpolation (int): Desired interpolation enum defined by `filters`_.
|
92 |
+
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
|
93 |
+
and ``PIL.Image.BICUBIC`` are supported.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=transforms.InterpolationMode.BILINEAR):
|
97 |
+
super().__init__()
|
98 |
+
if isinstance(size, tuple) and len(size) == 2:
|
99 |
+
self.size = size
|
100 |
+
else:
|
101 |
+
self.size = (size, size)
|
102 |
+
|
103 |
+
self.interpolation = interpolation
|
104 |
+
self.scale = scale
|
105 |
+
self.ratio = ratio
|
106 |
+
|
107 |
+
@staticmethod
|
108 |
+
def get_params(img, scale, ratio):
|
109 |
+
"""Get parameters for ``crop`` for a random sized crop.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
img (PIL Image or Tensor): Input image.
|
113 |
+
scale (list): range of scale of the origin size cropped
|
114 |
+
ratio (list): range of aspect ratio of the origin aspect ratio cropped
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
|
118 |
+
sized crop.
|
119 |
+
"""
|
120 |
+
width, height = img.size
|
121 |
+
area = height * width
|
122 |
+
|
123 |
+
for _ in range(10):
|
124 |
+
target_area = area * \
|
125 |
+
torch.empty(1).uniform_(scale[0], scale[1]).item()
|
126 |
+
log_ratio = torch.log(torch.tensor(ratio))
|
127 |
+
aspect_ratio = torch.exp(
|
128 |
+
torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
|
129 |
+
).item()
|
130 |
+
|
131 |
+
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
132 |
+
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
133 |
+
|
134 |
+
if 0 < w <= width and 0 < h <= height:
|
135 |
+
i = torch.randint(0, height - h + 1, size=(1,)).item()
|
136 |
+
j = torch.randint(0, width - w + 1, size=(1,)).item()
|
137 |
+
return i, j, h, w
|
138 |
+
|
139 |
+
# Fallback to central crop
|
140 |
+
in_ratio = float(width) / float(height)
|
141 |
+
if in_ratio < min(ratio):
|
142 |
+
w = width
|
143 |
+
h = int(round(w / min(ratio)))
|
144 |
+
elif in_ratio > max(ratio):
|
145 |
+
h = height
|
146 |
+
w = int(round(h * max(ratio)))
|
147 |
+
else: # whole image
|
148 |
+
w = width
|
149 |
+
h = height
|
150 |
+
i = (height - h) // 2
|
151 |
+
j = (width - w) // 2
|
152 |
+
return i, j, h, w
|
153 |
+
|
154 |
+
def forward(self, imgs):
|
155 |
+
"""
|
156 |
+
Args:
|
157 |
+
img (PIL Image or Tensor): Image to be cropped and resized.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
PIL Image or Tensor: Randomly cropped and resized image.
|
161 |
+
"""
|
162 |
+
i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio)
|
163 |
+
return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation) for img in imgs]
|
164 |
+
|
165 |
+
|
166 |
+
class Resize3D(object):
|
167 |
+
def __init__(self, size):
|
168 |
+
super().__init__()
|
169 |
+
self.size = size
|
170 |
+
|
171 |
+
def __call__(self, imgs):
|
172 |
+
'''
|
173 |
+
x must be PIL.Image
|
174 |
+
'''
|
175 |
+
return [x.resize((self.size, self.size)) for x in imgs]
|
176 |
+
|
177 |
+
|
178 |
+
class RandomHorizontalFlip3D(object):
|
179 |
+
def __init__(self, p=0.5):
|
180 |
+
super().__init__()
|
181 |
+
self.p = p
|
182 |
+
|
183 |
+
def __call__(self, imgs):
|
184 |
+
'''
|
185 |
+
x must be PIL.Image
|
186 |
+
'''
|
187 |
+
if np.random.rand() < self.p:
|
188 |
+
return [x.transpose(Image.FLIP_LEFT_RIGHT) for x in imgs]
|
189 |
+
else:
|
190 |
+
return imgs
|
191 |
+
|
192 |
+
|
193 |
+
class ColorJitter3D(torch.nn.Module):
|
194 |
+
"""Randomly change the brightness, contrast and saturation of an image.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
brightness (float or tuple of float (min, max)): How much to jitter brightness.
|
198 |
+
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
|
199 |
+
or the given [min, max]. Should be non negative numbers.
|
200 |
+
contrast (float or tuple of float (min, max)): How much to jitter contrast.
|
201 |
+
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
|
202 |
+
or the given [min, max]. Should be non negative numbers.
|
203 |
+
saturation (float or tuple of float (min, max)): How much to jitter saturation.
|
204 |
+
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
|
205 |
+
or the given [min, max]. Should be non negative numbers.
|
206 |
+
hue (float or tuple of float (min, max)): How much to jitter hue.
|
207 |
+
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
|
208 |
+
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
|
212 |
+
super().__init__()
|
213 |
+
self.brightness = (1-brightness, 1+brightness)
|
214 |
+
self.contrast = (1-contrast, 1+contrast)
|
215 |
+
self.saturation = (1-saturation, 1+saturation)
|
216 |
+
self.hue = (0-hue, 0+hue)
|
217 |
+
|
218 |
+
@staticmethod
|
219 |
+
def get_params(brightness, contrast, saturation, hue):
|
220 |
+
"""Get a randomized transform to be applied on image.
|
221 |
+
|
222 |
+
Arguments are same as that of __init__.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
Transform which randomly adjusts brightness, contrast and
|
226 |
+
saturation in a random order.
|
227 |
+
"""
|
228 |
+
tfs = []
|
229 |
+
|
230 |
+
if brightness is not None:
|
231 |
+
brightness_factor = random.uniform(brightness[0], brightness[1])
|
232 |
+
tfs.append(transforms.Lambda(
|
233 |
+
lambda img: F.adjust_brightness(img, brightness_factor)))
|
234 |
+
|
235 |
+
if contrast is not None:
|
236 |
+
contrast_factor = random.uniform(contrast[0], contrast[1])
|
237 |
+
tfs.append(transforms.Lambda(
|
238 |
+
lambda img: F.adjust_contrast(img, contrast_factor)))
|
239 |
+
|
240 |
+
if saturation is not None:
|
241 |
+
saturation_factor = random.uniform(saturation[0], saturation[1])
|
242 |
+
tfs.append(transforms.Lambda(
|
243 |
+
lambda img: F.adjust_saturation(img, saturation_factor)))
|
244 |
+
|
245 |
+
if hue is not None:
|
246 |
+
hue_factor = random.uniform(hue[0], hue[1])
|
247 |
+
tfs.append(transforms.Lambda(
|
248 |
+
lambda img: F.adjust_hue(img, hue_factor)))
|
249 |
+
|
250 |
+
random.shuffle(tfs)
|
251 |
+
transform = transforms.Compose(tfs)
|
252 |
+
|
253 |
+
return transform
|
254 |
+
|
255 |
+
def forward(self, imgs):
|
256 |
+
"""
|
257 |
+
Args:
|
258 |
+
img (PIL Image or Tensor): Input image.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
PIL Image or Tensor: Color jittered image.
|
262 |
+
"""
|
263 |
+
transform = self.get_params(
|
264 |
+
self.brightness, self.contrast, self.saturation, self.hue)
|
265 |
+
return [transform(img) for img in imgs]
|
266 |
+
|
267 |
+
|
268 |
+
class ToTensor3D(object):
|
269 |
+
def __init__(self):
|
270 |
+
super().__init__()
|
271 |
+
|
272 |
+
def __call__(self, imgs):
|
273 |
+
'''
|
274 |
+
x must be PIL.Image
|
275 |
+
'''
|
276 |
+
return [F.to_tensor(img) for img in imgs]
|
277 |
+
|
278 |
+
|
279 |
+
class Normalize3D(object):
|
280 |
+
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], inplace=False):
|
281 |
+
super().__init__()
|
282 |
+
self.mean = mean
|
283 |
+
self.std = std
|
284 |
+
self.inplace = inplace
|
285 |
+
|
286 |
+
def __call__(self, imgs):
|
287 |
+
'''
|
288 |
+
x must be PIL.Image
|
289 |
+
'''
|
290 |
+
return [F.normalize(img, self.mean, self.std, self.inplace) for img in imgs]
|
291 |
+
|
292 |
+
|
293 |
+
class CenterCrop3D(object):
|
294 |
+
def __init__(self, size):
|
295 |
+
super().__init__()
|
296 |
+
self.size = size
|
297 |
+
|
298 |
+
def __call__(self, imgs):
|
299 |
+
'''
|
300 |
+
x must be PIL.Image
|
301 |
+
'''
|
302 |
+
return [F.center_crop(img, self.size) for img in imgs]
|
303 |
+
|
304 |
+
|
305 |
+
class FrequencyMasking(object):
|
306 |
+
def __init__(self, freq_mask_param: int, iid_masks: bool = False):
|
307 |
+
super().__init__()
|
308 |
+
self.masking = torchaudio.transforms.FrequencyMasking(freq_mask_param, iid_masks)
|
309 |
+
|
310 |
+
def __call__(self, item):
|
311 |
+
if 'cond_image' in item.keys():
|
312 |
+
batched_spec = torch.stack(
|
313 |
+
[torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0
|
314 |
+
)[:, None] # (2, 1, H, W)
|
315 |
+
masked = self.masking(batched_spec).numpy()
|
316 |
+
item['image'] = masked[0, 0]
|
317 |
+
item['cond_image'] = masked[1, 0]
|
318 |
+
elif 'image' in item.keys():
|
319 |
+
inp = torch.tensor(item['image'])
|
320 |
+
item['image'] = self.masking(inp).numpy()
|
321 |
+
else:
|
322 |
+
raise NotImplementedError()
|
323 |
+
return item
|
324 |
+
|
325 |
+
|
326 |
+
class TimeMasking(object):
|
327 |
+
def __init__(self, time_mask_param: int, iid_masks: bool = False):
|
328 |
+
super().__init__()
|
329 |
+
self.masking = torchaudio.transforms.TimeMasking(time_mask_param, iid_masks)
|
330 |
+
|
331 |
+
def __call__(self, item):
|
332 |
+
if 'cond_image' in item.keys():
|
333 |
+
batched_spec = torch.stack(
|
334 |
+
[torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0
|
335 |
+
)[:, None] # (2, 1, H, W)
|
336 |
+
masked = self.masking(batched_spec).numpy()
|
337 |
+
item['image'] = masked[0, 0]
|
338 |
+
item['cond_image'] = masked[1, 0]
|
339 |
+
elif 'image' in item.keys():
|
340 |
+
inp = torch.tensor(item['image'])
|
341 |
+
item['image'] = self.masking(inp).numpy()
|
342 |
+
else:
|
343 |
+
raise NotImplementedError()
|
344 |
+
return item
|
345 |
+
|
346 |
+
|
347 |
+
class PitchShift(nn.Module):
|
348 |
+
|
349 |
+
def __init__(self, up=12, down=-12, sample_rate=SR):
|
350 |
+
super().__init__()
|
351 |
+
self.range = (down, up)
|
352 |
+
self.sr = sample_rate
|
353 |
+
|
354 |
+
def forward(self, x):
|
355 |
+
assert len(x.shape) == 2
|
356 |
+
x = x[:, None, :]
|
357 |
+
ratio = float(random.randint(self.range[0], self.range[1]) / 12.)
|
358 |
+
shifted = pitch_shift(x, ratio, self.sr)
|
359 |
+
return shifted.squeeze()
|
360 |
+
|
361 |
+
|
362 |
+
class MelSpectrogram(object):
|
363 |
+
def __init__(self, sr, nfft, fmin, fmax, nmels, hoplen, spec_power, inverse=False):
|
364 |
+
self.sr = sr
|
365 |
+
self.nfft = nfft
|
366 |
+
self.fmin = fmin
|
367 |
+
self.fmax = fmax
|
368 |
+
self.nmels = nmels
|
369 |
+
self.hoplen = hoplen
|
370 |
+
self.spec_power = spec_power
|
371 |
+
self.inverse = inverse
|
372 |
+
|
373 |
+
self.mel_basis = librosa.filters.mel(sr=sr, n_fft=nfft, fmin=fmin, fmax=fmax, n_mels=nmels)
|
374 |
+
|
375 |
+
def __call__(self, x):
|
376 |
+
x = x.numpy()
|
377 |
+
if self.inverse:
|
378 |
+
spec = librosa.feature.inverse.mel_to_stft(
|
379 |
+
x, sr=self.sr, n_fft=self.nfft, fmin=self.fmin, fmax=self.fmax, power=self.spec_power
|
380 |
+
)
|
381 |
+
wav = librosa.griffinlim(spec, hop_length=self.hoplen)
|
382 |
+
return torch.FloatTensor(wav)
|
383 |
+
else:
|
384 |
+
spec = np.abs(librosa.stft(x, n_fft=self.nfft, hop_length=self.hoplen)) ** self.spec_power
|
385 |
+
mel_spec = np.dot(self.mel_basis, spec)
|
386 |
+
return torch.FloatTensor(mel_spec)
|
387 |
+
|
388 |
+
class SpectrogramTorchAudio(object):
|
389 |
+
def __init__(self, nfft, hoplen, spec_power, inverse=False):
|
390 |
+
self.nfft = nfft
|
391 |
+
self.hoplen = hoplen
|
392 |
+
self.spec_power = spec_power
|
393 |
+
self.inverse = inverse
|
394 |
+
|
395 |
+
self.spec_trans = torchaudio.transforms.Spectrogram(
|
396 |
+
n_fft=self.nfft,
|
397 |
+
hop_length=self.hoplen,
|
398 |
+
power=self.spec_power,
|
399 |
+
)
|
400 |
+
self.inv_spec_trans = torchaudio.transforms.GriffinLim(
|
401 |
+
n_fft=self.nfft,
|
402 |
+
hop_length=self.hoplen,
|
403 |
+
power=self.spec_power,
|
404 |
+
)
|
405 |
+
|
406 |
+
def __call__(self, x):
|
407 |
+
if self.inverse:
|
408 |
+
wav = self.inv_spec_trans(x)
|
409 |
+
return wav
|
410 |
+
else:
|
411 |
+
spec = torch.abs(self.spec_trans(x))
|
412 |
+
return spec
|
413 |
+
|
414 |
+
|
415 |
+
class MelScaleTorchAudio(object):
|
416 |
+
def __init__(self, sr, stft, fmin, fmax, nmels, inverse=False):
|
417 |
+
self.sr = sr
|
418 |
+
self.stft = stft
|
419 |
+
self.fmin = fmin
|
420 |
+
self.fmax = fmax
|
421 |
+
self.nmels = nmels
|
422 |
+
self.inverse = inverse
|
423 |
+
|
424 |
+
self.mel_trans = torchaudio.transforms.MelScale(
|
425 |
+
n_mels=self.nmels,
|
426 |
+
sample_rate=self.sr,
|
427 |
+
f_min=self.fmin,
|
428 |
+
f_max=self.fmax,
|
429 |
+
n_stft=self.stft,
|
430 |
+
norm='slaney'
|
431 |
+
)
|
432 |
+
self.inv_mel_trans = torchaudio.transforms.InverseMelScale(
|
433 |
+
n_mels=self.nmels,
|
434 |
+
sample_rate=self.sr,
|
435 |
+
f_min=self.fmin,
|
436 |
+
f_max=self.fmax,
|
437 |
+
n_stft=self.stft,
|
438 |
+
norm='slaney'
|
439 |
+
)
|
440 |
+
|
441 |
+
def __call__(self, x):
|
442 |
+
if self.inverse:
|
443 |
+
spec = self.inv_mel_trans(x)
|
444 |
+
return spec
|
445 |
+
else:
|
446 |
+
mel_spec = self.mel_trans(x)
|
447 |
+
return mel_spec
|
448 |
+
|
449 |
+
class Padding(object):
|
450 |
+
def __init__(self, target_len, inverse=False):
|
451 |
+
self.target_len=int(target_len)
|
452 |
+
self.inverse = inverse
|
453 |
+
|
454 |
+
def __call__(self, x):
|
455 |
+
if self.inverse:
|
456 |
+
return x
|
457 |
+
else:
|
458 |
+
x = x.squeeze()
|
459 |
+
if x.shape[0] < self.target_len:
|
460 |
+
pad = torch.zeros((self.target_len,), dtype=x.dtype, device=x.device)
|
461 |
+
pad[:x.shape[0]] = x
|
462 |
+
x = pad
|
463 |
+
elif x.shape[0] > self.target_len:
|
464 |
+
raise NotImplementedError()
|
465 |
+
return x
|
466 |
+
|
467 |
+
class MakeMono(object):
|
468 |
+
def __init__(self, inverse=False):
|
469 |
+
self.inverse = inverse
|
470 |
+
|
471 |
+
def __call__(self, x):
|
472 |
+
if self.inverse:
|
473 |
+
return x
|
474 |
+
else:
|
475 |
+
x = x.squeeze()
|
476 |
+
if len(x.shape) == 1:
|
477 |
+
return torch.FloatTensor(x)
|
478 |
+
elif len(x.shape) == 2:
|
479 |
+
target_dim = int(torch.argmin(torch.tensor(x.shape)))
|
480 |
+
return torch.mean(x, dim=target_dim)
|
481 |
+
else:
|
482 |
+
raise NotImplementedError
|
483 |
+
|
484 |
+
class LowerThresh(object):
|
485 |
+
def __init__(self, min_val, inverse=False):
|
486 |
+
self.min_val = torch.tensor(min_val)
|
487 |
+
self.inverse = inverse
|
488 |
+
|
489 |
+
def __call__(self, x):
|
490 |
+
if self.inverse:
|
491 |
+
return x
|
492 |
+
else:
|
493 |
+
return torch.maximum(self.min_val, x)
|
494 |
+
|
495 |
+
class Add(object):
|
496 |
+
def __init__(self, val, inverse=False):
|
497 |
+
self.inverse = inverse
|
498 |
+
self.val = val
|
499 |
+
|
500 |
+
def __call__(self, x):
|
501 |
+
if self.inverse:
|
502 |
+
return x - self.val
|
503 |
+
else:
|
504 |
+
return x + self.val
|
505 |
+
|
506 |
+
class Subtract(Add):
|
507 |
+
def __init__(self, val, inverse=False):
|
508 |
+
self.inverse = inverse
|
509 |
+
self.val = val
|
510 |
+
|
511 |
+
def __call__(self, x):
|
512 |
+
if self.inverse:
|
513 |
+
return x + self.val
|
514 |
+
else:
|
515 |
+
return x - self.val
|
516 |
+
|
517 |
+
class Multiply(object):
|
518 |
+
def __init__(self, val, inverse=False) -> None:
|
519 |
+
self.val = val
|
520 |
+
self.inverse = inverse
|
521 |
+
|
522 |
+
def __call__(self, x):
|
523 |
+
if self.inverse:
|
524 |
+
return x / self.val
|
525 |
+
else:
|
526 |
+
return x * self.val
|
527 |
+
|
528 |
+
class Divide(Multiply):
|
529 |
+
def __init__(self, val, inverse=False):
|
530 |
+
self.inverse = inverse
|
531 |
+
self.val = val
|
532 |
+
|
533 |
+
def __call__(self, x):
|
534 |
+
if self.inverse:
|
535 |
+
return x * self.val
|
536 |
+
else:
|
537 |
+
return x / self.val
|
538 |
+
|
539 |
+
|
540 |
+
class Log10(object):
|
541 |
+
def __init__(self, inverse=False):
|
542 |
+
self.inverse = inverse
|
543 |
+
|
544 |
+
def __call__(self, x):
|
545 |
+
if self.inverse:
|
546 |
+
return 10 ** x
|
547 |
+
else:
|
548 |
+
return torch.log10(x)
|
549 |
+
|
550 |
+
class Clip(object):
|
551 |
+
def __init__(self, min_val, max_val, inverse=False):
|
552 |
+
self.min_val = min_val
|
553 |
+
self.max_val = max_val
|
554 |
+
self.inverse = inverse
|
555 |
+
|
556 |
+
def __call__(self, x):
|
557 |
+
if self.inverse:
|
558 |
+
return x
|
559 |
+
else:
|
560 |
+
return torch.clip(x, self.min_val, self.max_val)
|
561 |
+
|
562 |
+
class TrimSpec(object):
|
563 |
+
def __init__(self, max_len, inverse=False):
|
564 |
+
self.max_len = max_len
|
565 |
+
self.inverse = inverse
|
566 |
+
|
567 |
+
def __call__(self, x):
|
568 |
+
if self.inverse:
|
569 |
+
return x
|
570 |
+
else:
|
571 |
+
return x[:, :self.max_len]
|
572 |
+
|
573 |
+
class MaxNorm(object):
|
574 |
+
def __init__(self, inverse=False):
|
575 |
+
self.inverse = inverse
|
576 |
+
self.eps = 1e-10
|
577 |
+
|
578 |
+
def __call__(self, x):
|
579 |
+
if self.inverse:
|
580 |
+
return x
|
581 |
+
else:
|
582 |
+
return x / (x.max() + self.eps)
|
583 |
+
|
584 |
+
|
585 |
+
class NormalizeAudio(object):
|
586 |
+
def __init__(self, inverse=False, desired_rms=0.1, eps=1e-4):
|
587 |
+
self.inverse = inverse
|
588 |
+
self.desired_rms = desired_rms
|
589 |
+
self.eps = torch.tensor(eps)
|
590 |
+
|
591 |
+
def __call__(self, x):
|
592 |
+
if self.inverse:
|
593 |
+
return x
|
594 |
+
else:
|
595 |
+
rms = torch.maximum(self.eps, torch.sqrt(torch.mean(x**2)))
|
596 |
+
x = x * (self.desired_rms / rms)
|
597 |
+
x[x > 1.] = 1.
|
598 |
+
x[x < -1.] = -1.
|
599 |
+
return x
|
600 |
+
|
601 |
+
|
602 |
+
class RandomNormalizeAudio(object):
|
603 |
+
def __init__(self, inverse=False, rms_range=[0.05, 0.2], eps=1e-4):
|
604 |
+
self.inverse = inverse
|
605 |
+
self.rms_low, self.rms_high = rms_range
|
606 |
+
self.eps = torch.tensor(eps)
|
607 |
+
|
608 |
+
def __call__(self, x):
|
609 |
+
if self.inverse:
|
610 |
+
return x
|
611 |
+
else:
|
612 |
+
rms = torch.maximum(self.eps, torch.sqrt(torch.mean(x**2)))
|
613 |
+
desired_rms = (torch.rand(1) * (self.rms_high - self.rms_low)) + self.rms_low
|
614 |
+
x = x * (desired_rms / rms)
|
615 |
+
x[x > 1.] = 1.
|
616 |
+
x[x < -1.] = -1.
|
617 |
+
return x
|
618 |
+
|
619 |
+
|
620 |
+
class MakeDouble(nn.Module):
|
621 |
+
def __init__(self):
|
622 |
+
super().__init__()
|
623 |
+
|
624 |
+
def forward(self, x):
|
625 |
+
return x.to(torch.double)
|
626 |
+
|
627 |
+
|
628 |
+
class MakeFloat(nn.Module):
|
629 |
+
def __init__(self):
|
630 |
+
super().__init__()
|
631 |
+
|
632 |
+
def forward(self, x):
|
633 |
+
return x.to(torch.float)
|
634 |
+
|
635 |
+
|
636 |
+
class Wave2Spectrogram(nn.Module):
|
637 |
+
def __init__(self, mel_num, spec_crop_len):
|
638 |
+
super().__init__()
|
639 |
+
self.trans = transforms.Compose([
|
640 |
+
LowerThresh(1e-5),
|
641 |
+
Log10(),
|
642 |
+
Multiply(20),
|
643 |
+
Subtract(20),
|
644 |
+
Add(100),
|
645 |
+
Divide(100),
|
646 |
+
Clip(0, 1.0),
|
647 |
+
TrimSpec(173),
|
648 |
+
transforms.CenterCrop((mel_num, spec_crop_len))
|
649 |
+
])
|
650 |
+
|
651 |
+
def forward(self, x):
|
652 |
+
return self.trans(x)
|
653 |
+
|
654 |
+
|
655 |
+
|
656 |
+
TRANSFORMS = transforms.Compose([
|
657 |
+
SpectrogramTorchAudio(nfft=1024, hoplen=1024//4, spec_power=1),
|
658 |
+
MelScaleTorchAudio(sr=22050, stft=513, fmin=125, fmax=7600, nmels=80),
|
659 |
+
LowerThresh(1e-5),
|
660 |
+
Log10(),
|
661 |
+
Multiply(20),
|
662 |
+
Subtract(20),
|
663 |
+
Add(100),
|
664 |
+
Divide(100),
|
665 |
+
Clip(0, 1.0),
|
666 |
+
])
|
667 |
+
|
668 |
+
def get_spectrogram_torch(audio_path, save_dir, length, save_results=True):
|
669 |
+
wav, _ = soundfile.read(audio_path)
|
670 |
+
wav = torch.FloatTensor(wav)
|
671 |
+
y = torch.zeros(length)
|
672 |
+
if wav.shape[0] < length:
|
673 |
+
y[:len(wav)] = wav
|
674 |
+
else:
|
675 |
+
y = wav[:length]
|
676 |
+
|
677 |
+
mel_spec = TRANSFORMS(y).numpy()
|
678 |
+
y = y.numpy()
|
679 |
+
if save_results:
|
680 |
+
os.makedirs(save_dir, exist_ok=True)
|
681 |
+
audio_name = os.path.basename(audio_path).split('.')[0]
|
682 |
+
np.save(os.path.join(save_dir, audio_name + '_mel.npy'), mel_spec)
|
683 |
+
np.save(os.path.join(save_dir, audio_name + '_audio.npy'), y)
|
684 |
+
else:
|
685 |
+
return y, mel_spec
|
foleycrafter/models/specvqgan/data/utils.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
from random import shuffle, choice, sample
|
8 |
+
|
9 |
+
from moviepy.editor import VideoFileClip
|
10 |
+
import librosa
|
11 |
+
from scipy import signal
|
12 |
+
from scipy.io import wavfile
|
13 |
+
import torchaudio
|
14 |
+
torchaudio.set_audio_backend("sox_io")
|
15 |
+
|
16 |
+
INTERVAL = 1000
|
17 |
+
|
18 |
+
# discard
|
19 |
+
stft = torchaudio.transforms.MelSpectrogram(
|
20 |
+
sample_rate=16000, hop_length=161, n_mels=64).cuda()
|
21 |
+
|
22 |
+
|
23 |
+
def log10(x): return torch.log(x)/torch.log(torch.tensor(10.))
|
24 |
+
|
25 |
+
|
26 |
+
def norm_range(x, min_val, max_val):
|
27 |
+
return 2.*(x - min_val)/float(max_val - min_val) - 1.
|
28 |
+
|
29 |
+
|
30 |
+
def normalize_spec(spec, spec_min, spec_max):
|
31 |
+
return norm_range(spec, spec_min, spec_max)
|
32 |
+
|
33 |
+
|
34 |
+
def db_from_amp(x, cuda=False):
|
35 |
+
# rescale the audio
|
36 |
+
if cuda:
|
37 |
+
return 20. * log10(torch.max(torch.tensor(1e-5).to('cuda'), x.float()))
|
38 |
+
else:
|
39 |
+
return 20. * log10(torch.max(torch.tensor(1e-5), x.float()))
|
40 |
+
|
41 |
+
|
42 |
+
def audio_stft(audio, stft=stft):
|
43 |
+
# We'll apply stft to the audio samples to convert it to a HxW matrix
|
44 |
+
N, C, A = audio.size()
|
45 |
+
audio = audio.view(N * C, A)
|
46 |
+
spec = stft(audio)
|
47 |
+
spec = spec.transpose(-1, -2)
|
48 |
+
spec = db_from_amp(spec, cuda=True)
|
49 |
+
spec = normalize_spec(spec, -100., 100.)
|
50 |
+
_, T, F = spec.size()
|
51 |
+
spec = spec.view(N, C, T, F)
|
52 |
+
return spec
|
53 |
+
|
54 |
+
|
55 |
+
# discard
|
56 |
+
# def get_spec(
|
57 |
+
# wavs,
|
58 |
+
# sample_rate=16000,
|
59 |
+
# use_volume_jittering=False,
|
60 |
+
# center=False,
|
61 |
+
# ):
|
62 |
+
# # Volume jittering - scale volume by factor in range (0.9, 1.1)
|
63 |
+
# if use_volume_jittering:
|
64 |
+
# wavs = [wav * np.random.uniform(0.9, 1.1) for wav in wavs]
|
65 |
+
# if center:
|
66 |
+
# wavs = [center_only(wav) for wav in wavs]
|
67 |
+
|
68 |
+
# # Convert to log filterbank
|
69 |
+
# specs = [logfbank(
|
70 |
+
# wav,
|
71 |
+
# sample_rate,
|
72 |
+
# winlen=0.009,
|
73 |
+
# winstep=0.005, # if num_sec==1 else 0.01,
|
74 |
+
# nfilt=256,
|
75 |
+
# nfft=1024
|
76 |
+
# ).astype('float32').T for wav in wavs]
|
77 |
+
|
78 |
+
# # Convert to 32-bit float and expand dim
|
79 |
+
# specs = np.stack(specs, axis=0)
|
80 |
+
# specs = np.expand_dims(specs, 1)
|
81 |
+
# specs = torch.as_tensor(specs) # Nx1xFxT
|
82 |
+
|
83 |
+
# return specs
|
84 |
+
|
85 |
+
|
86 |
+
def center_only(audio, sr=16000, L=1.0):
|
87 |
+
# center_wav = np.arange(0, L, L/(0.5*sr)) ** 2
|
88 |
+
# center_wav = np.concatenate([center_wav, center_wav[::-1]])
|
89 |
+
# center_wav[L*sr//2:3*L*sr//4] = 1
|
90 |
+
# only take 0.3 sec audio
|
91 |
+
center_wav = np.zeros(int(L * sr))
|
92 |
+
center_wav[int(0.4*L*sr):int(0.7*L*sr)] = 1
|
93 |
+
|
94 |
+
return audio * center_wav
|
95 |
+
|
96 |
+
def get_spec_librosa(
|
97 |
+
wavs,
|
98 |
+
sample_rate=16000,
|
99 |
+
use_volume_jittering=False,
|
100 |
+
center=False,
|
101 |
+
):
|
102 |
+
# Volume jittering - scale volume by factor in range (0.9, 1.1)
|
103 |
+
if use_volume_jittering:
|
104 |
+
wavs = [wav * np.random.uniform(0.9, 1.1) for wav in wavs]
|
105 |
+
if center:
|
106 |
+
wavs = [center_only(wav) for wav in wavs]
|
107 |
+
|
108 |
+
# Convert to log filterbank
|
109 |
+
specs = [librosa.feature.melspectrogram(
|
110 |
+
y=wav,
|
111 |
+
sr=sample_rate,
|
112 |
+
n_fft=400,
|
113 |
+
hop_length=126,
|
114 |
+
n_mels=128,
|
115 |
+
).astype('float32') for wav in wavs]
|
116 |
+
|
117 |
+
# Convert to 32-bit float and expand dim
|
118 |
+
specs = [librosa.power_to_db(spec) for spec in specs]
|
119 |
+
specs = np.stack(specs, axis=0)
|
120 |
+
specs = np.expand_dims(specs, 1)
|
121 |
+
specs = torch.as_tensor(specs) # Nx1xFxT
|
122 |
+
|
123 |
+
return specs
|
124 |
+
|
125 |
+
|
126 |
+
def calcEuclideanDistance_Mat(X, Y):
|
127 |
+
"""
|
128 |
+
Inputs:
|
129 |
+
- X: A numpy array of shape (N, F)
|
130 |
+
- Y: A numpy array of shape (M, F)
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
A numpy array D of shape (N, M) where D[i, j] is the Euclidean distance
|
134 |
+
between X[i] and Y[j].
|
135 |
+
"""
|
136 |
+
return ((torch.sum(X ** 2, axis=1, keepdims=True)) + (torch.sum(Y ** 2, axis=1, keepdims=True)).T - 2 * X @ Y.T) ** 0.5
|
137 |
+
|
138 |
+
|
139 |
+
def calcEuclideanDistance(x1, x2):
|
140 |
+
return torch.sum((x1 - x2)**2, dim=1)**0.5
|
141 |
+
|
142 |
+
|
143 |
+
def split_data(in_list, portion=(0.9, 0.95), is_shuffle=True):
|
144 |
+
if is_shuffle:
|
145 |
+
shuffle(in_list)
|
146 |
+
if type(in_list) == str:
|
147 |
+
with open(in_list) as l:
|
148 |
+
fw_list = json.load(l)
|
149 |
+
elif type(in_list) == list:
|
150 |
+
fw_list = in_list
|
151 |
+
else:
|
152 |
+
print(type(in_list))
|
153 |
+
raise TypeError('Invalid input list type')
|
154 |
+
c1, c2 = int(len(fw_list) * portion[0]), int(len(fw_list) * portion[1])
|
155 |
+
tr_list, va_list, te_list = fw_list[:c1], fw_list[c1:c2], fw_list[c2:]
|
156 |
+
print(
|
157 |
+
f'==> train set: {len(tr_list)}, validation set: {len(va_list)}, test set: {len(te_list)}')
|
158 |
+
return tr_list, va_list, te_list
|
159 |
+
|
160 |
+
|
161 |
+
def load_one_clip(video_path):
|
162 |
+
v = VideoFileClip(video_path)
|
163 |
+
fps = int(v.fps)
|
164 |
+
frames = [f for f in v.iter_frames()][:-1]
|
165 |
+
frame_cnt = len(frames)
|
166 |
+
frame_length = 1000./fps
|
167 |
+
total_length = int(1000 * (frame_cnt / fps))
|
168 |
+
|
169 |
+
a = v.audio
|
170 |
+
sr = a.fps
|
171 |
+
a = np.array([fa for fa in a.iter_frames()])
|
172 |
+
a = librosa.resample(a, sr, 48000)
|
173 |
+
if len(a.shape) > 1:
|
174 |
+
a = np.mean(a, axis=1)
|
175 |
+
|
176 |
+
while True:
|
177 |
+
idx = np.random.choice(np.arange(frame_cnt - 1), 1)[0]
|
178 |
+
frame_clip = frames[idx]
|
179 |
+
start_time = int(idx * frame_length + 0.5 * frame_length - 500)
|
180 |
+
end_time = start_time + INTERVAL
|
181 |
+
if start_time < 0 or end_time > total_length:
|
182 |
+
continue
|
183 |
+
wave_clip = a[48 * start_time: 48 * end_time]
|
184 |
+
if wave_clip.shape[0] != 48000:
|
185 |
+
continue
|
186 |
+
break
|
187 |
+
return frame_clip, wave_clip
|
188 |
+
|
189 |
+
|
190 |
+
def resize_frame(frame):
|
191 |
+
H, W = frame.size
|
192 |
+
short_edge = min(H, W)
|
193 |
+
scale = 256 / short_edge
|
194 |
+
H_tar, W_tar = int(np.round(H * scale)), int(np.round(W * scale))
|
195 |
+
return frame.resize((H_tar, W_tar))
|
196 |
+
|
197 |
+
|
198 |
+
def get_spectrogram(wave, amp_jitter, amp_jitter_range, log_scale=True, sr=48000):
|
199 |
+
# random clip-level amplitude jittering
|
200 |
+
if amp_jitter:
|
201 |
+
amplified = wave * np.random.uniform(*amp_jitter_range)
|
202 |
+
if wave.dtype == np.int16:
|
203 |
+
amplified[amplified >= 32767] = 32767
|
204 |
+
amplified[amplified <= -32768] = -32768
|
205 |
+
wave = amplified.astype('int16')
|
206 |
+
elif wave.dtype == np.float32 or wave.dtype == np.float64:
|
207 |
+
amplified[amplified >= 1] = 1
|
208 |
+
amplified[amplified <= -1] = -1
|
209 |
+
|
210 |
+
# fr, ts, spectrogram = signal.spectrogram(wave[:48000], fs=sr, nperseg=480, noverlap=240, nfft=512)
|
211 |
+
# spectrogram = librosa.feature.melspectrogram(S=spectrogram, n_mels=257) # Try log-mel spectrogram?
|
212 |
+
spectrogram = librosa.feature.melspectrogram(
|
213 |
+
y=wave[:48000], sr=sr, hop_length=240, win_length=480, n_mels=257)
|
214 |
+
if log_scale:
|
215 |
+
spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
|
216 |
+
assert spectrogram.shape[0] == 257
|
217 |
+
|
218 |
+
return spectrogram
|
219 |
+
|
220 |
+
|
221 |
+
def cropAudio(audio, sr, f_idx, fps=10, length=1., left_shift=0):
|
222 |
+
time_per_frame = 1./fps
|
223 |
+
assert audio.shape[0] > sr * length
|
224 |
+
start_time = f_idx * time_per_frame - left_shift
|
225 |
+
start_time = 0 if start_time < 0 else start_time
|
226 |
+
start_idx = int(np.round(sr * start_time))
|
227 |
+
end_idx = int(np.round(start_idx + (sr * length)))
|
228 |
+
if end_idx > audio.shape[0]:
|
229 |
+
end_idx = audio.shape[0]
|
230 |
+
start_idx = int(end_idx - (sr * length))
|
231 |
+
try:
|
232 |
+
assert audio[start_idx:end_idx].shape[0] == sr * length
|
233 |
+
except:
|
234 |
+
print(audio.shape, start_idx, end_idx, end_idx - start_idx)
|
235 |
+
exit(1)
|
236 |
+
return audio[start_idx:end_idx]
|
237 |
+
|
238 |
+
|
239 |
+
def pick_async_frame_idx(idx, total_frames, fps=10, gap=2.0, length=1.0, cnt=1):
|
240 |
+
assert idx < total_frames - fps * length
|
241 |
+
lower_bound = idx - int((length + gap) * fps)
|
242 |
+
upper_bound = idx + int((length + gap) * fps)
|
243 |
+
proposal = list(range(0, lower_bound)) + \
|
244 |
+
list(range(upper_bound, int(total_frames - fps * length)))
|
245 |
+
# assert len(proposal) >= cnt
|
246 |
+
avail_cnt = len(proposal)
|
247 |
+
try:
|
248 |
+
for i in range(cnt - avail_cnt):
|
249 |
+
proposal.append(proposal[i % avail_cnt])
|
250 |
+
except Exception as e:
|
251 |
+
print(idx, total_frames, proposal)
|
252 |
+
raise e
|
253 |
+
return sample(proposal, k=cnt)
|
254 |
+
|
255 |
+
|
256 |
+
def adjust_learning_rate(optimizer, epoch, args):
|
257 |
+
"""Decay the learning rate based on schedule"""
|
258 |
+
lr = args.lr
|
259 |
+
if args.cos: # cosine lr schedule
|
260 |
+
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epoch))
|
261 |
+
else: # stepwise lr schedule
|
262 |
+
for milestone in args.schedule:
|
263 |
+
lr *= 0.1 if epoch >= milestone else 1.
|
264 |
+
for param_group in optimizer.param_groups:
|
265 |
+
param_group['lr'] = lr
|
foleycrafter/models/specvqgan/models/av_cond_transformer.py
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torchvision import transforms
|
8 |
+
import torchaudio
|
9 |
+
from omegaconf.listconfig import ListConfig
|
10 |
+
|
11 |
+
sys.path.insert(0, '.') # nopep8
|
12 |
+
from foleycrafter.models.specvqgan.modules.transformer.mingpt import (GPTClass, GPTFeats, GPTFeatsClass)
|
13 |
+
from foleycrafter.models.specvqgan.data.transforms import Wave2Spectrogram, PitchShift, NormalizeAudio
|
14 |
+
from train import instantiate_from_config
|
15 |
+
|
16 |
+
SR = 22050
|
17 |
+
|
18 |
+
def disabled_train(self, mode=True):
|
19 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
20 |
+
does not change anymore."""
|
21 |
+
return self
|
22 |
+
|
23 |
+
|
24 |
+
class Net2NetTransformerAVCond(pl.LightningModule):
|
25 |
+
def __init__(self, transformer_config, first_stage_config,
|
26 |
+
cond_stage_config,
|
27 |
+
drop_condition=False, drop_video=False, drop_cond_video=False,
|
28 |
+
first_stage_permuter_config=None, cond_stage_permuter_config=None,
|
29 |
+
ckpt_path=None, ignore_keys=[],
|
30 |
+
first_stage_key="image",
|
31 |
+
cond_first_stage_key="cond_image",
|
32 |
+
cond_stage_key="depth",
|
33 |
+
downsample_cond_size=-1,
|
34 |
+
pkeep=1.0,
|
35 |
+
clip=30,
|
36 |
+
p_audio_aug=0.5,
|
37 |
+
p_pitch_shift=0.,
|
38 |
+
p_normalize=0.,
|
39 |
+
mel_num=80,
|
40 |
+
spec_crop_len=160):
|
41 |
+
|
42 |
+
super().__init__()
|
43 |
+
self.init_first_stage_from_ckpt(first_stage_config)
|
44 |
+
self.init_cond_stage_from_ckpt(cond_stage_config)
|
45 |
+
if first_stage_permuter_config is None:
|
46 |
+
first_stage_permuter_config = {"target": "foleycrafter.models.specvqgan.modules.transformer.permuter.Identity"}
|
47 |
+
if cond_stage_permuter_config is None:
|
48 |
+
cond_stage_permuter_config = {"target": "foleycrafter.models.specvqgan.modules.transformer.permuter.Identity"}
|
49 |
+
self.first_stage_permuter = instantiate_from_config(config=first_stage_permuter_config)
|
50 |
+
self.cond_stage_permuter = instantiate_from_config(config=cond_stage_permuter_config)
|
51 |
+
self.transformer = instantiate_from_config(config=transformer_config)
|
52 |
+
|
53 |
+
self.wav_transforms = nn.Sequential(
|
54 |
+
transforms.RandomApply([NormalizeAudio()], p=p_normalize),
|
55 |
+
transforms.RandomApply([PitchShift()], p=p_pitch_shift),
|
56 |
+
torchaudio.transforms.Spectrogram(
|
57 |
+
n_fft=1024,
|
58 |
+
hop_length=1024//4,
|
59 |
+
power=1,
|
60 |
+
),
|
61 |
+
# transforms.RandomApply([
|
62 |
+
# torchaudio.transforms.FrequencyMasking(freq_mask_param=40, iid_masks=False)
|
63 |
+
# ], p=p_audio_aug),
|
64 |
+
# transforms.RandomApply([
|
65 |
+
# torchaudio.transforms.TimeMasking(time_mask_param=int(32 * 2), iid_masks=False)
|
66 |
+
# ], p=p_audio_aug),
|
67 |
+
torchaudio.transforms.MelScale(
|
68 |
+
n_mels=80,
|
69 |
+
sample_rate=SR,
|
70 |
+
f_min=125,
|
71 |
+
f_max=7600,
|
72 |
+
n_stft=513,
|
73 |
+
norm='slaney'
|
74 |
+
),
|
75 |
+
Wave2Spectrogram(mel_num, spec_crop_len),
|
76 |
+
)
|
77 |
+
ignore_keys = ['wav_transforms']
|
78 |
+
|
79 |
+
if ckpt_path is not None:
|
80 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
81 |
+
self.drop_condition = drop_condition
|
82 |
+
self.drop_video = drop_video
|
83 |
+
self.drop_cond_video = drop_cond_video
|
84 |
+
print(f'>>> Feature setting: all cond: {self.drop_condition}, video: {self.drop_video}, cond video: {self.drop_cond_video}')
|
85 |
+
self.first_stage_key = first_stage_key
|
86 |
+
self.cond_first_stage_key = cond_first_stage_key
|
87 |
+
self.cond_stage_key = cond_stage_key
|
88 |
+
self.downsample_cond_size = downsample_cond_size
|
89 |
+
self.pkeep = pkeep
|
90 |
+
self.clip = clip
|
91 |
+
print('>>> model init done.')
|
92 |
+
|
93 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
94 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
95 |
+
for k in sd.keys():
|
96 |
+
for ik in ignore_keys:
|
97 |
+
if k.startswith(ik):
|
98 |
+
self.print("Deleting key {} from state_dict.".format(k))
|
99 |
+
del sd[k]
|
100 |
+
self.load_state_dict(sd, strict=False)
|
101 |
+
print(f"Restored from {path}")
|
102 |
+
|
103 |
+
def init_first_stage_from_ckpt(self, config):
|
104 |
+
model = instantiate_from_config(config)
|
105 |
+
model = model.eval()
|
106 |
+
model.train = disabled_train
|
107 |
+
self.first_stage_model = model
|
108 |
+
|
109 |
+
def init_cond_stage_from_ckpt(self, config):
|
110 |
+
model = instantiate_from_config(config)
|
111 |
+
model = model.eval()
|
112 |
+
model.train = disabled_train
|
113 |
+
self.cond_stage_model = model
|
114 |
+
|
115 |
+
def forward(self, x, c, xp):
|
116 |
+
# one step to produce the logits
|
117 |
+
_, z_indices = self.encode_to_z(x) # VQ-GAN encoding
|
118 |
+
_, zp_indices = self.encode_to_z(xp)
|
119 |
+
_, c_indices = self.encode_to_c(c) # Conv1-1 down dim + col-major permuter
|
120 |
+
z_indices = z_indices[:, :self.clip]
|
121 |
+
zp_indices = zp_indices[:, :self.clip]
|
122 |
+
if not self.drop_condition:
|
123 |
+
z_indices = torch.cat([zp_indices, z_indices], dim=1)
|
124 |
+
|
125 |
+
if self.training and self.pkeep < 1.0:
|
126 |
+
mask = torch.bernoulli(self.pkeep * torch.ones(z_indices.shape, device=z_indices.device))
|
127 |
+
mask = mask.round().to(dtype=torch.int64)
|
128 |
+
r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size)
|
129 |
+
a_indices = mask*z_indices+(1-mask)*r_indices
|
130 |
+
else:
|
131 |
+
a_indices = z_indices
|
132 |
+
|
133 |
+
# target includes all sequence elements (no need to handle first one
|
134 |
+
# differently because we are conditioning)
|
135 |
+
if self.drop_condition:
|
136 |
+
target = z_indices
|
137 |
+
else:
|
138 |
+
target = z_indices[:, self.clip:]
|
139 |
+
|
140 |
+
# in the case we do not want to encode condition anyhow (e.g. inputs are features)
|
141 |
+
if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)):
|
142 |
+
# make the prediction
|
143 |
+
logits, _, _ = self.transformer(z_indices[:, :-1], c)
|
144 |
+
# cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
|
145 |
+
if isinstance(self.transformer, GPTFeatsClass):
|
146 |
+
cond_size = c['feature'].size(-1) + c['target'].size(-1)
|
147 |
+
else:
|
148 |
+
cond_size = c.size(-1)
|
149 |
+
if self.drop_condition:
|
150 |
+
logits = logits[:, cond_size-1:]
|
151 |
+
else:
|
152 |
+
logits = logits[:, cond_size-1:][:, self.clip:]
|
153 |
+
else:
|
154 |
+
cz_indices = torch.cat((c_indices, a_indices), dim=1)
|
155 |
+
# make the prediction
|
156 |
+
logits, _, _ = self.transformer(cz_indices[:, :-1])
|
157 |
+
# cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
|
158 |
+
logits = logits[:, c_indices.shape[1]-1:]
|
159 |
+
|
160 |
+
return logits, target
|
161 |
+
|
162 |
+
def top_k_logits(self, logits, k):
|
163 |
+
v, ix = torch.topk(logits, k)
|
164 |
+
out = logits.clone()
|
165 |
+
out[out < v[..., [-1]]] = -float('Inf')
|
166 |
+
return out
|
167 |
+
|
168 |
+
@torch.no_grad()
|
169 |
+
def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None,
|
170 |
+
callback=lambda k: None):
|
171 |
+
x = x if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)) else torch.cat((c, x), dim=1)
|
172 |
+
block_size = self.transformer.get_block_size()
|
173 |
+
assert not self.transformer.training
|
174 |
+
if self.pkeep <= 0.0:
|
175 |
+
raise NotImplementedError('Implement for GPTFeatsCLass')
|
176 |
+
raise NotImplementedError('Implement for GPTFeats')
|
177 |
+
raise NotImplementedError('Implement for GPTClass')
|
178 |
+
raise NotImplementedError('also the model outputs attention')
|
179 |
+
# one pass suffices since input is pure noise anyway
|
180 |
+
assert len(x.shape)==2
|
181 |
+
# noise_shape = (x.shape[0], steps-1)
|
182 |
+
# noise = torch.randint(self.transformer.config.vocab_size, noise_shape).to(x)
|
183 |
+
noise = c.clone()[:,x.shape[1]-c.shape[1]:-1]
|
184 |
+
x = torch.cat((x,noise),dim=1)
|
185 |
+
logits, _ = self.transformer(x)
|
186 |
+
# take all logits for now and scale by temp
|
187 |
+
logits = logits / temperature
|
188 |
+
# optionally crop probabilities to only the top k options
|
189 |
+
if top_k is not None:
|
190 |
+
logits = self.top_k_logits(logits, top_k)
|
191 |
+
# apply softmax to convert to probabilities
|
192 |
+
probs = F.softmax(logits, dim=-1)
|
193 |
+
# sample from the distribution or take the most likely
|
194 |
+
if sample:
|
195 |
+
shape = probs.shape
|
196 |
+
probs = probs.reshape(shape[0]*shape[1],shape[2])
|
197 |
+
ix = torch.multinomial(probs, num_samples=1)
|
198 |
+
probs = probs.reshape(shape[0],shape[1],shape[2])
|
199 |
+
ix = ix.reshape(shape[0],shape[1])
|
200 |
+
else:
|
201 |
+
_, ix = torch.topk(probs, k=1, dim=-1)
|
202 |
+
# cut off conditioning
|
203 |
+
x = ix[:, c.shape[1]-1:]
|
204 |
+
else:
|
205 |
+
for k in range(steps):
|
206 |
+
callback(k)
|
207 |
+
if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)):
|
208 |
+
# if assert is removed, you need to make sure that the combined len is not longer block_s
|
209 |
+
if isinstance(self.transformer, GPTFeatsClass):
|
210 |
+
cond_size = c['feature'].size(-1) + c['target'].size(-1)
|
211 |
+
else:
|
212 |
+
cond_size = c.size(-1)
|
213 |
+
assert x.size(1) + cond_size <= block_size
|
214 |
+
|
215 |
+
x_cond = x
|
216 |
+
c_cond = c
|
217 |
+
logits, _, att = self.transformer(x_cond, c_cond)
|
218 |
+
else:
|
219 |
+
assert x.size(1) <= block_size # make sure model can see conditioning
|
220 |
+
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
|
221 |
+
logits, _, att = self.transformer(x_cond)
|
222 |
+
# pluck the logits at the final step and scale by temperature
|
223 |
+
logits = logits[:, -1, :] / temperature
|
224 |
+
# optionally crop probabilities to only the top k options
|
225 |
+
if top_k is not None:
|
226 |
+
logits = self.top_k_logits(logits, top_k)
|
227 |
+
# apply softmax to convert to probabilities
|
228 |
+
probs = F.softmax(logits, dim=-1)
|
229 |
+
# sample from the distribution or take the most likely
|
230 |
+
if sample:
|
231 |
+
ix = torch.multinomial(probs, num_samples=1)
|
232 |
+
else:
|
233 |
+
_, ix = torch.topk(probs, k=1, dim=-1)
|
234 |
+
# append to the sequence and continue
|
235 |
+
x = torch.cat((x, ix), dim=1)
|
236 |
+
# cut off conditioning
|
237 |
+
x = x if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)) else x[:, c.shape[1]:]
|
238 |
+
return x, att.detach().cpu()
|
239 |
+
|
240 |
+
@torch.no_grad()
|
241 |
+
def encode_to_z(self, x):
|
242 |
+
quant_z, _, info = self.first_stage_model.encode(x)
|
243 |
+
indices = info[2].view(quant_z.shape[0], -1)
|
244 |
+
indices = self.first_stage_permuter(indices)
|
245 |
+
return quant_z, indices
|
246 |
+
|
247 |
+
@torch.no_grad()
|
248 |
+
def encode_to_c(self, c):
|
249 |
+
if self.downsample_cond_size > -1:
|
250 |
+
c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size))
|
251 |
+
quant_c, _, info = self.cond_stage_model.encode(c)
|
252 |
+
if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)):
|
253 |
+
# these are not indices but raw features or a class
|
254 |
+
indices = info[2]
|
255 |
+
else:
|
256 |
+
indices = info[2].view(quant_c.shape[0], -1)
|
257 |
+
indices = self.cond_stage_permuter(indices)
|
258 |
+
return quant_c, indices
|
259 |
+
|
260 |
+
@torch.no_grad()
|
261 |
+
def decode_to_img(self, index, zshape, stage='first'):
|
262 |
+
if stage == 'first':
|
263 |
+
index = self.first_stage_permuter(index, reverse=True)
|
264 |
+
elif stage == 'cond':
|
265 |
+
print('in cond stage in decode_to_img which is unexpected ')
|
266 |
+
index = self.cond_stage_permuter(index, reverse=True)
|
267 |
+
else:
|
268 |
+
raise NotImplementedError
|
269 |
+
|
270 |
+
bhwc = (zshape[0], zshape[2], zshape[3], zshape[1])
|
271 |
+
quant_z = self.first_stage_model.quantize.get_codebook_entry(index.reshape(-1), shape=bhwc)
|
272 |
+
x = self.first_stage_model.decode(quant_z)
|
273 |
+
return x
|
274 |
+
|
275 |
+
@torch.no_grad()
|
276 |
+
def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs):
|
277 |
+
log = dict()
|
278 |
+
|
279 |
+
N = 4
|
280 |
+
if lr_interface:
|
281 |
+
x, c, xp = self.get_xcxp(batch, N, diffuse=False, upsample_factor=8)
|
282 |
+
else:
|
283 |
+
x, c, xp = self.get_xcxp(batch, N)
|
284 |
+
x = x.to(device=self.device)
|
285 |
+
xp = xp.to(device=self.device)
|
286 |
+
# c = c.to(device=self.device)
|
287 |
+
if isinstance(c, dict):
|
288 |
+
c = {k: v.to(self.device) for k, v in c.items()}
|
289 |
+
else:
|
290 |
+
c = c.to(self.device)
|
291 |
+
|
292 |
+
quant_z, z_indices = self.encode_to_z(x)
|
293 |
+
quant_zp, zp_indices = self.encode_to_z(xp)
|
294 |
+
quant_c, c_indices = self.encode_to_c(c) # output can be features or a single class or a featcls dict
|
295 |
+
z_indices_rec = z_indices.clone()
|
296 |
+
zp_indices_clip = zp_indices[:, :self.clip]
|
297 |
+
z_indices_clip = z_indices[:, :self.clip]
|
298 |
+
|
299 |
+
# create a "half"" sample
|
300 |
+
z_start_indices = z_indices_clip[:, :z_indices_clip.shape[1]//2]
|
301 |
+
if self.drop_condition:
|
302 |
+
steps = z_indices_clip.shape[1]-z_start_indices.shape[1]
|
303 |
+
else:
|
304 |
+
z_start_indices = torch.cat([zp_indices_clip, z_start_indices], dim=-1)
|
305 |
+
steps = 2*z_indices_clip.shape[1]-z_start_indices.shape[1]
|
306 |
+
index_sample, att_half = self.sample(z_start_indices, c_indices,
|
307 |
+
steps=steps,
|
308 |
+
temperature=temperature if temperature is not None else 1.0,
|
309 |
+
sample=True,
|
310 |
+
top_k=top_k if top_k is not None else 100,
|
311 |
+
callback=callback if callback is not None else lambda k: None)
|
312 |
+
if self.drop_condition:
|
313 |
+
z_indices_rec[:, :self.clip] = index_sample
|
314 |
+
else:
|
315 |
+
z_indices_rec[:, :self.clip] = index_sample[:, self.clip:]
|
316 |
+
x_sample = self.decode_to_img(z_indices_rec, quant_z.shape)
|
317 |
+
|
318 |
+
# sample
|
319 |
+
z_start_indices = z_indices_clip[:, :0]
|
320 |
+
if not self.drop_condition:
|
321 |
+
z_start_indices = torch.cat([zp_indices_clip, z_start_indices], dim=-1)
|
322 |
+
index_sample, att_nopix = self.sample(z_start_indices, c_indices,
|
323 |
+
steps=z_indices_clip.shape[1],
|
324 |
+
temperature=temperature if temperature is not None else 1.0,
|
325 |
+
sample=True,
|
326 |
+
top_k=top_k if top_k is not None else 100,
|
327 |
+
callback=callback if callback is not None else lambda k: None)
|
328 |
+
if self.drop_condition:
|
329 |
+
z_indices_rec[:, :self.clip] = index_sample
|
330 |
+
else:
|
331 |
+
z_indices_rec[:, :self.clip] = index_sample[:, self.clip:]
|
332 |
+
x_sample_nopix = self.decode_to_img(z_indices_rec, quant_z.shape)
|
333 |
+
|
334 |
+
# det sample
|
335 |
+
z_start_indices = z_indices_clip[:, :0]
|
336 |
+
if not self.drop_condition:
|
337 |
+
z_start_indices = torch.cat([zp_indices_clip, z_start_indices], dim=-1)
|
338 |
+
index_sample, att_det = self.sample(z_start_indices, c_indices,
|
339 |
+
steps=z_indices_clip.shape[1],
|
340 |
+
sample=False,
|
341 |
+
callback=callback if callback is not None else lambda k: None)
|
342 |
+
if self.drop_condition:
|
343 |
+
z_indices_rec[:, :self.clip] = index_sample
|
344 |
+
else:
|
345 |
+
z_indices_rec[:, :self.clip] = index_sample[:, self.clip:]
|
346 |
+
x_sample_det = self.decode_to_img(z_indices_rec, quant_z.shape)
|
347 |
+
|
348 |
+
# reconstruction
|
349 |
+
x_rec = self.decode_to_img(z_indices, quant_z.shape)
|
350 |
+
|
351 |
+
log["inputs"] = x
|
352 |
+
log["reconstructions"] = x_rec
|
353 |
+
|
354 |
+
if isinstance(self.cond_stage_key, str):
|
355 |
+
cond_is_not_image = self.cond_stage_key != "image"
|
356 |
+
cond_has_segmentation = self.cond_stage_key == "segmentation"
|
357 |
+
elif isinstance(self.cond_stage_key, ListConfig):
|
358 |
+
cond_is_not_image = 'image' not in self.cond_stage_key
|
359 |
+
cond_has_segmentation = 'segmentation' in self.cond_stage_key
|
360 |
+
else:
|
361 |
+
raise NotImplementedError
|
362 |
+
|
363 |
+
if cond_is_not_image:
|
364 |
+
cond_rec = self.cond_stage_model.decode(quant_c)
|
365 |
+
if cond_has_segmentation:
|
366 |
+
# get image from segmentation mask
|
367 |
+
num_classes = cond_rec.shape[1]
|
368 |
+
|
369 |
+
c = torch.argmax(c, dim=1, keepdim=True)
|
370 |
+
c = F.one_hot(c, num_classes=num_classes)
|
371 |
+
c = c.squeeze(1).permute(0, 3, 1, 2).float()
|
372 |
+
c = self.cond_stage_model.to_rgb(c)
|
373 |
+
|
374 |
+
cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True)
|
375 |
+
cond_rec = F.one_hot(cond_rec, num_classes=num_classes)
|
376 |
+
cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float()
|
377 |
+
cond_rec = self.cond_stage_model.to_rgb(cond_rec)
|
378 |
+
log["conditioning_rec"] = cond_rec
|
379 |
+
log["conditioning"] = c
|
380 |
+
|
381 |
+
log["samples_half"] = x_sample
|
382 |
+
log["samples_nopix"] = x_sample_nopix
|
383 |
+
log["samples_det"] = x_sample_det
|
384 |
+
log["att_half"] = att_half
|
385 |
+
log["att_nopix"] = att_nopix
|
386 |
+
log["att_det"] = att_det
|
387 |
+
return log
|
388 |
+
|
389 |
+
def spec_transform(self, batch):
|
390 |
+
wav = batch[self.first_stage_key]
|
391 |
+
wav_cond = batch[self.cond_first_stage_key]
|
392 |
+
N = wav.shape[0]
|
393 |
+
wav_cat = torch.cat([wav, wav_cond], dim=0)
|
394 |
+
self.wav_transforms.to(wav_cat.device)
|
395 |
+
spec = self.wav_transforms(wav_cat.to(torch.float32))
|
396 |
+
batch[self.first_stage_key] = 2 * spec[:N] - 1
|
397 |
+
batch[self.cond_first_stage_key] = 2 * spec[N:] - 1
|
398 |
+
return batch
|
399 |
+
|
400 |
+
def get_input(self, key, batch):
|
401 |
+
if isinstance(key, str):
|
402 |
+
# if batch[key] is 1D; else the batch[key] is 2D
|
403 |
+
if key in ['feature', 'target']:
|
404 |
+
if self.drop_condition or self.drop_cond_video:
|
405 |
+
cond_size = batch[key].shape[1] // 2
|
406 |
+
batch[key] = batch[key][:, cond_size:]
|
407 |
+
x = self.cond_stage_model.get_input(
|
408 |
+
batch, key, drop_cond=(self.drop_condition or self.drop_cond_video)
|
409 |
+
)
|
410 |
+
else:
|
411 |
+
x = batch[key]
|
412 |
+
if len(x.shape) == 3:
|
413 |
+
x = x[..., None]
|
414 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
|
415 |
+
if x.dtype == torch.double:
|
416 |
+
x = x.float()
|
417 |
+
elif isinstance(key, ListConfig):
|
418 |
+
x = self.cond_stage_model.get_input(batch, key)
|
419 |
+
for k, v in x.items():
|
420 |
+
if v.dtype == torch.double:
|
421 |
+
x[k] = v.float()
|
422 |
+
return x
|
423 |
+
|
424 |
+
def get_xcxp(self, batch, N=None):
|
425 |
+
if len(batch[self.first_stage_key].shape) == 2:
|
426 |
+
batch = self.spec_transform(batch)
|
427 |
+
x = self.get_input(self.first_stage_key, batch)
|
428 |
+
c = self.get_input(self.cond_stage_key, batch)
|
429 |
+
xp = self.get_input(self.cond_first_stage_key, batch)
|
430 |
+
if N is not None:
|
431 |
+
x = x[:N]
|
432 |
+
xp = xp[:N]
|
433 |
+
if isinstance(self.cond_stage_key, ListConfig):
|
434 |
+
c = {k: v[:N] for k, v in c.items()}
|
435 |
+
else:
|
436 |
+
c = c[:N]
|
437 |
+
# Drop additional information during training
|
438 |
+
if self.drop_condition:
|
439 |
+
xp[:] = 0
|
440 |
+
if self.drop_video:
|
441 |
+
c[:] = 0
|
442 |
+
return x, c, xp
|
443 |
+
|
444 |
+
def shared_step(self, batch, batch_idx):
|
445 |
+
x, c, xp = self.get_xcxp(batch)
|
446 |
+
logits, target = self(x, c, xp)
|
447 |
+
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
|
448 |
+
return loss
|
449 |
+
|
450 |
+
def training_step(self, batch, batch_idx):
|
451 |
+
loss = self.shared_step(batch, batch_idx)
|
452 |
+
self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
453 |
+
return loss
|
454 |
+
|
455 |
+
def validation_step(self, batch, batch_idx):
|
456 |
+
loss = self.shared_step(batch, batch_idx)
|
457 |
+
self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
458 |
+
return loss
|
459 |
+
|
460 |
+
def configure_optimizers(self):
|
461 |
+
"""
|
462 |
+
Following minGPT:
|
463 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
464 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
465 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
466 |
+
We are then returning the PyTorch optimizer object.
|
467 |
+
"""
|
468 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
469 |
+
decay = set()
|
470 |
+
no_decay = set()
|
471 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
472 |
+
|
473 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding, torch.nn.Conv1d, torch.nn.LSTM, torch.nn.GRU)
|
474 |
+
for mn, m in self.transformer.named_modules():
|
475 |
+
for pn, p in m.named_parameters():
|
476 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
477 |
+
|
478 |
+
if pn.endswith('bias'):
|
479 |
+
# all biases will not be decayed
|
480 |
+
no_decay.add(fpn)
|
481 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
482 |
+
# weights of whitelist modules will be weight decayed
|
483 |
+
decay.add(fpn)
|
484 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
485 |
+
# weights of blacklist modules will NOT be weight decayed
|
486 |
+
no_decay.add(fpn)
|
487 |
+
elif ('weight' in pn or 'bias' in pn) and isinstance(m, (torch.nn.LSTM, torch.nn.GRU)):
|
488 |
+
no_decay.add(fpn)
|
489 |
+
|
490 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
491 |
+
no_decay.add('pos_emb')
|
492 |
+
|
493 |
+
# validate that we considered every parameter
|
494 |
+
param_dict = {pn: p for pn, p in self.transformer.named_parameters()}
|
495 |
+
inter_params = decay & no_decay
|
496 |
+
union_params = decay | no_decay
|
497 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
498 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
499 |
+
% (str(param_dict.keys() - union_params), )
|
500 |
+
|
501 |
+
# create the pytorch optimizer object
|
502 |
+
optim_groups = [
|
503 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01},
|
504 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
505 |
+
]
|
506 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95))
|
507 |
+
return optimizer
|
508 |
+
|
509 |
+
|
510 |
+
if __name__ == '__main__':
|
511 |
+
from omegaconf import OmegaConf
|
512 |
+
|
513 |
+
cfg_image = OmegaConf.load('./configs/vggsound_transformer.yaml')
|
514 |
+
cfg_image.model.params.first_stage_config.params.ckpt_path = './logs/2021-05-19T22-16-54_vggsound_codebook/checkpoints/last.ckpt'
|
515 |
+
|
516 |
+
transformer_cfg = cfg_image.model.params.transformer_config
|
517 |
+
first_stage_cfg = cfg_image.model.params.first_stage_config
|
518 |
+
cond_stage_cfg = cfg_image.model.params.cond_stage_config
|
519 |
+
permuter_cfg = cfg_image.model.params.permuter_config
|
520 |
+
transformer = Net2NetTransformerAVCond(
|
521 |
+
transformer_cfg, first_stage_cfg, cond_stage_cfg, permuter_cfg
|
522 |
+
)
|
523 |
+
|
524 |
+
c = torch.rand(2, 2048, 212)
|
525 |
+
x = torch.rand(2, 1, 80, 848)
|
526 |
+
|
527 |
+
logits, target = transformer(x, c)
|
528 |
+
print(logits.shape, target.shape)
|
foleycrafter/models/specvqgan/models/cond_transformer.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from omegaconf.listconfig import ListConfig
|
8 |
+
from torchvision import transforms
|
9 |
+
from foleycrafter.models.specvqgan.data.transforms import Wave2Spectrogram
|
10 |
+
import torchaudio
|
11 |
+
|
12 |
+
sys.path.insert(0, '.') # nopep8
|
13 |
+
from foleycrafter.models.specvqgan.modules.transformer.mingpt import (GPTClass, GPTFeats, GPTFeatsClass)
|
14 |
+
from train import instantiate_from_config
|
15 |
+
|
16 |
+
|
17 |
+
def disabled_train(self, mode=True):
|
18 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
19 |
+
does not change anymore."""
|
20 |
+
return self
|
21 |
+
|
22 |
+
|
23 |
+
class Net2NetTransformer(pl.LightningModule):
|
24 |
+
def __init__(self, transformer_config, first_stage_config,
|
25 |
+
cond_stage_config,
|
26 |
+
first_stage_permuter_config=None, cond_stage_permuter_config=None,
|
27 |
+
ckpt_path=None, ignore_keys=[],
|
28 |
+
first_stage_key="image",
|
29 |
+
cond_stage_key="depth",
|
30 |
+
downsample_cond_size=-1,
|
31 |
+
pkeep=1.0,
|
32 |
+
mel_num=80,
|
33 |
+
spec_crop_len=160):
|
34 |
+
|
35 |
+
super().__init__()
|
36 |
+
self.init_first_stage_from_ckpt(first_stage_config)
|
37 |
+
self.init_cond_stage_from_ckpt(cond_stage_config)
|
38 |
+
if first_stage_permuter_config is None:
|
39 |
+
first_stage_permuter_config = {"target": "foleycrafter.models.specvqgan.modules.transformer.permuter.Identity"}
|
40 |
+
if cond_stage_permuter_config is None:
|
41 |
+
cond_stage_permuter_config = {"target": "foleycrafter.models.specvqgan.modules.transformer.permuter.Identity"}
|
42 |
+
self.first_stage_permuter = instantiate_from_config(config=first_stage_permuter_config)
|
43 |
+
self.cond_stage_permuter = instantiate_from_config(config=cond_stage_permuter_config)
|
44 |
+
self.transformer = instantiate_from_config(config=transformer_config)
|
45 |
+
|
46 |
+
self.wav_transforms = nn.Sequential(
|
47 |
+
torchaudio.transforms.Spectrogram(
|
48 |
+
n_fft=1024,
|
49 |
+
hop_length=1024//4,
|
50 |
+
power=1,
|
51 |
+
),
|
52 |
+
torchaudio.transforms.MelScale(
|
53 |
+
n_mels=80,
|
54 |
+
sample_rate=22050,
|
55 |
+
f_min=125,
|
56 |
+
f_max=7600,
|
57 |
+
n_stft=513,
|
58 |
+
norm='slaney'
|
59 |
+
),
|
60 |
+
Wave2Spectrogram(mel_num, spec_crop_len),
|
61 |
+
)
|
62 |
+
ignore_keys = ['wav_transforms']
|
63 |
+
|
64 |
+
if ckpt_path is not None:
|
65 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
66 |
+
self.first_stage_key = first_stage_key
|
67 |
+
self.cond_stage_key = cond_stage_key
|
68 |
+
self.downsample_cond_size = downsample_cond_size
|
69 |
+
self.pkeep = pkeep
|
70 |
+
print('>>> model init done.')
|
71 |
+
|
72 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
73 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
74 |
+
for k in sd.keys():
|
75 |
+
for ik in ignore_keys:
|
76 |
+
if k.startswith(ik):
|
77 |
+
self.print("Deleting key {} from state_dict.".format(k))
|
78 |
+
del sd[k]
|
79 |
+
self.load_state_dict(sd, strict=False)
|
80 |
+
print(f"Restored from {path}")
|
81 |
+
|
82 |
+
def init_first_stage_from_ckpt(self, config):
|
83 |
+
model = instantiate_from_config(config)
|
84 |
+
model = model.eval()
|
85 |
+
model.train = disabled_train
|
86 |
+
self.first_stage_model = model
|
87 |
+
|
88 |
+
def init_cond_stage_from_ckpt(self, config):
|
89 |
+
model = instantiate_from_config(config)
|
90 |
+
model = model.eval()
|
91 |
+
model.train = disabled_train
|
92 |
+
self.cond_stage_model = model
|
93 |
+
|
94 |
+
def forward(self, x, c):
|
95 |
+
# one step to produce the logits
|
96 |
+
_, z_indices = self.encode_to_z(x)
|
97 |
+
_, c_indices = self.encode_to_c(c)
|
98 |
+
|
99 |
+
if self.training and self.pkeep < 1.0:
|
100 |
+
mask = torch.bernoulli(self.pkeep * torch.ones(z_indices.shape, device=z_indices.device))
|
101 |
+
mask = mask.round().to(dtype=torch.int64)
|
102 |
+
r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size)
|
103 |
+
a_indices = mask*z_indices+(1-mask)*r_indices
|
104 |
+
else:
|
105 |
+
a_indices = z_indices
|
106 |
+
|
107 |
+
# target includes all sequence elements (no need to handle first one
|
108 |
+
# differently because we are conditioning)
|
109 |
+
target = z_indices
|
110 |
+
|
111 |
+
# in the case we do not want to encode condition anyhow (e.g. inputs are features)
|
112 |
+
if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)):
|
113 |
+
# make the prediction
|
114 |
+
logits, _, _ = self.transformer(z_indices[:, :-1], c)
|
115 |
+
# cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
|
116 |
+
if isinstance(self.transformer, GPTFeatsClass):
|
117 |
+
cond_size = c['feature'].size(-1) + c['target'].size(-1)
|
118 |
+
else:
|
119 |
+
cond_size = c.size(-1)
|
120 |
+
logits = logits[:, cond_size-1:]
|
121 |
+
else:
|
122 |
+
cz_indices = torch.cat((c_indices, a_indices), dim=1)
|
123 |
+
# make the prediction
|
124 |
+
logits, _, _ = self.transformer(cz_indices[:, :-1])
|
125 |
+
# cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
|
126 |
+
logits = logits[:, c_indices.shape[1]-1:]
|
127 |
+
|
128 |
+
return logits, target
|
129 |
+
|
130 |
+
def top_k_logits(self, logits, k):
|
131 |
+
v, ix = torch.topk(logits, k)
|
132 |
+
out = logits.clone()
|
133 |
+
out[out < v[..., [-1]]] = -float('Inf')
|
134 |
+
return out
|
135 |
+
|
136 |
+
@torch.no_grad()
|
137 |
+
def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None,
|
138 |
+
callback=lambda k: None):
|
139 |
+
x = x if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)) else torch.cat((c, x), dim=1)
|
140 |
+
block_size = self.transformer.get_block_size()
|
141 |
+
assert not self.transformer.training
|
142 |
+
if self.pkeep <= 0.0:
|
143 |
+
raise NotImplementedError('Implement for GPTFeatsCLass')
|
144 |
+
raise NotImplementedError('Implement for GPTFeats')
|
145 |
+
raise NotImplementedError('Implement for GPTClass')
|
146 |
+
raise NotImplementedError('also the model outputs attention')
|
147 |
+
# one pass suffices since input is pure noise anyway
|
148 |
+
assert len(x.shape)==2
|
149 |
+
# noise_shape = (x.shape[0], steps-1)
|
150 |
+
# noise = torch.randint(self.transformer.config.vocab_size, noise_shape).to(x)
|
151 |
+
noise = c.clone()[:,x.shape[1]-c.shape[1]:-1]
|
152 |
+
x = torch.cat((x,noise),dim=1)
|
153 |
+
logits, _ = self.transformer(x)
|
154 |
+
# take all logits for now and scale by temp
|
155 |
+
logits = logits / temperature
|
156 |
+
# optionally crop probabilities to only the top k options
|
157 |
+
if top_k is not None:
|
158 |
+
logits = self.top_k_logits(logits, top_k)
|
159 |
+
# apply softmax to convert to probabilities
|
160 |
+
probs = F.softmax(logits, dim=-1)
|
161 |
+
# sample from the distribution or take the most likely
|
162 |
+
if sample:
|
163 |
+
shape = probs.shape
|
164 |
+
probs = probs.reshape(shape[0]*shape[1],shape[2])
|
165 |
+
ix = torch.multinomial(probs, num_samples=1)
|
166 |
+
probs = probs.reshape(shape[0],shape[1],shape[2])
|
167 |
+
ix = ix.reshape(shape[0],shape[1])
|
168 |
+
else:
|
169 |
+
_, ix = torch.topk(probs, k=1, dim=-1)
|
170 |
+
# cut off conditioning
|
171 |
+
x = ix[:, c.shape[1]-1:]
|
172 |
+
else:
|
173 |
+
for k in range(steps):
|
174 |
+
callback(k)
|
175 |
+
if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)):
|
176 |
+
# if assert is removed, you need to make sure that the combined len is not longer block_s
|
177 |
+
if isinstance(self.transformer, GPTFeatsClass):
|
178 |
+
cond_size = c['feature'].size(-1) + c['target'].size(-1)
|
179 |
+
else:
|
180 |
+
cond_size = c.size(-1)
|
181 |
+
assert x.size(1) + cond_size <= block_size
|
182 |
+
|
183 |
+
x_cond = x
|
184 |
+
c_cond = c
|
185 |
+
logits, _, att = self.transformer(x_cond, c_cond)
|
186 |
+
else:
|
187 |
+
assert x.size(1) <= block_size # make sure model can see conditioning
|
188 |
+
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
|
189 |
+
logits, _, att = self.transformer(x_cond)
|
190 |
+
# pluck the logits at the final step and scale by temperature
|
191 |
+
logits = logits[:, -1, :] / temperature
|
192 |
+
# optionally crop probabilities to only the top k options
|
193 |
+
if top_k is not None:
|
194 |
+
logits = self.top_k_logits(logits, top_k)
|
195 |
+
# apply softmax to convert to probabilities
|
196 |
+
probs = F.softmax(logits, dim=-1)
|
197 |
+
# sample from the distribution or take the most likely
|
198 |
+
if sample:
|
199 |
+
ix = torch.multinomial(probs, num_samples=1)
|
200 |
+
else:
|
201 |
+
_, ix = torch.topk(probs, k=1, dim=-1)
|
202 |
+
# append to the sequence and continue
|
203 |
+
x = torch.cat((x, ix), dim=1)
|
204 |
+
# cut off conditioning
|
205 |
+
x = x if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)) else x[:, c.shape[1]:]
|
206 |
+
return x, att.detach().cpu()
|
207 |
+
|
208 |
+
@torch.no_grad()
|
209 |
+
def encode_to_z(self, x):
|
210 |
+
quant_z, _, info = self.first_stage_model.encode(x)
|
211 |
+
indices = info[2].view(quant_z.shape[0], -1)
|
212 |
+
indices = self.first_stage_permuter(indices)
|
213 |
+
return quant_z, indices
|
214 |
+
|
215 |
+
@torch.no_grad()
|
216 |
+
def encode_to_c(self, c):
|
217 |
+
if self.downsample_cond_size > -1:
|
218 |
+
c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size))
|
219 |
+
quant_c, _, info = self.cond_stage_model.encode(c)
|
220 |
+
if isinstance(self.transformer, (GPTFeats, GPTClass, GPTFeatsClass)):
|
221 |
+
# these are not indices but raw features or a class
|
222 |
+
indices = info[2]
|
223 |
+
else:
|
224 |
+
indices = info[2].view(quant_c.shape[0], -1)
|
225 |
+
indices = self.cond_stage_permuter(indices)
|
226 |
+
return quant_c, indices
|
227 |
+
|
228 |
+
@torch.no_grad()
|
229 |
+
def decode_to_img(self, index, zshape, stage='first'):
|
230 |
+
if stage == 'first':
|
231 |
+
index = self.first_stage_permuter(index, reverse=True)
|
232 |
+
elif stage == 'cond':
|
233 |
+
print('in cond stage in decode_to_img which is unexpected ')
|
234 |
+
index = self.cond_stage_permuter(index, reverse=True)
|
235 |
+
else:
|
236 |
+
raise NotImplementedError
|
237 |
+
|
238 |
+
bhwc = (zshape[0], zshape[2], zshape[3], zshape[1])
|
239 |
+
quant_z = self.first_stage_model.quantize.get_codebook_entry(index.reshape(-1), shape=bhwc)
|
240 |
+
x = self.first_stage_model.decode(quant_z)
|
241 |
+
return x
|
242 |
+
|
243 |
+
@torch.no_grad()
|
244 |
+
def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs):
|
245 |
+
log = dict()
|
246 |
+
|
247 |
+
N = 4
|
248 |
+
if lr_interface:
|
249 |
+
x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8)
|
250 |
+
else:
|
251 |
+
x, c = self.get_xc(batch, N)
|
252 |
+
x = x.to(device=self.device)
|
253 |
+
# c = c.to(device=self.device)
|
254 |
+
if isinstance(c, dict):
|
255 |
+
c = {k: v.to(self.device) for k, v in c.items()}
|
256 |
+
else:
|
257 |
+
c = c.to(self.device)
|
258 |
+
|
259 |
+
quant_z, z_indices = self.encode_to_z(x)
|
260 |
+
quant_c, c_indices = self.encode_to_c(c) # output can be features or a single class or a featcls dict
|
261 |
+
|
262 |
+
# create a "half"" sample
|
263 |
+
z_start_indices = z_indices[:, :z_indices.shape[1]//2]
|
264 |
+
index_sample, att_half = self.sample(z_start_indices, c_indices,
|
265 |
+
steps=z_indices.shape[1]-z_start_indices.shape[1],
|
266 |
+
temperature=temperature if temperature is not None else 1.0,
|
267 |
+
sample=True,
|
268 |
+
top_k=top_k if top_k is not None else 100,
|
269 |
+
callback=callback if callback is not None else lambda k: None)
|
270 |
+
x_sample = self.decode_to_img(index_sample, quant_z.shape)
|
271 |
+
|
272 |
+
# sample
|
273 |
+
z_start_indices = z_indices[:, :0]
|
274 |
+
index_sample, att_nopix = self.sample(z_start_indices, c_indices,
|
275 |
+
steps=z_indices.shape[1],
|
276 |
+
temperature=temperature if temperature is not None else 1.0,
|
277 |
+
sample=True,
|
278 |
+
top_k=top_k if top_k is not None else 100,
|
279 |
+
callback=callback if callback is not None else lambda k: None)
|
280 |
+
x_sample_nopix = self.decode_to_img(index_sample, quant_z.shape)
|
281 |
+
|
282 |
+
# det sample
|
283 |
+
z_start_indices = z_indices[:, :0]
|
284 |
+
index_sample, att_det = self.sample(z_start_indices, c_indices,
|
285 |
+
steps=z_indices.shape[1],
|
286 |
+
sample=False,
|
287 |
+
callback=callback if callback is not None else lambda k: None)
|
288 |
+
x_sample_det = self.decode_to_img(index_sample, quant_z.shape)
|
289 |
+
|
290 |
+
# reconstruction
|
291 |
+
x_rec = self.decode_to_img(z_indices, quant_z.shape)
|
292 |
+
|
293 |
+
log["inputs"] = x
|
294 |
+
log["reconstructions"] = x_rec
|
295 |
+
|
296 |
+
if isinstance(self.cond_stage_key, str):
|
297 |
+
cond_is_not_image = self.cond_stage_key != "image"
|
298 |
+
cond_has_segmentation = self.cond_stage_key == "segmentation"
|
299 |
+
elif isinstance(self.cond_stage_key, ListConfig):
|
300 |
+
cond_is_not_image = 'image' not in self.cond_stage_key
|
301 |
+
cond_has_segmentation = 'segmentation' in self.cond_stage_key
|
302 |
+
else:
|
303 |
+
raise NotImplementedError
|
304 |
+
|
305 |
+
if cond_is_not_image:
|
306 |
+
cond_rec = self.cond_stage_model.decode(quant_c)
|
307 |
+
if cond_has_segmentation:
|
308 |
+
# get image from segmentation mask
|
309 |
+
num_classes = cond_rec.shape[1]
|
310 |
+
|
311 |
+
c = torch.argmax(c, dim=1, keepdim=True)
|
312 |
+
c = F.one_hot(c, num_classes=num_classes)
|
313 |
+
c = c.squeeze(1).permute(0, 3, 1, 2).float()
|
314 |
+
c = self.cond_stage_model.to_rgb(c)
|
315 |
+
|
316 |
+
cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True)
|
317 |
+
cond_rec = F.one_hot(cond_rec, num_classes=num_classes)
|
318 |
+
cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float()
|
319 |
+
cond_rec = self.cond_stage_model.to_rgb(cond_rec)
|
320 |
+
log["conditioning_rec"] = cond_rec
|
321 |
+
log["conditioning"] = c
|
322 |
+
|
323 |
+
log["samples_half"] = x_sample
|
324 |
+
log["samples_nopix"] = x_sample_nopix
|
325 |
+
log["samples_det"] = x_sample_det
|
326 |
+
log["att_half"] = att_half
|
327 |
+
log["att_nopix"] = att_nopix
|
328 |
+
log["att_det"] = att_det
|
329 |
+
return log
|
330 |
+
|
331 |
+
def spec_transform(self, batch):
|
332 |
+
wav = batch[self.first_stage_key]
|
333 |
+
N = wav.shape[0]
|
334 |
+
self.wav_transforms.to(wav.device)
|
335 |
+
spec = self.wav_transforms(wav.to(torch.float32))
|
336 |
+
batch[self.first_stage_key] = 2 * spec[:N] - 1
|
337 |
+
return batch
|
338 |
+
|
339 |
+
def get_input(self, key, batch):
|
340 |
+
if isinstance(key, str):
|
341 |
+
# if batch[key] is 1D; else the batch[key] is 2D
|
342 |
+
if key in ['feature', 'target']:
|
343 |
+
x = self.cond_stage_model.get_input(batch, key)
|
344 |
+
else:
|
345 |
+
x = batch[key]
|
346 |
+
if len(x.shape) == 3:
|
347 |
+
x = x[..., None]
|
348 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
|
349 |
+
if x.dtype == torch.double:
|
350 |
+
x = x.float()
|
351 |
+
elif isinstance(key, ListConfig):
|
352 |
+
x = self.cond_stage_model.get_input(batch, key)
|
353 |
+
for k, v in x.items():
|
354 |
+
if v.dtype == torch.double:
|
355 |
+
x[k] = v.float()
|
356 |
+
return x
|
357 |
+
|
358 |
+
def get_xc(self, batch, N=None):
|
359 |
+
if len(batch[self.first_stage_key].shape) == 2:
|
360 |
+
batch = self.spec_transform(batch)
|
361 |
+
x = self.get_input(self.first_stage_key, batch)
|
362 |
+
c = self.get_input(self.cond_stage_key, batch)
|
363 |
+
if N is not None:
|
364 |
+
x = x[:N]
|
365 |
+
if isinstance(self.cond_stage_key, ListConfig):
|
366 |
+
c = {k: v[:N] for k, v in c.items()}
|
367 |
+
else:
|
368 |
+
c = c[:N]
|
369 |
+
return x, c
|
370 |
+
|
371 |
+
def shared_step(self, batch, batch_idx):
|
372 |
+
x, c = self.get_xc(batch)
|
373 |
+
logits, target = self(x, c)
|
374 |
+
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
|
375 |
+
return loss
|
376 |
+
|
377 |
+
def training_step(self, batch, batch_idx):
|
378 |
+
loss = self.shared_step(batch, batch_idx)
|
379 |
+
self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
380 |
+
return loss
|
381 |
+
|
382 |
+
def validation_step(self, batch, batch_idx):
|
383 |
+
loss = self.shared_step(batch, batch_idx)
|
384 |
+
self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
385 |
+
return loss
|
386 |
+
|
387 |
+
def configure_optimizers(self):
|
388 |
+
"""
|
389 |
+
Following minGPT:
|
390 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
391 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
392 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
393 |
+
We are then returning the PyTorch optimizer object.
|
394 |
+
"""
|
395 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
396 |
+
decay = set()
|
397 |
+
no_decay = set()
|
398 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
399 |
+
|
400 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding, torch.nn.Conv1d, torch.nn.LSTM, torch.nn.GRU)
|
401 |
+
for mn, m in self.transformer.named_modules():
|
402 |
+
for pn, p in m.named_parameters():
|
403 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
404 |
+
|
405 |
+
if pn.endswith('bias'):
|
406 |
+
# all biases will not be decayed
|
407 |
+
no_decay.add(fpn)
|
408 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
409 |
+
# weights of whitelist modules will be weight decayed
|
410 |
+
decay.add(fpn)
|
411 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
412 |
+
# weights of blacklist modules will NOT be weight decayed
|
413 |
+
no_decay.add(fpn)
|
414 |
+
elif ('weight' in pn or 'bias' in pn) and isinstance(m, (torch.nn.LSTM, torch.nn.GRU)):
|
415 |
+
no_decay.add(fpn)
|
416 |
+
|
417 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
418 |
+
no_decay.add('pos_emb')
|
419 |
+
|
420 |
+
# validate that we considered every parameter
|
421 |
+
param_dict = {pn: p for pn, p in self.transformer.named_parameters()}
|
422 |
+
inter_params = decay & no_decay
|
423 |
+
union_params = decay | no_decay
|
424 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
425 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
426 |
+
% (str(param_dict.keys() - union_params), )
|
427 |
+
|
428 |
+
# create the pytorch optimizer object
|
429 |
+
optim_groups = [
|
430 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01},
|
431 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
432 |
+
]
|
433 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95))
|
434 |
+
return optimizer
|
435 |
+
|
436 |
+
|
437 |
+
if __name__ == '__main__':
|
438 |
+
from omegaconf import OmegaConf
|
439 |
+
|
440 |
+
cfg_image = OmegaConf.load('./configs/vggsound_transformer.yaml')
|
441 |
+
cfg_image.model.params.first_stage_config.params.ckpt_path = './logs/2021-05-19T22-16-54_vggsound_codebook/checkpoints/last.ckpt'
|
442 |
+
|
443 |
+
transformer_cfg = cfg_image.model.params.transformer_config
|
444 |
+
first_stage_cfg = cfg_image.model.params.first_stage_config
|
445 |
+
cond_stage_cfg = cfg_image.model.params.cond_stage_config
|
446 |
+
permuter_cfg = cfg_image.model.params.permuter_config
|
447 |
+
transformer = Net2NetTransformer(
|
448 |
+
transformer_cfg, first_stage_cfg, cond_stage_cfg, permuter_cfg
|
449 |
+
)
|
450 |
+
|
451 |
+
c = torch.rand(2, 2048, 212)
|
452 |
+
x = torch.rand(2, 1, 80, 160)
|
453 |
+
|
454 |
+
logits, target = transformer(x, c)
|
455 |
+
print(logits.shape, target.shape)
|
foleycrafter/models/specvqgan/models/vqgan.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchaudio
|
4 |
+
from torchvision import transforms
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
|
8 |
+
import sys
|
9 |
+
import math
|
10 |
+
sys.path.insert(0, '.') # nopep8
|
11 |
+
from train import instantiate_from_config
|
12 |
+
from foleycrafter.models.specvqgan.data.transforms import Wave2Spectrogram, NormalizeAudio
|
13 |
+
|
14 |
+
from foleycrafter.models.specvqgan.modules.diffusionmodules.model import Encoder, Decoder, Encoder1d, Decoder1d
|
15 |
+
from foleycrafter.models.specvqgan.modules.vqvae.quantize import VectorQuantizer, VectorQuantizer1d
|
16 |
+
|
17 |
+
|
18 |
+
class VQModel(pl.LightningModule):
|
19 |
+
def __init__(self,
|
20 |
+
ddconfig,
|
21 |
+
lossconfig,
|
22 |
+
n_embed,
|
23 |
+
embed_dim,
|
24 |
+
ckpt_path=None,
|
25 |
+
ignore_keys=[],
|
26 |
+
image_key="image",
|
27 |
+
colorize_nlabels=None,
|
28 |
+
monitor=None,
|
29 |
+
L=10.,
|
30 |
+
mel_num=80,
|
31 |
+
spec_crop_len=160,
|
32 |
+
normalize=False,
|
33 |
+
freeze_encoder=False,
|
34 |
+
):
|
35 |
+
super().__init__()
|
36 |
+
self.image_key = image_key
|
37 |
+
# we need this one for compatibility in train.ImageLogger.log_img if statement
|
38 |
+
self.first_stage_key = image_key
|
39 |
+
self.encoder = Encoder(**ddconfig)
|
40 |
+
self.decoder = Decoder(**ddconfig)
|
41 |
+
self.loss = instantiate_from_config(lossconfig)
|
42 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
|
43 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
44 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
45 |
+
|
46 |
+
aug_list = [
|
47 |
+
torchaudio.transforms.Spectrogram(
|
48 |
+
n_fft=1024,
|
49 |
+
hop_length=1024//4,
|
50 |
+
power=1,
|
51 |
+
),
|
52 |
+
torchaudio.transforms.MelScale(
|
53 |
+
n_mels=80,
|
54 |
+
sample_rate=22050,
|
55 |
+
f_min=125,
|
56 |
+
f_max=7600,
|
57 |
+
n_stft=513,
|
58 |
+
norm='slaney'
|
59 |
+
),
|
60 |
+
Wave2Spectrogram(mel_num, spec_crop_len),
|
61 |
+
]
|
62 |
+
if normalize:
|
63 |
+
aug_list = [transforms.RandomApply([NormalizeAudio()], p=1. if normalize else 0.)] + aug_list
|
64 |
+
|
65 |
+
if not freeze_encoder:
|
66 |
+
self.wav_transforms = nn.Sequential(*aug_list)
|
67 |
+
ignore_keys += ['first_stage_model.wav_transforms', 'wav_transforms']
|
68 |
+
|
69 |
+
if ckpt_path is not None:
|
70 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
71 |
+
if colorize_nlabels is not None:
|
72 |
+
assert type(colorize_nlabels)==int
|
73 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
74 |
+
if monitor is not None:
|
75 |
+
self.monitor = monitor
|
76 |
+
self.used_codes = []
|
77 |
+
self.counts = [0 for _ in range(self.quantize.n_e)]
|
78 |
+
|
79 |
+
if freeze_encoder:
|
80 |
+
for param in self.encoder.parameters():
|
81 |
+
param.requires_grad = False
|
82 |
+
for param in self.quantize.parameters():
|
83 |
+
param.requires_grad = False
|
84 |
+
for param in self.quant_conv.parameters():
|
85 |
+
param.requires_grad = False
|
86 |
+
|
87 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
88 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
89 |
+
keys = list(sd.keys())
|
90 |
+
for k in keys:
|
91 |
+
for ik in ignore_keys:
|
92 |
+
if k.startswith(ik):
|
93 |
+
print("Deleting key {} from state_dict.".format(k))
|
94 |
+
del sd[k]
|
95 |
+
self.load_state_dict(sd, strict=False)
|
96 |
+
print(f"Restored from {path}")
|
97 |
+
|
98 |
+
def encode(self, x):
|
99 |
+
h = self.encoder(x) # 2d: (B, 256, 16, 16) <- (B, 3, 256, 256)
|
100 |
+
h = self.quant_conv(h) # 2d: (B, 256, 16, 16)
|
101 |
+
quant, emb_loss, info = self.quantize(h) # (B, 256, 16, 16), (), ((), (768, 1024), (768, 1))
|
102 |
+
if not self.training:
|
103 |
+
self.counts = [info[2].squeeze().tolist().count(i) + self.counts[i] for i in range(self.quantize.n_e)]
|
104 |
+
return quant, emb_loss, info
|
105 |
+
|
106 |
+
def decode(self, quant):
|
107 |
+
quant = self.post_quant_conv(quant)
|
108 |
+
dec = self.decoder(quant)
|
109 |
+
return dec
|
110 |
+
|
111 |
+
def decode_code(self, code_b):
|
112 |
+
quant_b = self.quantize.embed_code(code_b)
|
113 |
+
dec = self.decode(quant_b)
|
114 |
+
return dec
|
115 |
+
|
116 |
+
def forward(self, input):
|
117 |
+
quant, diff, _ = self.encode(input)
|
118 |
+
dec = self.decode(quant)
|
119 |
+
return dec, diff
|
120 |
+
|
121 |
+
def get_input(self, batch, k):
|
122 |
+
x = batch[k]
|
123 |
+
if len(x.shape) == 2:
|
124 |
+
x = self.spec_trans(x)
|
125 |
+
if len(x.shape) == 3:
|
126 |
+
x = x[..., None]
|
127 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
|
128 |
+
return x.float()
|
129 |
+
|
130 |
+
def spec_trans(self, wav):
|
131 |
+
self.wav_transforms.to(wav.device)
|
132 |
+
spec = self.wav_transforms(wav.to(torch.float32))
|
133 |
+
return 2 * spec - 1
|
134 |
+
|
135 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
136 |
+
x = self.get_input(batch, self.image_key)
|
137 |
+
xrec, qloss = self(x)
|
138 |
+
|
139 |
+
if optimizer_idx == 0:
|
140 |
+
# autoencode
|
141 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
142 |
+
last_layer=self.get_last_layer(), split="train")
|
143 |
+
|
144 |
+
self.log("train/aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
145 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
146 |
+
return aeloss
|
147 |
+
|
148 |
+
if optimizer_idx == 1:
|
149 |
+
# discriminator
|
150 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
+
last_layer=self.get_last_layer(), split="train")
|
152 |
+
self.log("train/disc_loss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
153 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
154 |
+
return discloss
|
155 |
+
|
156 |
+
def validation_step(self, batch, batch_idx):
|
157 |
+
if batch_idx == 0 and self.global_step != 0 and sum(self.counts) > 0:
|
158 |
+
zero_hit_codes = len([1 for count in self.counts if count == 0])
|
159 |
+
used_codes = []
|
160 |
+
for c, count in enumerate(self.counts):
|
161 |
+
used_codes.extend([c] * count)
|
162 |
+
self.logger.experiment.add_histogram('val/code_hits', torch.tensor(used_codes), self.global_step)
|
163 |
+
self.logger.experiment.add_scalar('val/zero_hit_codes', zero_hit_codes, self.global_step)
|
164 |
+
self.counts = [0 for _ in range(self.quantize.n_e)]
|
165 |
+
x = self.get_input(batch, self.image_key)
|
166 |
+
xrec, qloss = self(x)
|
167 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step,
|
168 |
+
last_layer=self.get_last_layer(), split="val")
|
169 |
+
|
170 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step,
|
171 |
+
last_layer=self.get_last_layer(), split="val")
|
172 |
+
rec_loss = log_dict_ae['val/rec_loss']
|
173 |
+
self.log('val/rec_loss', rec_loss, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
|
174 |
+
self.log('val/aeloss', aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
|
175 |
+
self.log_dict(log_dict_ae)
|
176 |
+
self.log_dict(log_dict_disc)
|
177 |
+
return self.log_dict
|
178 |
+
|
179 |
+
def configure_optimizers(self):
|
180 |
+
lr = self.learning_rate
|
181 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters()) +
|
182 |
+
list(self.decoder.parameters()) +
|
183 |
+
list(self.quantize.parameters()) +
|
184 |
+
list(self.quant_conv.parameters()) +
|
185 |
+
list(self.post_quant_conv.parameters()),
|
186 |
+
lr=lr, betas=(0.5, 0.9))
|
187 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
188 |
+
lr=lr, betas=(0.5, 0.9))
|
189 |
+
return [opt_ae, opt_disc], []
|
190 |
+
|
191 |
+
def get_last_layer(self):
|
192 |
+
return self.decoder.conv_out.weight
|
193 |
+
|
194 |
+
def log_images(self, batch, **kwargs):
|
195 |
+
log = dict()
|
196 |
+
x = self.get_input(batch, self.image_key)
|
197 |
+
x = x.to(self.device)
|
198 |
+
xrec, _ = self(x)
|
199 |
+
if x.shape[1] > 3:
|
200 |
+
# colorize with random projection
|
201 |
+
assert xrec.shape[1] > 3
|
202 |
+
x = self.to_rgb(x)
|
203 |
+
xrec = self.to_rgb(xrec)
|
204 |
+
log["inputs"] = x
|
205 |
+
log["reconstructions"] = xrec
|
206 |
+
return log
|
207 |
+
|
208 |
+
def to_rgb(self, x):
|
209 |
+
assert self.image_key == "segmentation"
|
210 |
+
if not hasattr(self, "colorize"):
|
211 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
212 |
+
x = F.conv2d(x, weight=self.colorize)
|
213 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
214 |
+
return x
|
215 |
+
|
216 |
+
|
217 |
+
class VQModel1d(VQModel):
|
218 |
+
def __init__(self, ddconfig, lossconfig, n_embed, embed_dim, ckpt_path=None, ignore_keys=[],
|
219 |
+
image_key='feature', colorize_nlabels=None, monitor=None):
|
220 |
+
# ckpt_path is none to super because otherwise will try to load 1D checkpoint into 2D model
|
221 |
+
super().__init__(ddconfig, lossconfig, n_embed, embed_dim)
|
222 |
+
self.image_key = image_key
|
223 |
+
# we need this one for compatibility in train.ImageLogger.log_img if statement
|
224 |
+
self.first_stage_key = image_key
|
225 |
+
self.encoder = Encoder1d(**ddconfig)
|
226 |
+
self.decoder = Decoder1d(**ddconfig)
|
227 |
+
self.loss = instantiate_from_config(lossconfig)
|
228 |
+
self.quantize = VectorQuantizer1d(n_embed, embed_dim, beta=0.25)
|
229 |
+
self.quant_conv = torch.nn.Conv1d(ddconfig['z_channels'], embed_dim, 1)
|
230 |
+
self.post_quant_conv = torch.nn.Conv1d(embed_dim, ddconfig['z_channels'], 1)
|
231 |
+
if ckpt_path is not None:
|
232 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
233 |
+
if colorize_nlabels is not None:
|
234 |
+
assert type(colorize_nlabels)==int
|
235 |
+
self.register_buffer('colorize', torch.randn(3, colorize_nlabels, 1, 1))
|
236 |
+
if monitor is not None:
|
237 |
+
self.monitor = monitor
|
238 |
+
|
239 |
+
def get_input(self, batch, k):
|
240 |
+
x = batch[k]
|
241 |
+
if self.image_key == 'feature':
|
242 |
+
x = x.permute(0, 2, 1)
|
243 |
+
elif self.image_key == 'image':
|
244 |
+
x = x.unsqueeze(1)
|
245 |
+
x = x.to(memory_format=torch.contiguous_format)
|
246 |
+
return x.float()
|
247 |
+
|
248 |
+
def forward(self, input):
|
249 |
+
if self.image_key == 'image':
|
250 |
+
input = input.squeeze(1)
|
251 |
+
quant, diff, _ = self.encode(input)
|
252 |
+
dec = self.decode(quant)
|
253 |
+
if self.image_key == 'image':
|
254 |
+
dec = dec.unsqueeze(1)
|
255 |
+
return dec, diff
|
256 |
+
|
257 |
+
def log_images(self, batch, **kwargs):
|
258 |
+
if self.image_key == 'image':
|
259 |
+
log = dict()
|
260 |
+
x = self.get_input(batch, self.image_key)
|
261 |
+
x = x.to(self.device)
|
262 |
+
xrec, _ = self(x)
|
263 |
+
if x.shape[1] > 3:
|
264 |
+
# colorize with random projection
|
265 |
+
assert xrec.shape[1] > 3
|
266 |
+
x = self.to_rgb(x)
|
267 |
+
xrec = self.to_rgb(xrec)
|
268 |
+
log['inputs'] = x
|
269 |
+
log['reconstructions'] = xrec
|
270 |
+
return log
|
271 |
+
else:
|
272 |
+
raise NotImplementedError('1d input should be treated differently')
|
273 |
+
|
274 |
+
def to_rgb(self, batch, **kwargs):
|
275 |
+
raise NotImplementedError('1d input should be treated differently')
|
276 |
+
|
277 |
+
|
278 |
+
class VQSegmentationModel(VQModel):
|
279 |
+
def __init__(self, n_labels, *args, **kwargs):
|
280 |
+
super().__init__(*args, **kwargs)
|
281 |
+
self.register_buffer("colorize", torch.randn(3, n_labels, 1, 1))
|
282 |
+
|
283 |
+
def configure_optimizers(self):
|
284 |
+
lr = self.learning_rate
|
285 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
286 |
+
list(self.decoder.parameters())+
|
287 |
+
list(self.quantize.parameters())+
|
288 |
+
list(self.quant_conv.parameters())+
|
289 |
+
list(self.post_quant_conv.parameters()),
|
290 |
+
lr=lr, betas=(0.5, 0.9))
|
291 |
+
return opt_ae
|
292 |
+
|
293 |
+
def training_step(self, batch, batch_idx):
|
294 |
+
x = self.get_input(batch, self.image_key)
|
295 |
+
xrec, qloss = self(x)
|
296 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="train")
|
297 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
298 |
+
return aeloss
|
299 |
+
|
300 |
+
def validation_step(self, batch, batch_idx):
|
301 |
+
x = self.get_input(batch, self.image_key)
|
302 |
+
xrec, qloss = self(x)
|
303 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="val")
|
304 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
305 |
+
total_loss = log_dict_ae["val/total_loss"]
|
306 |
+
self.log("val/total_loss", total_loss,
|
307 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
|
308 |
+
return aeloss
|
309 |
+
|
310 |
+
@torch.no_grad()
|
311 |
+
def log_images(self, batch, **kwargs):
|
312 |
+
log = dict()
|
313 |
+
x = self.get_input(batch, self.image_key)
|
314 |
+
x = x.to(self.device)
|
315 |
+
xrec, _ = self(x)
|
316 |
+
if x.shape[1] > 3:
|
317 |
+
# colorize with random projection
|
318 |
+
assert xrec.shape[1] > 3
|
319 |
+
# convert logits to indices
|
320 |
+
xrec = torch.argmax(xrec, dim=1, keepdim=True)
|
321 |
+
xrec = F.one_hot(xrec, num_classes=x.shape[1])
|
322 |
+
xrec = xrec.squeeze(1).permute(0, 3, 1, 2).float()
|
323 |
+
x = self.to_rgb(x)
|
324 |
+
xrec = self.to_rgb(xrec)
|
325 |
+
log["inputs"] = x
|
326 |
+
log["reconstructions"] = xrec
|
327 |
+
return log
|
328 |
+
|
329 |
+
|
330 |
+
class VQNoDiscModel(VQModel):
|
331 |
+
def __init__(self,
|
332 |
+
ddconfig,
|
333 |
+
lossconfig,
|
334 |
+
n_embed,
|
335 |
+
embed_dim,
|
336 |
+
ckpt_path=None,
|
337 |
+
ignore_keys=[],
|
338 |
+
image_key="image",
|
339 |
+
colorize_nlabels=None
|
340 |
+
):
|
341 |
+
super().__init__(ddconfig=ddconfig, lossconfig=lossconfig, n_embed=n_embed, embed_dim=embed_dim,
|
342 |
+
ckpt_path=ckpt_path, ignore_keys=ignore_keys, image_key=image_key,
|
343 |
+
colorize_nlabels=colorize_nlabels)
|
344 |
+
|
345 |
+
def training_step(self, batch, batch_idx):
|
346 |
+
x = self.get_input(batch, self.image_key)
|
347 |
+
xrec, qloss = self(x)
|
348 |
+
# autoencode
|
349 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="train")
|
350 |
+
output = pl.TrainResult(minimize=aeloss)
|
351 |
+
output.log("train/aeloss", aeloss,
|
352 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
353 |
+
output.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
354 |
+
return output
|
355 |
+
|
356 |
+
def validation_step(self, batch, batch_idx):
|
357 |
+
x = self.get_input(batch, self.image_key)
|
358 |
+
xrec, qloss = self(x)
|
359 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="val")
|
360 |
+
rec_loss = log_dict_ae["val/rec_loss"]
|
361 |
+
output = pl.EvalResult(checkpoint_on=rec_loss)
|
362 |
+
output.log("val/rec_loss", rec_loss,
|
363 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
364 |
+
output.log("val/aeloss", aeloss,
|
365 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
366 |
+
output.log_dict(log_dict_ae)
|
367 |
+
|
368 |
+
return output
|
369 |
+
|
370 |
+
def configure_optimizers(self):
|
371 |
+
optimizer = torch.optim.Adam(list(self.encoder.parameters()) +
|
372 |
+
list(self.decoder.parameters()) +
|
373 |
+
list(self.quantize.parameters()) +
|
374 |
+
list(self.quant_conv.parameters()) +
|
375 |
+
list(self.post_quant_conv.parameters()),
|
376 |
+
lr=self.learning_rate, betas=(0.5, 0.9))
|
377 |
+
return optimizer
|
378 |
+
|
379 |
+
|
380 |
+
if __name__ == '__main__':
|
381 |
+
from omegaconf import OmegaConf
|
382 |
+
from train import instantiate_from_config
|
383 |
+
|
384 |
+
image_key = 'image'
|
385 |
+
cfg_audio = OmegaConf.load('./configs/vggsound_codebook.yaml')
|
386 |
+
model = VQModel(cfg_audio.model.params.ddconfig,
|
387 |
+
cfg_audio.model.params.lossconfig,
|
388 |
+
cfg_audio.model.params.n_embed,
|
389 |
+
cfg_audio.model.params.embed_dim,
|
390 |
+
image_key='image')
|
391 |
+
batch = {
|
392 |
+
'image': torch.rand((4, 80, 848)),
|
393 |
+
'file_path_': ['data/vggsound/mel123.npy', 'data/vggsound/mel123.npy', 'data/vggsound/mel123.npy'],
|
394 |
+
'class': [1, 1, 1],
|
395 |
+
}
|
396 |
+
xrec, qloss = model(model.get_input(batch, image_key))
|
397 |
+
print(xrec.shape, qloss.shape)
|
foleycrafter/models/specvqgan/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,999 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
9 |
+
"""
|
10 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
11 |
+
From Fairseq.
|
12 |
+
Build sinusoidal embeddings.
|
13 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
14 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
15 |
+
"""
|
16 |
+
assert len(timesteps.shape) == 1
|
17 |
+
|
18 |
+
half_dim = embedding_dim // 2
|
19 |
+
emb = math.log(10000) / (half_dim - 1)
|
20 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
21 |
+
emb = emb.to(device=timesteps.device)
|
22 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
23 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
24 |
+
if embedding_dim % 2 == 1: # zero pad
|
25 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
26 |
+
return emb
|
27 |
+
|
28 |
+
|
29 |
+
def nonlinearity(x):
|
30 |
+
# swish
|
31 |
+
return x*torch.sigmoid(x)
|
32 |
+
|
33 |
+
|
34 |
+
def Normalize(in_channels):
|
35 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
36 |
+
|
37 |
+
class Upsample(nn.Module):
|
38 |
+
def __init__(self, in_channels, with_conv):
|
39 |
+
super().__init__()
|
40 |
+
self.with_conv = with_conv
|
41 |
+
if self.with_conv:
|
42 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
43 |
+
in_channels,
|
44 |
+
kernel_size=3,
|
45 |
+
stride=1,
|
46 |
+
padding=1)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
50 |
+
if self.with_conv:
|
51 |
+
x = self.conv(x)
|
52 |
+
return x
|
53 |
+
|
54 |
+
class Upsample1d(Upsample):
|
55 |
+
def __init__(self, in_channels, with_conv):
|
56 |
+
super().__init__(in_channels, with_conv)
|
57 |
+
if self.with_conv:
|
58 |
+
self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
67 |
+
self.pad = (0, 1, 0, 1)
|
68 |
+
else:
|
69 |
+
self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
if self.with_conv: # bp: check self.avgpool and self.pad
|
73 |
+
x = torch.nn.functional.pad(x, self.pad, mode="constant", value=0)
|
74 |
+
x = self.conv(x)
|
75 |
+
else:
|
76 |
+
x = self.avg_pool(x)
|
77 |
+
return x
|
78 |
+
|
79 |
+
class Downsample1d(Downsample):
|
80 |
+
|
81 |
+
def __init__(self, in_channels, with_conv):
|
82 |
+
super().__init__(in_channels, with_conv)
|
83 |
+
if self.with_conv:
|
84 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
85 |
+
# TODO: can we replace it just with conv2d with padding 1?
|
86 |
+
self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
87 |
+
self.pad = (1, 1)
|
88 |
+
else:
|
89 |
+
self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2)
|
90 |
+
|
91 |
+
|
92 |
+
class ResnetBlock(nn.Module):
|
93 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
94 |
+
dropout, temb_channels=512):
|
95 |
+
super().__init__()
|
96 |
+
self.in_channels = in_channels
|
97 |
+
out_channels = in_channels if out_channels is None else out_channels
|
98 |
+
self.out_channels = out_channels
|
99 |
+
self.use_conv_shortcut = conv_shortcut
|
100 |
+
|
101 |
+
self.norm1 = Normalize(in_channels)
|
102 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if temb_channels > 0:
|
108 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
109 |
+
out_channels)
|
110 |
+
self.norm2 = Normalize(out_channels)
|
111 |
+
self.dropout = torch.nn.Dropout(dropout)
|
112 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
113 |
+
out_channels,
|
114 |
+
kernel_size=3,
|
115 |
+
stride=1,
|
116 |
+
padding=1)
|
117 |
+
if self.in_channels != self.out_channels:
|
118 |
+
if self.use_conv_shortcut:
|
119 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
120 |
+
out_channels,
|
121 |
+
kernel_size=3,
|
122 |
+
stride=1,
|
123 |
+
padding=1)
|
124 |
+
else:
|
125 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
126 |
+
out_channels,
|
127 |
+
kernel_size=1,
|
128 |
+
stride=1,
|
129 |
+
padding=0)
|
130 |
+
|
131 |
+
def forward(self, x, temb):
|
132 |
+
h = x
|
133 |
+
h = self.norm1(h)
|
134 |
+
h = nonlinearity(h)
|
135 |
+
h = self.conv1(h)
|
136 |
+
|
137 |
+
if temb is not None:
|
138 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
139 |
+
|
140 |
+
h = self.norm2(h)
|
141 |
+
h = nonlinearity(h)
|
142 |
+
h = self.dropout(h)
|
143 |
+
h = self.conv2(h)
|
144 |
+
|
145 |
+
if self.in_channels != self.out_channels:
|
146 |
+
if self.use_conv_shortcut:
|
147 |
+
x = self.conv_shortcut(x)
|
148 |
+
else:
|
149 |
+
x = self.nin_shortcut(x)
|
150 |
+
|
151 |
+
return x+h
|
152 |
+
|
153 |
+
class ResnetBlock1d(ResnetBlock):
|
154 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
155 |
+
dropout, temb_channels=512):
|
156 |
+
super().__init__(in_channels=in_channels, out_channels=out_channels,
|
157 |
+
conv_shortcut=conv_shortcut, dropout=dropout, temb_channels=temb_channels)
|
158 |
+
# redefining different elements (forward is goint to be the same as in RenetBlock)
|
159 |
+
if temb_channels > 0:
|
160 |
+
raise NotImplementedError('go to ResnetBlock and figure out how to deal with it in forward')
|
161 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
162 |
+
|
163 |
+
self.conv1 = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
164 |
+
self.conv2 = torch.nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
165 |
+
if self.in_channels != self.out_channels:
|
166 |
+
if self.use_conv_shortcut:
|
167 |
+
self.conv_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3,
|
168 |
+
stride=1, padding=1)
|
169 |
+
else:
|
170 |
+
self.nin_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=1,
|
171 |
+
stride=1, padding=0)
|
172 |
+
|
173 |
+
|
174 |
+
class AttnBlock(nn.Module):
|
175 |
+
def __init__(self, in_channels):
|
176 |
+
super().__init__()
|
177 |
+
self.in_channels = in_channels
|
178 |
+
|
179 |
+
self.norm = Normalize(in_channels)
|
180 |
+
self.q = torch.nn.Conv2d(in_channels,
|
181 |
+
in_channels,
|
182 |
+
kernel_size=1,
|
183 |
+
stride=1,
|
184 |
+
padding=0)
|
185 |
+
self.k = torch.nn.Conv2d(in_channels,
|
186 |
+
in_channels,
|
187 |
+
kernel_size=1,
|
188 |
+
stride=1,
|
189 |
+
padding=0)
|
190 |
+
self.v = torch.nn.Conv2d(in_channels,
|
191 |
+
in_channels,
|
192 |
+
kernel_size=1,
|
193 |
+
stride=1,
|
194 |
+
padding=0)
|
195 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
196 |
+
in_channels,
|
197 |
+
kernel_size=1,
|
198 |
+
stride=1,
|
199 |
+
padding=0)
|
200 |
+
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
h_ = x
|
204 |
+
h_ = self.norm(h_)
|
205 |
+
q = self.q(h_)
|
206 |
+
k = self.k(h_)
|
207 |
+
v = self.v(h_)
|
208 |
+
|
209 |
+
# compute attention
|
210 |
+
b,c,h,w = q.shape
|
211 |
+
q = q.reshape(b,c,h*w)
|
212 |
+
q = q.permute(0,2,1) # b,hw,c
|
213 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
214 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
215 |
+
w_ = w_ * (int(c)**(-0.5))
|
216 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
217 |
+
|
218 |
+
# attend to values
|
219 |
+
v = v.reshape(b,c,h*w)
|
220 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
221 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
222 |
+
h_ = h_.reshape(b,c,h,w)
|
223 |
+
|
224 |
+
h_ = self.proj_out(h_)
|
225 |
+
|
226 |
+
return x+h_
|
227 |
+
|
228 |
+
class AttnBlock1d(nn.Module):
|
229 |
+
|
230 |
+
def __init__(self, in_channels):
|
231 |
+
super().__init__()
|
232 |
+
self.in_channels = in_channels
|
233 |
+
|
234 |
+
self.norm = Normalize(in_channels)
|
235 |
+
self.q = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
236 |
+
self.k = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
237 |
+
self.v = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
238 |
+
self.proj_out = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
h_ = x
|
242 |
+
h_ = self.norm(h_)
|
243 |
+
q = self.q(h_)
|
244 |
+
k = self.k(h_)
|
245 |
+
v = self.v(h_)
|
246 |
+
|
247 |
+
# compute attention
|
248 |
+
b, c, t = q.shape
|
249 |
+
q = q.permute(0, 2, 1) # b,t,c
|
250 |
+
w_ = torch.bmm(q, k) # b,t,t w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
251 |
+
w_ = w_ * (int(c) ** (-0.5))
|
252 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
253 |
+
|
254 |
+
# attend to values
|
255 |
+
w_ = w_.permute(0, 2, 1) # b,t,t (first t of k, second of q)
|
256 |
+
h_ = torch.bmm(v, w_) # b,c,t (t of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
257 |
+
|
258 |
+
h_ = self.proj_out(h_)
|
259 |
+
|
260 |
+
return x + h_
|
261 |
+
|
262 |
+
|
263 |
+
class Model(nn.Module):
|
264 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
265 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
266 |
+
resolution, use_timestep=True):
|
267 |
+
super().__init__()
|
268 |
+
self.ch = ch
|
269 |
+
self.temb_ch = self.ch*4
|
270 |
+
self.num_resolutions = len(ch_mult)
|
271 |
+
self.num_res_blocks = num_res_blocks
|
272 |
+
self.resolution = resolution
|
273 |
+
self.in_channels = in_channels
|
274 |
+
|
275 |
+
self.use_timestep = use_timestep
|
276 |
+
if self.use_timestep:
|
277 |
+
# timestep embedding
|
278 |
+
self.temb = nn.Module()
|
279 |
+
self.temb.dense = nn.ModuleList([
|
280 |
+
torch.nn.Linear(self.ch,
|
281 |
+
self.temb_ch),
|
282 |
+
torch.nn.Linear(self.temb_ch,
|
283 |
+
self.temb_ch),
|
284 |
+
])
|
285 |
+
|
286 |
+
# downsampling
|
287 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
288 |
+
self.ch,
|
289 |
+
kernel_size=3,
|
290 |
+
stride=1,
|
291 |
+
padding=1)
|
292 |
+
|
293 |
+
curr_res = resolution
|
294 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
295 |
+
self.down = nn.ModuleList()
|
296 |
+
for i_level in range(self.num_resolutions):
|
297 |
+
block = nn.ModuleList()
|
298 |
+
attn = nn.ModuleList()
|
299 |
+
block_in = ch*in_ch_mult[i_level]
|
300 |
+
block_out = ch*ch_mult[i_level]
|
301 |
+
for i_block in range(self.num_res_blocks):
|
302 |
+
block.append(ResnetBlock(in_channels=block_in,
|
303 |
+
out_channels=block_out,
|
304 |
+
temb_channels=self.temb_ch,
|
305 |
+
dropout=dropout))
|
306 |
+
block_in = block_out
|
307 |
+
if curr_res in attn_resolutions:
|
308 |
+
attn.append(AttnBlock(block_in))
|
309 |
+
down = nn.Module()
|
310 |
+
down.block = block
|
311 |
+
down.attn = attn
|
312 |
+
if i_level != self.num_resolutions-1:
|
313 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
314 |
+
curr_res = curr_res // 2
|
315 |
+
self.down.append(down)
|
316 |
+
|
317 |
+
# middle
|
318 |
+
self.mid = nn.Module()
|
319 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
320 |
+
out_channels=block_in,
|
321 |
+
temb_channels=self.temb_ch,
|
322 |
+
dropout=dropout)
|
323 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
324 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
325 |
+
out_channels=block_in,
|
326 |
+
temb_channels=self.temb_ch,
|
327 |
+
dropout=dropout)
|
328 |
+
|
329 |
+
# upsampling
|
330 |
+
self.up = nn.ModuleList()
|
331 |
+
for i_level in reversed(range(self.num_resolutions)):
|
332 |
+
block = nn.ModuleList()
|
333 |
+
attn = nn.ModuleList()
|
334 |
+
block_out = ch*ch_mult[i_level]
|
335 |
+
skip_in = ch*ch_mult[i_level]
|
336 |
+
for i_block in range(self.num_res_blocks+1):
|
337 |
+
if i_block == self.num_res_blocks:
|
338 |
+
skip_in = ch*in_ch_mult[i_level]
|
339 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
340 |
+
out_channels=block_out,
|
341 |
+
temb_channels=self.temb_ch,
|
342 |
+
dropout=dropout))
|
343 |
+
block_in = block_out
|
344 |
+
if curr_res in attn_resolutions:
|
345 |
+
attn.append(AttnBlock(block_in))
|
346 |
+
up = nn.Module()
|
347 |
+
up.block = block
|
348 |
+
up.attn = attn
|
349 |
+
if i_level != 0:
|
350 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
351 |
+
curr_res = curr_res * 2
|
352 |
+
self.up.insert(0, up) # prepend to get consistent order
|
353 |
+
|
354 |
+
# end
|
355 |
+
self.norm_out = Normalize(block_in)
|
356 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
357 |
+
out_ch,
|
358 |
+
kernel_size=3,
|
359 |
+
stride=1,
|
360 |
+
padding=1)
|
361 |
+
|
362 |
+
|
363 |
+
def forward(self, x, t=None):
|
364 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
365 |
+
|
366 |
+
if self.use_timestep:
|
367 |
+
# timestep embedding
|
368 |
+
assert t is not None
|
369 |
+
temb = get_timestep_embedding(t, self.ch)
|
370 |
+
temb = self.temb.dense[0](temb)
|
371 |
+
temb = nonlinearity(temb)
|
372 |
+
temb = self.temb.dense[1](temb)
|
373 |
+
else:
|
374 |
+
temb = None
|
375 |
+
|
376 |
+
# downsampling
|
377 |
+
hs = [self.conv_in(x)]
|
378 |
+
for i_level in range(self.num_resolutions):
|
379 |
+
for i_block in range(self.num_res_blocks):
|
380 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
381 |
+
if len(self.down[i_level].attn) > 0:
|
382 |
+
h = self.down[i_level].attn[i_block](h)
|
383 |
+
hs.append(h)
|
384 |
+
if i_level != self.num_resolutions-1:
|
385 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
386 |
+
|
387 |
+
# middle
|
388 |
+
h = hs[-1]
|
389 |
+
h = self.mid.block_1(h, temb)
|
390 |
+
h = self.mid.attn_1(h)
|
391 |
+
h = self.mid.block_2(h, temb)
|
392 |
+
|
393 |
+
# upsampling
|
394 |
+
for i_level in reversed(range(self.num_resolutions)):
|
395 |
+
for i_block in range(self.num_res_blocks+1):
|
396 |
+
h = self.up[i_level].block[i_block](
|
397 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
398 |
+
if len(self.up[i_level].attn) > 0:
|
399 |
+
h = self.up[i_level].attn[i_block](h)
|
400 |
+
if i_level != 0:
|
401 |
+
h = self.up[i_level].upsample(h)
|
402 |
+
|
403 |
+
# end
|
404 |
+
h = self.norm_out(h)
|
405 |
+
h = nonlinearity(h)
|
406 |
+
h = self.conv_out(h)
|
407 |
+
return h
|
408 |
+
|
409 |
+
|
410 |
+
class Encoder(nn.Module):
|
411 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
412 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
413 |
+
resolution, z_channels, double_z=True, **ignore_kwargs):
|
414 |
+
super().__init__()
|
415 |
+
self.ch = ch
|
416 |
+
self.temb_ch = 0
|
417 |
+
self.num_resolutions = len(ch_mult)
|
418 |
+
self.num_res_blocks = num_res_blocks
|
419 |
+
self.resolution = resolution
|
420 |
+
self.in_channels = in_channels
|
421 |
+
|
422 |
+
# downsampling
|
423 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
424 |
+
self.ch,
|
425 |
+
kernel_size=3,
|
426 |
+
stride=1,
|
427 |
+
padding=1)
|
428 |
+
|
429 |
+
curr_res = resolution
|
430 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
431 |
+
self.down = nn.ModuleList()
|
432 |
+
for i_level in range(self.num_resolutions):
|
433 |
+
block = nn.ModuleList()
|
434 |
+
attn = nn.ModuleList()
|
435 |
+
block_in = ch*in_ch_mult[i_level]
|
436 |
+
block_out = ch*ch_mult[i_level]
|
437 |
+
for i_block in range(self.num_res_blocks):
|
438 |
+
block.append(ResnetBlock(in_channels=block_in,
|
439 |
+
out_channels=block_out,
|
440 |
+
temb_channels=self.temb_ch,
|
441 |
+
dropout=dropout))
|
442 |
+
block_in = block_out
|
443 |
+
if curr_res in attn_resolutions:
|
444 |
+
attn.append(AttnBlock(block_in))
|
445 |
+
down = nn.Module()
|
446 |
+
down.block = block
|
447 |
+
down.attn = attn
|
448 |
+
if i_level != self.num_resolutions-1:
|
449 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
450 |
+
curr_res = curr_res // 2
|
451 |
+
self.down.append(down)
|
452 |
+
|
453 |
+
# middle
|
454 |
+
self.mid = nn.Module()
|
455 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
456 |
+
out_channels=block_in,
|
457 |
+
temb_channels=self.temb_ch,
|
458 |
+
dropout=dropout)
|
459 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
460 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
461 |
+
out_channels=block_in,
|
462 |
+
temb_channels=self.temb_ch,
|
463 |
+
dropout=dropout)
|
464 |
+
|
465 |
+
# end
|
466 |
+
self.norm_out = Normalize(block_in)
|
467 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
468 |
+
2*z_channels if double_z else z_channels,
|
469 |
+
kernel_size=3,
|
470 |
+
stride=1,
|
471 |
+
padding=1)
|
472 |
+
|
473 |
+
|
474 |
+
def forward(self, x):
|
475 |
+
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
476 |
+
|
477 |
+
# timestep embedding
|
478 |
+
temb = None
|
479 |
+
|
480 |
+
# downsampling
|
481 |
+
hs = [self.conv_in(x)]
|
482 |
+
for i_level in range(self.num_resolutions):
|
483 |
+
for i_block in range(self.num_res_blocks):
|
484 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
485 |
+
if len(self.down[i_level].attn) > 0:
|
486 |
+
h = self.down[i_level].attn[i_block](h)
|
487 |
+
hs.append(h)
|
488 |
+
if i_level != self.num_resolutions-1:
|
489 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
490 |
+
|
491 |
+
# middle
|
492 |
+
h = hs[-1]
|
493 |
+
h = self.mid.block_1(h, temb)
|
494 |
+
h = self.mid.attn_1(h)
|
495 |
+
h = self.mid.block_2(h, temb)
|
496 |
+
|
497 |
+
# end
|
498 |
+
h = self.norm_out(h)
|
499 |
+
h = nonlinearity(h)
|
500 |
+
h = self.conv_out(h)
|
501 |
+
return h
|
502 |
+
|
503 |
+
class Encoder1d(Encoder):
|
504 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
505 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
506 |
+
resolution, z_channels, double_z=True, **ignore_kwargs):
|
507 |
+
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
508 |
+
attn_resolutions=attn_resolutions, dropout=dropout,
|
509 |
+
resamp_with_conv=resamp_with_conv,
|
510 |
+
in_channels=in_channels, resolution=resolution, z_channels=z_channels,
|
511 |
+
double_z=double_z, **ignore_kwargs)
|
512 |
+
self.ch = ch
|
513 |
+
self.temb_ch = 0
|
514 |
+
self.num_resolutions = len(ch_mult)
|
515 |
+
self.num_res_blocks = num_res_blocks
|
516 |
+
self.resolution = resolution
|
517 |
+
self.in_channels = in_channels
|
518 |
+
|
519 |
+
# downsampling
|
520 |
+
self.conv_in = torch.nn.Conv1d(in_channels,
|
521 |
+
self.ch,
|
522 |
+
kernel_size=3,
|
523 |
+
stride=1,
|
524 |
+
padding=1)
|
525 |
+
|
526 |
+
curr_res = resolution
|
527 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
528 |
+
self.down = nn.ModuleList()
|
529 |
+
for i_level in range(self.num_resolutions):
|
530 |
+
block = nn.ModuleList()
|
531 |
+
attn = nn.ModuleList()
|
532 |
+
block_in = ch*in_ch_mult[i_level]
|
533 |
+
block_out = ch*ch_mult[i_level]
|
534 |
+
for i_block in range(self.num_res_blocks):
|
535 |
+
block.append(ResnetBlock1d(in_channels=block_in,
|
536 |
+
out_channels=block_out,
|
537 |
+
temb_channels=self.temb_ch,
|
538 |
+
dropout=dropout))
|
539 |
+
block_in = block_out
|
540 |
+
if curr_res in attn_resolutions:
|
541 |
+
attn.append(AttnBlock1d(block_in))
|
542 |
+
down = nn.Module()
|
543 |
+
down.block = block
|
544 |
+
down.attn = attn
|
545 |
+
if i_level != self.num_resolutions-1:
|
546 |
+
down.downsample = Downsample1d(block_in, resamp_with_conv)
|
547 |
+
curr_res = curr_res // 2
|
548 |
+
self.down.append(down)
|
549 |
+
|
550 |
+
# middle
|
551 |
+
self.mid = nn.Module()
|
552 |
+
self.mid.block_1 = ResnetBlock1d(in_channels=block_in,
|
553 |
+
out_channels=block_in,
|
554 |
+
temb_channels=self.temb_ch,
|
555 |
+
dropout=dropout)
|
556 |
+
self.mid.attn_1 = AttnBlock1d(block_in)
|
557 |
+
self.mid.block_2 = ResnetBlock1d(in_channels=block_in,
|
558 |
+
out_channels=block_in,
|
559 |
+
temb_channels=self.temb_ch,
|
560 |
+
dropout=dropout)
|
561 |
+
|
562 |
+
# end
|
563 |
+
self.norm_out = Normalize(block_in)
|
564 |
+
self.conv_out = torch.nn.Conv1d(block_in,
|
565 |
+
2*z_channels if double_z else z_channels,
|
566 |
+
kernel_size=3,
|
567 |
+
stride=1,
|
568 |
+
padding=1)
|
569 |
+
|
570 |
+
|
571 |
+
class Decoder(nn.Module):
|
572 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
573 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
574 |
+
resolution, z_channels, give_pre_end=False, **ignorekwargs):
|
575 |
+
super().__init__()
|
576 |
+
self.ch = ch
|
577 |
+
self.temb_ch = 0
|
578 |
+
self.num_resolutions = len(ch_mult)
|
579 |
+
self.num_res_blocks = num_res_blocks
|
580 |
+
self.resolution = resolution
|
581 |
+
self.in_channels = in_channels
|
582 |
+
self.give_pre_end = give_pre_end
|
583 |
+
|
584 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
585 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
586 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
587 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
588 |
+
# self.z_shape = (1,z_channels,curr_res,curr_res)
|
589 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
590 |
+
# self.z_shape, np.prod(self.z_shape)))
|
591 |
+
|
592 |
+
# z to block_in
|
593 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
594 |
+
block_in,
|
595 |
+
kernel_size=3,
|
596 |
+
stride=1,
|
597 |
+
padding=1)
|
598 |
+
|
599 |
+
# middle
|
600 |
+
self.mid = nn.Module()
|
601 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
602 |
+
out_channels=block_in,
|
603 |
+
temb_channels=self.temb_ch,
|
604 |
+
dropout=dropout)
|
605 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
606 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
607 |
+
out_channels=block_in,
|
608 |
+
temb_channels=self.temb_ch,
|
609 |
+
dropout=dropout)
|
610 |
+
|
611 |
+
# upsampling
|
612 |
+
self.up = nn.ModuleList()
|
613 |
+
for i_level in reversed(range(self.num_resolutions)):
|
614 |
+
block = nn.ModuleList()
|
615 |
+
attn = nn.ModuleList()
|
616 |
+
block_out = ch*ch_mult[i_level]
|
617 |
+
for i_block in range(self.num_res_blocks+1):
|
618 |
+
block.append(ResnetBlock(in_channels=block_in,
|
619 |
+
out_channels=block_out,
|
620 |
+
temb_channels=self.temb_ch,
|
621 |
+
dropout=dropout))
|
622 |
+
block_in = block_out
|
623 |
+
if curr_res in attn_resolutions:
|
624 |
+
attn.append(AttnBlock(block_in))
|
625 |
+
up = nn.Module()
|
626 |
+
up.block = block
|
627 |
+
up.attn = attn
|
628 |
+
if i_level != 0:
|
629 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
630 |
+
curr_res = curr_res * 2
|
631 |
+
self.up.insert(0, up) # prepend to get consistent order
|
632 |
+
|
633 |
+
# end
|
634 |
+
self.norm_out = Normalize(block_in)
|
635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
+
out_ch,
|
637 |
+
kernel_size=3,
|
638 |
+
stride=1,
|
639 |
+
padding=1)
|
640 |
+
|
641 |
+
def forward(self, z):
|
642 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
643 |
+
self.last_z_shape = z.shape
|
644 |
+
|
645 |
+
# timestep embedding
|
646 |
+
temb = None
|
647 |
+
|
648 |
+
# z to block_in
|
649 |
+
h = self.conv_in(z)
|
650 |
+
|
651 |
+
# middle
|
652 |
+
h = self.mid.block_1(h, temb)
|
653 |
+
h = self.mid.attn_1(h)
|
654 |
+
h = self.mid.block_2(h, temb)
|
655 |
+
|
656 |
+
# upsampling
|
657 |
+
for i_level in reversed(range(self.num_resolutions)):
|
658 |
+
for i_block in range(self.num_res_blocks+1):
|
659 |
+
h = self.up[i_level].block[i_block](h, temb)
|
660 |
+
if len(self.up[i_level].attn) > 0:
|
661 |
+
h = self.up[i_level].attn[i_block](h)
|
662 |
+
if i_level != 0:
|
663 |
+
h = self.up[i_level].upsample(h)
|
664 |
+
|
665 |
+
# end
|
666 |
+
if self.give_pre_end:
|
667 |
+
return h
|
668 |
+
|
669 |
+
h = self.norm_out(h)
|
670 |
+
h = nonlinearity(h)
|
671 |
+
h = self.conv_out(h)
|
672 |
+
return h
|
673 |
+
|
674 |
+
class Decoder1d(Decoder):
|
675 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
676 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
677 |
+
resolution, z_channels, give_pre_end=False, **ignorekwargs):
|
678 |
+
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks,
|
679 |
+
attn_resolutions=attn_resolutions, dropout=dropout,
|
680 |
+
resamp_with_conv=resamp_with_conv,
|
681 |
+
in_channels=in_channels, resolution=resolution, z_channels=z_channels,
|
682 |
+
give_pre_end=give_pre_end, **ignorekwargs)
|
683 |
+
self.ch = ch
|
684 |
+
self.temb_ch = 0
|
685 |
+
self.num_resolutions = len(ch_mult)
|
686 |
+
self.num_res_blocks = num_res_blocks
|
687 |
+
self.resolution = resolution
|
688 |
+
self.in_channels = in_channels
|
689 |
+
self.give_pre_end = give_pre_end
|
690 |
+
|
691 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
692 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
693 |
+
block_in = ch * ch_mult[self.num_resolutions-1]
|
694 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
695 |
+
# self.z_shape = (1,z_channels,curr_res,curr_res)
|
696 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
697 |
+
# self.z_shape, np.prod(self.z_shape)))
|
698 |
+
|
699 |
+
# z to block_in
|
700 |
+
self.conv_in = torch.nn.Conv1d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
701 |
+
|
702 |
+
# middle
|
703 |
+
self.mid = nn.Module()
|
704 |
+
self.mid.block_1 = ResnetBlock1d(in_channels=block_in, out_channels=block_in,
|
705 |
+
temb_channels=self.temb_ch, dropout=dropout)
|
706 |
+
self.mid.attn_1 = AttnBlock1d(block_in)
|
707 |
+
self.mid.block_2 = ResnetBlock1d(in_channels=block_in, out_channels=block_in,
|
708 |
+
temb_channels=self.temb_ch, dropout=dropout)
|
709 |
+
|
710 |
+
# upsampling
|
711 |
+
self.up = nn.ModuleList()
|
712 |
+
for i_level in reversed(range(self.num_resolutions)):
|
713 |
+
block = nn.ModuleList()
|
714 |
+
attn = nn.ModuleList()
|
715 |
+
block_out = ch * ch_mult[i_level]
|
716 |
+
for i_block in range(self.num_res_blocks+1):
|
717 |
+
block.append(ResnetBlock1d(in_channels=block_in, out_channels=block_out,
|
718 |
+
temb_channels=self.temb_ch, dropout=dropout))
|
719 |
+
block_in = block_out
|
720 |
+
if curr_res in attn_resolutions:
|
721 |
+
attn.append(AttnBlock1d(block_in))
|
722 |
+
up = nn.Module()
|
723 |
+
up.block = block
|
724 |
+
up.attn = attn
|
725 |
+
if i_level != 0:
|
726 |
+
up.upsample = Upsample1d(block_in, resamp_with_conv)
|
727 |
+
curr_res = curr_res * 2
|
728 |
+
self.up.insert(0, up) # prepend to get consistent order
|
729 |
+
|
730 |
+
# end
|
731 |
+
self.norm_out = Normalize(block_in)
|
732 |
+
self.conv_out = torch.nn.Conv1d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
733 |
+
|
734 |
+
|
735 |
+
class VUNet(nn.Module):
|
736 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
737 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
738 |
+
in_channels, c_channels,
|
739 |
+
resolution, z_channels, use_timestep=False, **ignore_kwargs):
|
740 |
+
super().__init__()
|
741 |
+
self.ch = ch
|
742 |
+
self.temb_ch = self.ch*4
|
743 |
+
self.num_resolutions = len(ch_mult)
|
744 |
+
self.num_res_blocks = num_res_blocks
|
745 |
+
self.resolution = resolution
|
746 |
+
|
747 |
+
self.use_timestep = use_timestep
|
748 |
+
if self.use_timestep:
|
749 |
+
# timestep embedding
|
750 |
+
self.temb = nn.Module()
|
751 |
+
self.temb.dense = nn.ModuleList([
|
752 |
+
torch.nn.Linear(self.ch,
|
753 |
+
self.temb_ch),
|
754 |
+
torch.nn.Linear(self.temb_ch,
|
755 |
+
self.temb_ch),
|
756 |
+
])
|
757 |
+
|
758 |
+
# downsampling
|
759 |
+
self.conv_in = torch.nn.Conv2d(c_channels,
|
760 |
+
self.ch,
|
761 |
+
kernel_size=3,
|
762 |
+
stride=1,
|
763 |
+
padding=1)
|
764 |
+
|
765 |
+
curr_res = resolution
|
766 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
767 |
+
self.down = nn.ModuleList()
|
768 |
+
for i_level in range(self.num_resolutions):
|
769 |
+
block = nn.ModuleList()
|
770 |
+
attn = nn.ModuleList()
|
771 |
+
block_in = ch*in_ch_mult[i_level]
|
772 |
+
block_out = ch*ch_mult[i_level]
|
773 |
+
for i_block in range(self.num_res_blocks):
|
774 |
+
block.append(ResnetBlock(in_channels=block_in,
|
775 |
+
out_channels=block_out,
|
776 |
+
temb_channels=self.temb_ch,
|
777 |
+
dropout=dropout))
|
778 |
+
block_in = block_out
|
779 |
+
if curr_res in attn_resolutions:
|
780 |
+
attn.append(AttnBlock(block_in))
|
781 |
+
down = nn.Module()
|
782 |
+
down.block = block
|
783 |
+
down.attn = attn
|
784 |
+
if i_level != self.num_resolutions-1:
|
785 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
786 |
+
curr_res = curr_res // 2
|
787 |
+
self.down.append(down)
|
788 |
+
|
789 |
+
self.z_in = torch.nn.Conv2d(z_channels,
|
790 |
+
block_in,
|
791 |
+
kernel_size=1,
|
792 |
+
stride=1,
|
793 |
+
padding=0)
|
794 |
+
# middle
|
795 |
+
self.mid = nn.Module()
|
796 |
+
self.mid.block_1 = ResnetBlock(in_channels=2*block_in,
|
797 |
+
out_channels=block_in,
|
798 |
+
temb_channels=self.temb_ch,
|
799 |
+
dropout=dropout)
|
800 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
801 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
802 |
+
out_channels=block_in,
|
803 |
+
temb_channels=self.temb_ch,
|
804 |
+
dropout=dropout)
|
805 |
+
|
806 |
+
# upsampling
|
807 |
+
self.up = nn.ModuleList()
|
808 |
+
for i_level in reversed(range(self.num_resolutions)):
|
809 |
+
block = nn.ModuleList()
|
810 |
+
attn = nn.ModuleList()
|
811 |
+
block_out = ch*ch_mult[i_level]
|
812 |
+
skip_in = ch*ch_mult[i_level]
|
813 |
+
for i_block in range(self.num_res_blocks+1):
|
814 |
+
if i_block == self.num_res_blocks:
|
815 |
+
skip_in = ch*in_ch_mult[i_level]
|
816 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
817 |
+
out_channels=block_out,
|
818 |
+
temb_channels=self.temb_ch,
|
819 |
+
dropout=dropout))
|
820 |
+
block_in = block_out
|
821 |
+
if curr_res in attn_resolutions:
|
822 |
+
attn.append(AttnBlock(block_in))
|
823 |
+
up = nn.Module()
|
824 |
+
up.block = block
|
825 |
+
up.attn = attn
|
826 |
+
if i_level != 0:
|
827 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
828 |
+
curr_res = curr_res * 2
|
829 |
+
self.up.insert(0, up) # prepend to get consistent order
|
830 |
+
|
831 |
+
# end
|
832 |
+
self.norm_out = Normalize(block_in)
|
833 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
834 |
+
out_ch,
|
835 |
+
kernel_size=3,
|
836 |
+
stride=1,
|
837 |
+
padding=1)
|
838 |
+
|
839 |
+
|
840 |
+
def forward(self, x, z):
|
841 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
842 |
+
|
843 |
+
if self.use_timestep:
|
844 |
+
# timestep embedding
|
845 |
+
assert t is not None
|
846 |
+
temb = get_timestep_embedding(t, self.ch)
|
847 |
+
temb = self.temb.dense[0](temb)
|
848 |
+
temb = nonlinearity(temb)
|
849 |
+
temb = self.temb.dense[1](temb)
|
850 |
+
else:
|
851 |
+
temb = None
|
852 |
+
|
853 |
+
# downsampling
|
854 |
+
hs = [self.conv_in(x)]
|
855 |
+
for i_level in range(self.num_resolutions):
|
856 |
+
for i_block in range(self.num_res_blocks):
|
857 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
858 |
+
if len(self.down[i_level].attn) > 0:
|
859 |
+
h = self.down[i_level].attn[i_block](h)
|
860 |
+
hs.append(h)
|
861 |
+
if i_level != self.num_resolutions-1:
|
862 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
863 |
+
|
864 |
+
# middle
|
865 |
+
h = hs[-1]
|
866 |
+
z = self.z_in(z)
|
867 |
+
h = torch.cat((h,z),dim=1)
|
868 |
+
h = self.mid.block_1(h, temb)
|
869 |
+
h = self.mid.attn_1(h)
|
870 |
+
h = self.mid.block_2(h, temb)
|
871 |
+
|
872 |
+
# upsampling
|
873 |
+
for i_level in reversed(range(self.num_resolutions)):
|
874 |
+
for i_block in range(self.num_res_blocks+1):
|
875 |
+
h = self.up[i_level].block[i_block](
|
876 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
877 |
+
if len(self.up[i_level].attn) > 0:
|
878 |
+
h = self.up[i_level].attn[i_block](h)
|
879 |
+
if i_level != 0:
|
880 |
+
h = self.up[i_level].upsample(h)
|
881 |
+
|
882 |
+
# end
|
883 |
+
h = self.norm_out(h)
|
884 |
+
h = nonlinearity(h)
|
885 |
+
h = self.conv_out(h)
|
886 |
+
return h
|
887 |
+
|
888 |
+
|
889 |
+
class SimpleDecoder(nn.Module):
|
890 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
891 |
+
super().__init__()
|
892 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
893 |
+
ResnetBlock(in_channels=in_channels,
|
894 |
+
out_channels=2 * in_channels,
|
895 |
+
temb_channels=0, dropout=0.0),
|
896 |
+
ResnetBlock(in_channels=2 * in_channels,
|
897 |
+
out_channels=4 * in_channels,
|
898 |
+
temb_channels=0, dropout=0.0),
|
899 |
+
ResnetBlock(in_channels=4 * in_channels,
|
900 |
+
out_channels=2 * in_channels,
|
901 |
+
temb_channels=0, dropout=0.0),
|
902 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
903 |
+
Upsample(in_channels, with_conv=True)])
|
904 |
+
# end
|
905 |
+
self.norm_out = Normalize(in_channels)
|
906 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
907 |
+
out_channels,
|
908 |
+
kernel_size=3,
|
909 |
+
stride=1,
|
910 |
+
padding=1)
|
911 |
+
|
912 |
+
def forward(self, x):
|
913 |
+
for i, layer in enumerate(self.model):
|
914 |
+
if i in [1,2,3]:
|
915 |
+
x = layer(x, None)
|
916 |
+
else:
|
917 |
+
x = layer(x)
|
918 |
+
|
919 |
+
h = self.norm_out(x)
|
920 |
+
h = nonlinearity(h)
|
921 |
+
x = self.conv_out(h)
|
922 |
+
return x
|
923 |
+
|
924 |
+
|
925 |
+
class UpsampleDecoder(nn.Module):
|
926 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
927 |
+
ch_mult=(2,2), dropout=0.0):
|
928 |
+
super().__init__()
|
929 |
+
# upsampling
|
930 |
+
self.temb_ch = 0
|
931 |
+
self.num_resolutions = len(ch_mult)
|
932 |
+
self.num_res_blocks = num_res_blocks
|
933 |
+
block_in = in_channels
|
934 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
935 |
+
self.res_blocks = nn.ModuleList()
|
936 |
+
self.upsample_blocks = nn.ModuleList()
|
937 |
+
for i_level in range(self.num_resolutions):
|
938 |
+
res_block = []
|
939 |
+
block_out = ch * ch_mult[i_level]
|
940 |
+
for i_block in range(self.num_res_blocks + 1):
|
941 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
942 |
+
out_channels=block_out,
|
943 |
+
temb_channels=self.temb_ch,
|
944 |
+
dropout=dropout))
|
945 |
+
block_in = block_out
|
946 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
947 |
+
if i_level != self.num_resolutions - 1:
|
948 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
949 |
+
curr_res = curr_res * 2
|
950 |
+
|
951 |
+
# end
|
952 |
+
self.norm_out = Normalize(block_in)
|
953 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
954 |
+
out_channels,
|
955 |
+
kernel_size=3,
|
956 |
+
stride=1,
|
957 |
+
padding=1)
|
958 |
+
|
959 |
+
def forward(self, x):
|
960 |
+
# upsampling
|
961 |
+
h = x
|
962 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
963 |
+
for i_block in range(self.num_res_blocks + 1):
|
964 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
965 |
+
if i_level != self.num_resolutions - 1:
|
966 |
+
h = self.upsample_blocks[k](h)
|
967 |
+
h = self.norm_out(h)
|
968 |
+
h = nonlinearity(h)
|
969 |
+
h = self.conv_out(h)
|
970 |
+
return h
|
971 |
+
|
972 |
+
|
973 |
+
if __name__ == '__main__':
|
974 |
+
ddconfig = {
|
975 |
+
'ch': 128,
|
976 |
+
'num_res_blocks': 2,
|
977 |
+
'dropout': 0.0,
|
978 |
+
'z_channels': 256,
|
979 |
+
'double_z': False,
|
980 |
+
}
|
981 |
+
|
982 |
+
# Audio example ##
|
983 |
+
ddconfig['in_channels'] = 1
|
984 |
+
ddconfig['resolution'] = 848
|
985 |
+
ddconfig['attn_resolutions'] = [53]
|
986 |
+
ddconfig['ch_mult'] = [1, 1, 2, 2, 4]
|
987 |
+
ddconfig['out_ch'] = 1
|
988 |
+
# input
|
989 |
+
inputs = torch.rand(4, 1, 80, 848)
|
990 |
+
print('Input:', inputs.shape)
|
991 |
+
# Encoder
|
992 |
+
encoder = Encoder(**ddconfig)
|
993 |
+
enc_outs = encoder(inputs)
|
994 |
+
print('Encoder out:', enc_outs.shape)
|
995 |
+
# Decoder
|
996 |
+
decoder = Decoder(**ddconfig)
|
997 |
+
quant_outs = torch.rand(4, 256, 5, 53)
|
998 |
+
dec_outs = decoder(quant_outs)
|
999 |
+
print('Decoder out:', dec_outs.shape)
|
foleycrafter/models/specvqgan/modules/discriminator/model.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class ActNorm(nn.Module):
|
6 |
+
def __init__(self, num_features, logdet=False, affine=True,
|
7 |
+
allow_reverse_init=False):
|
8 |
+
assert affine
|
9 |
+
super().__init__()
|
10 |
+
self.logdet = logdet
|
11 |
+
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
|
12 |
+
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
|
13 |
+
self.allow_reverse_init = allow_reverse_init
|
14 |
+
|
15 |
+
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
|
16 |
+
|
17 |
+
def initialize(self, input):
|
18 |
+
with torch.no_grad():
|
19 |
+
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
|
20 |
+
mean = (
|
21 |
+
flatten.mean(1)
|
22 |
+
.unsqueeze(1)
|
23 |
+
.unsqueeze(2)
|
24 |
+
.unsqueeze(3)
|
25 |
+
.permute(1, 0, 2, 3)
|
26 |
+
)
|
27 |
+
std = (
|
28 |
+
flatten.std(1)
|
29 |
+
.unsqueeze(1)
|
30 |
+
.unsqueeze(2)
|
31 |
+
.unsqueeze(3)
|
32 |
+
.permute(1, 0, 2, 3)
|
33 |
+
)
|
34 |
+
|
35 |
+
self.loc.data.copy_(-mean)
|
36 |
+
self.scale.data.copy_(1 / (std + 1e-6))
|
37 |
+
|
38 |
+
def forward(self, input, reverse=False):
|
39 |
+
if reverse:
|
40 |
+
return self.reverse(input)
|
41 |
+
if len(input.shape) == 2:
|
42 |
+
input = input[:, :, None, None]
|
43 |
+
squeeze = True
|
44 |
+
else:
|
45 |
+
squeeze = False
|
46 |
+
|
47 |
+
_, _, height, width = input.shape
|
48 |
+
|
49 |
+
if self.training and self.initialized.item() == 0:
|
50 |
+
self.initialize(input)
|
51 |
+
self.initialized.fill_(1)
|
52 |
+
|
53 |
+
h = self.scale * (input + self.loc)
|
54 |
+
|
55 |
+
if squeeze:
|
56 |
+
h = h.squeeze(-1).squeeze(-1)
|
57 |
+
|
58 |
+
if self.logdet:
|
59 |
+
log_abs = torch.log(torch.abs(self.scale))
|
60 |
+
logdet = height * width * torch.sum(log_abs)
|
61 |
+
logdet = logdet * torch.ones(input.shape[0]).to(input)
|
62 |
+
return h, logdet
|
63 |
+
|
64 |
+
return h
|
65 |
+
|
66 |
+
def reverse(self, output):
|
67 |
+
if self.training and self.initialized.item() == 0:
|
68 |
+
if not self.allow_reverse_init:
|
69 |
+
raise RuntimeError(
|
70 |
+
"Initializing ActNorm in reverse direction is "
|
71 |
+
"disabled by default. Use allow_reverse_init=True to enable."
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
self.initialize(output)
|
75 |
+
self.initialized.fill_(1)
|
76 |
+
|
77 |
+
if len(output.shape) == 2:
|
78 |
+
output = output[:, :, None, None]
|
79 |
+
squeeze = True
|
80 |
+
else:
|
81 |
+
squeeze = False
|
82 |
+
|
83 |
+
h = output / self.scale - self.loc
|
84 |
+
|
85 |
+
if squeeze:
|
86 |
+
h = h.squeeze(-1).squeeze(-1)
|
87 |
+
return h
|
88 |
+
|
89 |
+
def weights_init(m):
|
90 |
+
classname = m.__class__.__name__
|
91 |
+
if classname.find('Conv') != -1:
|
92 |
+
nn.init.normal_(m.weight.data, 0.0, 0.02)
|
93 |
+
elif classname.find('BatchNorm') != -1:
|
94 |
+
nn.init.normal_(m.weight.data, 1.0, 0.02)
|
95 |
+
nn.init.constant_(m.bias.data, 0)
|
96 |
+
|
97 |
+
|
98 |
+
class NLayerDiscriminator(nn.Module):
|
99 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
100 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
101 |
+
"""
|
102 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
103 |
+
"""Construct a PatchGAN discriminator
|
104 |
+
Parameters:
|
105 |
+
input_nc (int) -- the number of channels in input images
|
106 |
+
ndf (int) -- the number of filters in the last conv layer
|
107 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
108 |
+
norm_layer -- normalization layer
|
109 |
+
"""
|
110 |
+
super(NLayerDiscriminator, self).__init__()
|
111 |
+
if not use_actnorm:
|
112 |
+
norm_layer = nn.BatchNorm2d
|
113 |
+
else:
|
114 |
+
norm_layer = ActNorm
|
115 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
|
116 |
+
use_bias = norm_layer.func != nn.BatchNorm2d
|
117 |
+
else:
|
118 |
+
use_bias = norm_layer != nn.BatchNorm2d
|
119 |
+
|
120 |
+
kw = 4
|
121 |
+
padw = 1
|
122 |
+
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
123 |
+
nf_mult = 1
|
124 |
+
nf_mult_prev = 1
|
125 |
+
for n in range(1, n_layers): # gradually increase the number of filters
|
126 |
+
nf_mult_prev = nf_mult
|
127 |
+
nf_mult = min(2 ** n, 8)
|
128 |
+
sequence += [
|
129 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
130 |
+
norm_layer(ndf * nf_mult),
|
131 |
+
nn.LeakyReLU(0.2, True)
|
132 |
+
]
|
133 |
+
|
134 |
+
nf_mult_prev = nf_mult
|
135 |
+
nf_mult = min(2 ** n_layers, 8)
|
136 |
+
sequence += [
|
137 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
138 |
+
norm_layer(ndf * nf_mult),
|
139 |
+
nn.LeakyReLU(0.2, True)
|
140 |
+
]
|
141 |
+
# output 1 channel prediction map
|
142 |
+
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
|
143 |
+
self.main = nn.Sequential(*sequence)
|
144 |
+
|
145 |
+
def forward(self, input):
|
146 |
+
"""Standard forward."""
|
147 |
+
return self.main(input)
|
148 |
+
|
149 |
+
class NLayerDiscriminator1dFeats(NLayerDiscriminator):
|
150 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
151 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
152 |
+
"""
|
153 |
+
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
|
154 |
+
"""Construct a PatchGAN discriminator
|
155 |
+
Parameters:
|
156 |
+
input_nc (int) -- the number of channels in input feats
|
157 |
+
ndf (int) -- the number of filters in the last conv layer
|
158 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
159 |
+
norm_layer -- normalization layer
|
160 |
+
"""
|
161 |
+
super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm)
|
162 |
+
|
163 |
+
if not use_actnorm:
|
164 |
+
norm_layer = nn.BatchNorm1d
|
165 |
+
else:
|
166 |
+
norm_layer = ActNorm
|
167 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters
|
168 |
+
use_bias = norm_layer.func != nn.BatchNorm1d
|
169 |
+
else:
|
170 |
+
use_bias = norm_layer != nn.BatchNorm1d
|
171 |
+
|
172 |
+
kw = 4
|
173 |
+
padw = 1
|
174 |
+
sequence = [nn.Conv1d(input_nc, input_nc//2, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
175 |
+
nf_mult = input_nc//2
|
176 |
+
nf_mult_prev = 1
|
177 |
+
for n in range(1, n_layers): # gradually decrease the number of filters
|
178 |
+
nf_mult_prev = nf_mult
|
179 |
+
nf_mult = max(nf_mult_prev // (2 ** n), 8)
|
180 |
+
sequence += [
|
181 |
+
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
182 |
+
norm_layer(nf_mult),
|
183 |
+
nn.LeakyReLU(0.2, True)
|
184 |
+
]
|
185 |
+
|
186 |
+
nf_mult_prev = nf_mult
|
187 |
+
nf_mult = max(nf_mult_prev // (2 ** n), 8)
|
188 |
+
sequence += [
|
189 |
+
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
190 |
+
norm_layer(nf_mult),
|
191 |
+
nn.LeakyReLU(0.2, True)
|
192 |
+
]
|
193 |
+
nf_mult_prev = nf_mult
|
194 |
+
nf_mult = max(nf_mult_prev // (2 ** n), 8)
|
195 |
+
sequence += [
|
196 |
+
nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
197 |
+
norm_layer(nf_mult),
|
198 |
+
nn.LeakyReLU(0.2, True)
|
199 |
+
]
|
200 |
+
# output 1 channel prediction map
|
201 |
+
sequence += [nn.Conv1d(nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
|
202 |
+
self.main = nn.Sequential(*sequence)
|
203 |
+
|
204 |
+
|
205 |
+
class NLayerDiscriminator1dSpecs(NLayerDiscriminator):
|
206 |
+
"""Defines a PatchGAN discriminator as in Pix2Pix
|
207 |
+
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
|
208 |
+
"""
|
209 |
+
def __init__(self, input_nc=80, ndf=64, n_layers=3, use_actnorm=False):
|
210 |
+
"""Construct a PatchGAN discriminator
|
211 |
+
Parameters:
|
212 |
+
input_nc (int) -- the number of channels in input specs
|
213 |
+
ndf (int) -- the number of filters in the last conv layer
|
214 |
+
n_layers (int) -- the number of conv layers in the discriminator
|
215 |
+
norm_layer -- normalization layer
|
216 |
+
"""
|
217 |
+
super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm)
|
218 |
+
|
219 |
+
if not use_actnorm:
|
220 |
+
norm_layer = nn.BatchNorm1d
|
221 |
+
else:
|
222 |
+
norm_layer = ActNorm
|
223 |
+
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters
|
224 |
+
use_bias = norm_layer.func != nn.BatchNorm1d
|
225 |
+
else:
|
226 |
+
use_bias = norm_layer != nn.BatchNorm1d
|
227 |
+
|
228 |
+
kw = 4
|
229 |
+
padw = 1
|
230 |
+
sequence = [nn.Conv1d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
|
231 |
+
nf_mult = 1
|
232 |
+
nf_mult_prev = 1
|
233 |
+
for n in range(1, n_layers): # gradually decrease the number of filters
|
234 |
+
nf_mult_prev = nf_mult
|
235 |
+
nf_mult = min(2 ** n, 8)
|
236 |
+
sequence += [
|
237 |
+
nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
238 |
+
norm_layer(ndf * nf_mult),
|
239 |
+
nn.LeakyReLU(0.2, True)
|
240 |
+
]
|
241 |
+
|
242 |
+
nf_mult_prev = nf_mult
|
243 |
+
nf_mult = min(2 ** n_layers, 8)
|
244 |
+
sequence += [
|
245 |
+
nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
|
246 |
+
norm_layer(ndf * nf_mult),
|
247 |
+
nn.LeakyReLU(0.2, True)
|
248 |
+
]
|
249 |
+
# output 1 channel prediction map
|
250 |
+
sequence += [nn.Conv1d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
|
251 |
+
self.main = nn.Sequential(*sequence)
|
252 |
+
|
253 |
+
def forward(self, input):
|
254 |
+
"""Standard forward."""
|
255 |
+
# (B, C, L)
|
256 |
+
input = input.squeeze(1)
|
257 |
+
input = self.main(input)
|
258 |
+
return input
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == '__main__':
|
262 |
+
import torch
|
263 |
+
|
264 |
+
## FEATURES
|
265 |
+
disc_in_channels = 2048
|
266 |
+
disc_num_layers = 2
|
267 |
+
use_actnorm = False
|
268 |
+
disc_ndf = 64
|
269 |
+
discriminator = NLayerDiscriminator1dFeats(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
270 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
271 |
+
inputs = torch.rand((6, 2048, 212))
|
272 |
+
outputs = discriminator(inputs)
|
273 |
+
print(outputs.shape)
|
274 |
+
|
275 |
+
## AUDIO
|
276 |
+
disc_in_channels = 1
|
277 |
+
disc_num_layers = 3
|
278 |
+
use_actnorm = False
|
279 |
+
disc_ndf = 64
|
280 |
+
discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
281 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
282 |
+
inputs = torch.rand((6, 1, 80, 848))
|
283 |
+
outputs = discriminator(inputs)
|
284 |
+
print(outputs.shape)
|
285 |
+
|
286 |
+
## IMAGE
|
287 |
+
disc_in_channels = 3
|
288 |
+
disc_num_layers = 3
|
289 |
+
use_actnorm = False
|
290 |
+
disc_ndf = 64
|
291 |
+
discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
292 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
293 |
+
inputs = torch.rand((6, 3, 256, 256))
|
294 |
+
outputs = discriminator(inputs)
|
295 |
+
print(outputs.shape)
|
foleycrafter/models/specvqgan/modules/losses/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from foleycrafter.models.specvqgan.modules.losses.vqperceptual import DummyLoss
|
2 |
+
|
3 |
+
# relative imports pain
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'vggishish')
|
7 |
+
sys.path.append(path)
|
foleycrafter/models/specvqgan/modules/losses/lpaps.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Based on https://github.com/CompVis/taming-transformers/blob/52720829/taming/modules/losses/lpips.py
|
3 |
+
Adapted for spectrograms by Vladimir Iashin (v-iashin)
|
4 |
+
"""
|
5 |
+
from collections import namedtuple
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
import sys
|
12 |
+
sys.path.insert(0, '.') # nopep8
|
13 |
+
from foleycrafter.models.specvqgan.modules.losses.vggishish.model import VGGishish
|
14 |
+
from foleycrafter.models.specvqgan.util import get_ckpt_path
|
15 |
+
|
16 |
+
|
17 |
+
class LPAPS(nn.Module):
|
18 |
+
# Learned perceptual metric
|
19 |
+
def __init__(self, use_dropout=True):
|
20 |
+
super().__init__()
|
21 |
+
self.scaling_layer = ScalingLayer()
|
22 |
+
self.chns = [64, 128, 256, 512, 512] # vggish16 features
|
23 |
+
self.net = vggishish16(pretrained=True, requires_grad=False)
|
24 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
25 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
26 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
27 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
28 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
29 |
+
self.load_from_pretrained()
|
30 |
+
for param in self.parameters():
|
31 |
+
param.requires_grad = False
|
32 |
+
|
33 |
+
def load_from_pretrained(self, name="vggishish_lpaps"):
|
34 |
+
ckpt = get_ckpt_path(name, "specvqgan/modules/autoencoder/lpaps")
|
35 |
+
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
36 |
+
print("loaded pretrained LPAPS loss from {}".format(ckpt))
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def from_pretrained(cls, name="vggishish_lpaps"):
|
40 |
+
if name != "vggishish_lpaps":
|
41 |
+
raise NotImplementedError
|
42 |
+
model = cls()
|
43 |
+
ckpt = get_ckpt_path(name)
|
44 |
+
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
45 |
+
return model
|
46 |
+
|
47 |
+
def forward(self, input, target):
|
48 |
+
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
49 |
+
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
50 |
+
feats0, feats1, diffs = {}, {}, {}
|
51 |
+
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
52 |
+
for kk in range(len(self.chns)):
|
53 |
+
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
|
54 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
55 |
+
|
56 |
+
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
|
57 |
+
val = res[0]
|
58 |
+
for l in range(1, len(self.chns)):
|
59 |
+
val += res[l]
|
60 |
+
return val
|
61 |
+
|
62 |
+
class ScalingLayer(nn.Module):
|
63 |
+
def __init__(self):
|
64 |
+
super(ScalingLayer, self).__init__()
|
65 |
+
# we are gonna use get_ckpt_path to donwload the stats as well
|
66 |
+
stat_path = get_ckpt_path('vggishish_mean_std_melspec_10s_22050hz', 'specvqgan/modules/autoencoder/lpaps')
|
67 |
+
# if for images we normalize on the channel dim, in spectrogram we will norm on frequency dimension
|
68 |
+
means, stds = np.loadtxt(stat_path, dtype=np.float32).T
|
69 |
+
# the normalization in means and stds are given for [0, 1], but specvqgan expects [-1, 1]:
|
70 |
+
means = 2 * means - 1
|
71 |
+
stds = 2 * stds
|
72 |
+
# input is expected to be (B, 1, F, T)
|
73 |
+
self.register_buffer('shift', torch.from_numpy(means)[None, None, :, None])
|
74 |
+
self.register_buffer('scale', torch.from_numpy(stds)[None, None, :, None])
|
75 |
+
|
76 |
+
def forward(self, inp):
|
77 |
+
return (inp - self.shift) / self.scale
|
78 |
+
|
79 |
+
|
80 |
+
class NetLinLayer(nn.Module):
|
81 |
+
""" A single linear layer which does a 1x1 conv """
|
82 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
83 |
+
super(NetLinLayer, self).__init__()
|
84 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
85 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
86 |
+
self.model = nn.Sequential(*layers)
|
87 |
+
|
88 |
+
class vggishish16(torch.nn.Module):
|
89 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
90 |
+
super().__init__()
|
91 |
+
vgg_pretrained_features = self.vggishish16(pretrained=pretrained).features
|
92 |
+
self.slice1 = torch.nn.Sequential()
|
93 |
+
self.slice2 = torch.nn.Sequential()
|
94 |
+
self.slice3 = torch.nn.Sequential()
|
95 |
+
self.slice4 = torch.nn.Sequential()
|
96 |
+
self.slice5 = torch.nn.Sequential()
|
97 |
+
self.N_slices = 5
|
98 |
+
for x in range(4):
|
99 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
100 |
+
for x in range(4, 9):
|
101 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
102 |
+
for x in range(9, 16):
|
103 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
104 |
+
for x in range(16, 23):
|
105 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
106 |
+
for x in range(23, 30):
|
107 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
108 |
+
if not requires_grad:
|
109 |
+
for param in self.parameters():
|
110 |
+
param.requires_grad = False
|
111 |
+
|
112 |
+
def forward(self, X):
|
113 |
+
h = self.slice1(X)
|
114 |
+
h_relu1_2 = h
|
115 |
+
h = self.slice2(h)
|
116 |
+
h_relu2_2 = h
|
117 |
+
h = self.slice3(h)
|
118 |
+
h_relu3_3 = h
|
119 |
+
h = self.slice4(h)
|
120 |
+
h_relu4_3 = h
|
121 |
+
h = self.slice5(h)
|
122 |
+
h_relu5_3 = h
|
123 |
+
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
124 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
125 |
+
return out
|
126 |
+
|
127 |
+
def vggishish16(self, pretrained: bool = True) -> VGGishish:
|
128 |
+
# loading vggishish pretrained on vggsound
|
129 |
+
num_classes_vggsound = 309
|
130 |
+
conv_layers = [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512]
|
131 |
+
model = VGGishish(conv_layers, use_bn=False, num_classes=num_classes_vggsound)
|
132 |
+
if pretrained:
|
133 |
+
ckpt_path = get_ckpt_path('vggishish_lpaps', "specvqgan/modules/autoencoder/lpaps")
|
134 |
+
ckpt = torch.load(ckpt_path, map_location=torch.device("cpu"))
|
135 |
+
model.load_state_dict(ckpt, strict=False)
|
136 |
+
return model
|
137 |
+
|
138 |
+
def normalize_tensor(x, eps=1e-10):
|
139 |
+
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
|
140 |
+
return x / (norm_factor+eps)
|
141 |
+
|
142 |
+
def spatial_average(x, keepdim=True):
|
143 |
+
return x.mean([2, 3], keepdim=keepdim)
|
144 |
+
|
145 |
+
|
146 |
+
if __name__ == '__main__':
|
147 |
+
inputs = torch.rand((16, 1, 80, 848))
|
148 |
+
reconstructions = torch.rand((16, 1, 80, 848))
|
149 |
+
lpips = LPAPS().eval()
|
150 |
+
loss_p = lpips(inputs.contiguous(), reconstructions.contiguous())
|
151 |
+
# (16, 1, 1, 1)
|
152 |
+
print(loss_p.shape)
|
foleycrafter/models/specvqgan/modules/losses/vggishish/configs/melception.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 1337
|
2 |
+
log_code_state: True
|
3 |
+
# patterns to ignore when backing up the code folder
|
4 |
+
patterns_to_ignore: ['logs', '.git', '__pycache__', 'data', 'checkpoints', '*.pt']
|
5 |
+
|
6 |
+
# data:
|
7 |
+
mels_path: '/home/nvme/data/vggsound/features/melspec_10s_22050hz/'
|
8 |
+
spec_shape: [80, 860]
|
9 |
+
cropped_size: [80, 848]
|
10 |
+
random_crop: False
|
11 |
+
|
12 |
+
# train:
|
13 |
+
device: 'cuda:0'
|
14 |
+
batch_size: 8
|
15 |
+
num_workers: 0
|
16 |
+
optimizer: adam
|
17 |
+
betas: [0.9, 0.999]
|
18 |
+
momentum: 0.9
|
19 |
+
learning_rate: 3e-4
|
20 |
+
weight_decay: 0
|
21 |
+
num_epochs: 100
|
22 |
+
patience: 3
|
23 |
+
logdir: './logs'
|
24 |
+
cls_weights_in_loss: False
|
foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 1337
|
2 |
+
log_code_state: True
|
3 |
+
# patterns to ignore when backing up the code folder
|
4 |
+
patterns_to_ignore: ['logs', '.git', '__pycache__']
|
5 |
+
|
6 |
+
# data:
|
7 |
+
mels_path: '/home/nvme/data/vggsound/features/melspec_10s_22050hz/'
|
8 |
+
spec_shape: [80, 860]
|
9 |
+
cropped_size: [80, 848]
|
10 |
+
random_crop: False
|
11 |
+
|
12 |
+
# model:
|
13 |
+
# original vgg family except for MP is missing at the end
|
14 |
+
# 'vggish': [64, 'MP', 128, 'MP', 256, 256, 'MP', 512, 512]
|
15 |
+
# 'vgg11': [64, 'MP', 128, 'MP', 256, 256, 'MP', 512, 512, 'MP', 512, 512],
|
16 |
+
# 'vgg13': [64, 64, 'MP', 128, 128, 'MP', 256, 256, 'MP', 512, 512, 'MP', 512, 512],
|
17 |
+
# 'vgg16': [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512],
|
18 |
+
# 'vgg19': [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 256, 'MP', 512, 512, 512, 512, 'MP', 512, 512, 512, 512],
|
19 |
+
conv_layers: [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512]
|
20 |
+
use_bn: False
|
21 |
+
|
22 |
+
# train:
|
23 |
+
device: 'cuda:0'
|
24 |
+
batch_size: 32
|
25 |
+
num_workers: 0
|
26 |
+
optimizer: adam
|
27 |
+
betas: [0.9, 0.999]
|
28 |
+
momentum: 0.9
|
29 |
+
learning_rate: 3e-4
|
30 |
+
weight_decay: 0.0001
|
31 |
+
num_epochs: 100
|
32 |
+
patience: 3
|
33 |
+
logdir: './logs'
|
34 |
+
cls_weights_in_loss: False
|
foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish_gh.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 1337
|
2 |
+
log_code_state: True
|
3 |
+
patterns_to_ignore: ['logs', '.git', '__pycache__']
|
4 |
+
|
5 |
+
mels_path: '/home/duyxxd/SpecVQGAN/data/greatesthit/melspec_10s_22050hz'
|
6 |
+
batch_size: 32
|
7 |
+
num_workers: 8
|
8 |
+
device: 'cuda:0'
|
9 |
+
conv_layers: [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512]
|
10 |
+
use_bn: False
|
11 |
+
optimizer: adam
|
12 |
+
learning_rate: 1e-4
|
13 |
+
betas: [0.9, 0.999]
|
14 |
+
cropped_size: [80, 160]
|
15 |
+
momentum: 0.9
|
16 |
+
weight_decay: 1e-4
|
17 |
+
cls_weights_in_loss: False
|
18 |
+
num_epochs: 100
|
19 |
+
patience: 20
|
20 |
+
logdir: '/home/duyxxd/SpecVQGAN/logs'
|
21 |
+
exp_name: 'mix'
|
22 |
+
action_only: False
|
23 |
+
material_only: False
|
24 |
+
|
25 |
+
load_model: /home/duyxxd/SpecVQGAN/logs/vggishish16.pt
|
foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish_gh_action.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 1337
|
2 |
+
log_code_state: True
|
3 |
+
patterns_to_ignore: ['logs', '.git', '__pycache__']
|
4 |
+
|
5 |
+
mels_path: '/home/duyxxd/SpecVQGAN/data/greatesthit/melspec_10s_22050hz'
|
6 |
+
batch_size: 32
|
7 |
+
num_workers: 8
|
8 |
+
device: 'cuda:0'
|
9 |
+
conv_layers: [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512]
|
10 |
+
use_bn: False
|
11 |
+
optimizer: adam
|
12 |
+
learning_rate: 1e-4
|
13 |
+
betas: [0.9, 0.999]
|
14 |
+
cropped_size: [80, 160]
|
15 |
+
momentum: 0.9
|
16 |
+
weight_decay: 1e-4
|
17 |
+
cls_weights_in_loss: False
|
18 |
+
num_epochs: 20
|
19 |
+
patience: 20
|
20 |
+
logdir: '/home/duyxxd/SpecVQGAN/logs'
|
21 |
+
exp_name: 'action'
|
22 |
+
action_only: True
|
23 |
+
material_only: False
|
24 |
+
|
25 |
+
load_model: /home/duyxxd/SpecVQGAN/logs/vggishish16.pt
|
foleycrafter/models/specvqgan/modules/losses/vggishish/configs/vggish_gh_material.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 1337
|
2 |
+
log_code_state: True
|
3 |
+
patterns_to_ignore: ['logs', '.git', '__pycache__']
|
4 |
+
|
5 |
+
mels_path: '/home/duyxxd/SpecVQGAN/data/greatesthit/melspec_10s_22050hz'
|
6 |
+
batch_size: 32
|
7 |
+
num_workers: 8
|
8 |
+
device: 'cuda:0'
|
9 |
+
conv_layers: [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512]
|
10 |
+
use_bn: False
|
11 |
+
optimizer: adam
|
12 |
+
learning_rate: 1e-4
|
13 |
+
betas: [0.9, 0.999]
|
14 |
+
cropped_size: [80, 160]
|
15 |
+
momentum: 0.9
|
16 |
+
weight_decay: 1e-4
|
17 |
+
cls_weights_in_loss: False
|
18 |
+
num_epochs: 20
|
19 |
+
patience: 20
|
20 |
+
logdir: '/home/duyxxd/SpecVQGAN/logs'
|
21 |
+
exp_name: 'material'
|
22 |
+
action_only: False
|
23 |
+
material_only: True
|
24 |
+
|
25 |
+
load_model: /home/duyxxd/SpecVQGAN/logs/vggishish16.pt
|
foleycrafter/models/specvqgan/modules/losses/vggishish/dataset.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import csv
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import math
|
7 |
+
import json
|
8 |
+
from glob import glob
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torchvision
|
14 |
+
|
15 |
+
logger = logging.getLogger(f'main.{__name__}')
|
16 |
+
|
17 |
+
|
18 |
+
class VGGSound(torch.utils.data.Dataset):
|
19 |
+
|
20 |
+
def __init__(self, split, specs_dir, transforms=None, splits_path='./data', meta_path='./data/vggsound.csv'):
|
21 |
+
super().__init__()
|
22 |
+
self.split = split
|
23 |
+
self.specs_dir = specs_dir
|
24 |
+
self.transforms = transforms
|
25 |
+
self.splits_path = splits_path
|
26 |
+
self.meta_path = meta_path
|
27 |
+
|
28 |
+
vggsound_meta = list(csv.reader(open(meta_path), quotechar='"'))
|
29 |
+
unique_classes = sorted(list(set(row[2] for row in vggsound_meta)))
|
30 |
+
self.label2target = {label: target for target, label in enumerate(unique_classes)}
|
31 |
+
self.target2label = {target: label for label, target in self.label2target.items()}
|
32 |
+
self.video2target = {row[0]: self.label2target[row[2]] for row in vggsound_meta}
|
33 |
+
|
34 |
+
split_clip_ids_path = os.path.join(splits_path, f'vggsound_{split}_partial.txt')
|
35 |
+
print('&&&&&&&&&&&&&&&&', split_clip_ids_path)
|
36 |
+
if not os.path.exists(split_clip_ids_path):
|
37 |
+
self.make_split_files()
|
38 |
+
clip_ids_with_timestamp = open(split_clip_ids_path).read().splitlines()
|
39 |
+
clip_paths = [os.path.join(specs_dir, v + '_mel.npy') for v in clip_ids_with_timestamp]
|
40 |
+
self.dataset = clip_paths
|
41 |
+
# self.dataset = clip_paths[:10000] # overfit one batch
|
42 |
+
|
43 |
+
# 'zyTX_1BXKDE_16000_26000'[:11] -> 'zyTX_1BXKDE'
|
44 |
+
vid_classes = [self.video2target[Path(path).stem[:11]] for path in self.dataset]
|
45 |
+
class2count = collections.Counter(vid_classes)
|
46 |
+
self.class_counts = torch.tensor([class2count[cls] for cls in range(len(class2count))])
|
47 |
+
# self.sample_weights = [len(self.dataset) / class2count[self.video2target[Path(path).stem[:11]]] for path in self.dataset]
|
48 |
+
|
49 |
+
def __getitem__(self, idx):
|
50 |
+
item = {}
|
51 |
+
|
52 |
+
spec_path = self.dataset[idx]
|
53 |
+
# 'zyTX_1BXKDE_16000_26000' -> 'zyTX_1BXKDE'
|
54 |
+
video_name = Path(spec_path).stem[:11]
|
55 |
+
|
56 |
+
item['input'] = np.load(spec_path)
|
57 |
+
item['input_path'] = spec_path
|
58 |
+
|
59 |
+
# if self.split in ['train', 'valid']:
|
60 |
+
item['target'] = self.video2target[video_name]
|
61 |
+
item['label'] = self.target2label[item['target']]
|
62 |
+
|
63 |
+
if self.transforms is not None:
|
64 |
+
item = self.transforms(item)
|
65 |
+
|
66 |
+
return item
|
67 |
+
|
68 |
+
def __len__(self):
|
69 |
+
return len(self.dataset)
|
70 |
+
|
71 |
+
def make_split_files(self):
|
72 |
+
random.seed(1337)
|
73 |
+
logger.info(f'The split files do not exist @ {self.splits_path}. Calculating the new ones.')
|
74 |
+
# The downloaded videos (some went missing on YouTube and no longer available)
|
75 |
+
available_vid_paths = sorted(glob(os.path.join(self.specs_dir, '*_mel.npy')))
|
76 |
+
logger.info(f'The number of clips available after download: {len(available_vid_paths)}')
|
77 |
+
|
78 |
+
# original (full) train and test sets
|
79 |
+
vggsound_meta = list(csv.reader(open(self.meta_path), quotechar='"'))
|
80 |
+
train_vids = {row[0] for row in vggsound_meta if row[3] == 'train'}
|
81 |
+
test_vids = {row[0] for row in vggsound_meta if row[3] == 'test'}
|
82 |
+
logger.info(f'The number of videos in vggsound train set: {len(train_vids)}')
|
83 |
+
logger.info(f'The number of videos in vggsound test set: {len(test_vids)}')
|
84 |
+
|
85 |
+
# class counts in test set. We would like to have the same distribution in valid
|
86 |
+
unique_classes = sorted(list(set(row[2] for row in vggsound_meta)))
|
87 |
+
label2target = {label: target for target, label in enumerate(unique_classes)}
|
88 |
+
video2target = {row[0]: label2target[row[2]] for row in vggsound_meta}
|
89 |
+
test_vid_classes = [video2target[vid] for vid in test_vids]
|
90 |
+
test_target2count = collections.Counter(test_vid_classes)
|
91 |
+
|
92 |
+
# now given the counts from test set, sample the same count for validation and the rest leave in train
|
93 |
+
train_vids_wo_valid, valid_vids = set(), set()
|
94 |
+
for target, label in enumerate(label2target.keys()):
|
95 |
+
class_train_vids = [vid for vid in train_vids if video2target[vid] == target]
|
96 |
+
random.shuffle(class_train_vids)
|
97 |
+
count = test_target2count[target]
|
98 |
+
valid_vids.update(class_train_vids[:count])
|
99 |
+
train_vids_wo_valid.update(class_train_vids[count:])
|
100 |
+
|
101 |
+
# make file with a list of available test videos (each video should contain timestamps as well)
|
102 |
+
train_i = valid_i = test_i = 0
|
103 |
+
with open(os.path.join(self.splits_path, 'vggsound_train.txt'), 'w') as train_file, \
|
104 |
+
open(os.path.join(self.splits_path, 'vggsound_valid.txt'), 'w') as valid_file, \
|
105 |
+
open(os.path.join(self.splits_path, 'vggsound_test.txt'), 'w') as test_file:
|
106 |
+
for path in available_vid_paths:
|
107 |
+
path = path.replace('_mel.npy', '')
|
108 |
+
vid_name = Path(path).name
|
109 |
+
# 'zyTX_1BXKDE_16000_26000'[:11] -> 'zyTX_1BXKDE'
|
110 |
+
if vid_name[:11] in train_vids_wo_valid:
|
111 |
+
train_file.write(vid_name + '\n')
|
112 |
+
train_i += 1
|
113 |
+
elif vid_name[:11] in valid_vids:
|
114 |
+
valid_file.write(vid_name + '\n')
|
115 |
+
valid_i += 1
|
116 |
+
elif vid_name[:11] in test_vids:
|
117 |
+
test_file.write(vid_name + '\n')
|
118 |
+
test_i += 1
|
119 |
+
else:
|
120 |
+
raise Exception(f'Clip {vid_name} is neither in train, valid nor test. Strange.')
|
121 |
+
|
122 |
+
logger.info(f'Put {train_i} clips to the train set and saved it to ./data/vggsound_train.txt')
|
123 |
+
logger.info(f'Put {valid_i} clips to the valid set and saved it to ./data/vggsound_valid.txt')
|
124 |
+
logger.info(f'Put {test_i} clips to the test set and saved it to ./data/vggsound_test.txt')
|
125 |
+
|
126 |
+
|
127 |
+
def get_GH_data_identifier(video_name, start_idx, split='_'):
|
128 |
+
if isinstance(start_idx, str):
|
129 |
+
return video_name + split + start_idx
|
130 |
+
elif isinstance(start_idx, int):
|
131 |
+
return video_name + split + str(start_idx)
|
132 |
+
else:
|
133 |
+
raise NotImplementedError
|
134 |
+
|
135 |
+
|
136 |
+
class GreatestHit(torch.utils.data.Dataset):
|
137 |
+
|
138 |
+
def __init__(self, split, spec_dir_path, spec_transform=None, L=2.0, action_only=False,
|
139 |
+
material_only=False, splits_path='/home/duyxxd/SpecVQGAN/data',
|
140 |
+
meta_path='/home/duyxxd/SpecVQGAN/data/info_r2plus1d_dim1024_15fps.json'):
|
141 |
+
super().__init__()
|
142 |
+
self.split = split
|
143 |
+
self.specs_dir = spec_dir_path
|
144 |
+
self.splits_path = splits_path
|
145 |
+
self.meta_path = meta_path
|
146 |
+
self.spec_transform = spec_transform
|
147 |
+
self.L = L
|
148 |
+
self.spec_take_first = int(math.ceil(860 * (L / 10.) / 32) * 32)
|
149 |
+
self.spec_take_first = 860 if self.spec_take_first > 860 else self.spec_take_first
|
150 |
+
self.spec_take_first = 173
|
151 |
+
|
152 |
+
greatesthit_meta = json.load(open(self.meta_path, 'r'))
|
153 |
+
self.video_idx2label = {
|
154 |
+
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
|
155 |
+
greatesthit_meta['hit_type'][i] for i in range(len(greatesthit_meta['video_name']))
|
156 |
+
}
|
157 |
+
self.available_video_hit = list(self.video_idx2label.keys())
|
158 |
+
self.video_idx2path = {
|
159 |
+
vh: os.path.join(self.specs_dir,
|
160 |
+
vh.replace('_', '_denoised_') + '_' + self.video_idx2label[vh].replace(' ', '_') +'_mel.npy')
|
161 |
+
for vh in self.available_video_hit
|
162 |
+
}
|
163 |
+
self.video_idx2idx = {
|
164 |
+
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
|
165 |
+
i for i in range(len(greatesthit_meta['video_name']))
|
166 |
+
}
|
167 |
+
|
168 |
+
split_clip_ids_path = os.path.join(splits_path, f'greatesthit_{split}_2.00_single_type_only.json')
|
169 |
+
if not os.path.exists(split_clip_ids_path):
|
170 |
+
raise NotImplementedError()
|
171 |
+
clip_video_hit = json.load(open(split_clip_ids_path, 'r'))
|
172 |
+
self.dataset = list(clip_video_hit.keys())
|
173 |
+
if action_only:
|
174 |
+
self.video_idx2label = {k: v.split(' ')[1] for k, v in clip_video_hit.items()}
|
175 |
+
elif material_only:
|
176 |
+
self.video_idx2label = {k: v.split(' ')[0] for k, v in clip_video_hit.items()}
|
177 |
+
else:
|
178 |
+
self.video_idx2label = clip_video_hit
|
179 |
+
|
180 |
+
|
181 |
+
self.video2indexes = {}
|
182 |
+
for video_idx in self.dataset:
|
183 |
+
video, start_idx = video_idx.split('_')
|
184 |
+
if video not in self.video2indexes.keys():
|
185 |
+
self.video2indexes[video] = []
|
186 |
+
self.video2indexes[video].append(start_idx)
|
187 |
+
for video in self.video2indexes.keys():
|
188 |
+
if len(self.video2indexes[video]) == 1: # given video contains only one hit
|
189 |
+
self.dataset.remove(
|
190 |
+
get_GH_data_identifier(video, self.video2indexes[video][0])
|
191 |
+
)
|
192 |
+
|
193 |
+
vid_classes = list(self.video_idx2label.values())
|
194 |
+
unique_classes = sorted(list(set(vid_classes)))
|
195 |
+
self.label2target = {label: target for target, label in enumerate(unique_classes)}
|
196 |
+
if action_only:
|
197 |
+
label2target_fix = {'hit': 0, 'scratch': 1}
|
198 |
+
elif material_only:
|
199 |
+
label2target_fix = {'carpet': 0, 'ceramic': 1, 'cloth': 2, 'dirt': 3, 'drywall': 4, 'glass': 5, 'grass': 6, 'gravel': 7, 'leaf': 8, 'metal': 9, 'paper': 10, 'plastic': 11, 'plastic-bag': 12, 'rock': 13, 'tile': 14, 'water': 15, 'wood': 16}
|
200 |
+
else:
|
201 |
+
label2target_fix = {'carpet hit': 0, 'carpet scratch': 1, 'ceramic hit': 2, 'ceramic scratch': 3, 'cloth hit': 4, 'cloth scratch': 5, 'dirt hit': 6, 'dirt scratch': 7, 'drywall hit': 8, 'drywall scratch': 9, 'glass hit': 10, 'glass scratch': 11, 'grass hit': 12, 'grass scratch': 13, 'gravel hit': 14, 'gravel scratch': 15, 'leaf hit': 16, 'leaf scratch': 17, 'metal hit': 18, 'metal scratch': 19, 'paper hit': 20, 'paper scratch': 21, 'plastic hit': 22, 'plastic scratch': 23, 'plastic-bag hit': 24, 'plastic-bag scratch': 25, 'rock hit': 26, 'rock scratch': 27, 'tile hit': 28, 'tile scratch': 29, 'water hit': 30, 'water scratch': 31, 'wood hit': 32, 'wood scratch': 33}
|
202 |
+
for k in self.label2target.keys():
|
203 |
+
assert k in label2target_fix.keys()
|
204 |
+
self.label2target = label2target_fix
|
205 |
+
self.target2label = {target: label for label, target in self.label2target.items()}
|
206 |
+
class2count = collections.Counter(vid_classes)
|
207 |
+
self.class_counts = torch.tensor([class2count[cls] for cls in range(len(class2count))])
|
208 |
+
print(self.label2target)
|
209 |
+
print(len(vid_classes), len(class2count), class2count)
|
210 |
+
|
211 |
+
def __len__(self):
|
212 |
+
return len(self.dataset)
|
213 |
+
|
214 |
+
def __getitem__(self, idx):
|
215 |
+
item = {}
|
216 |
+
|
217 |
+
video_idx = self.dataset[idx]
|
218 |
+
spec_path = self.video_idx2path[video_idx]
|
219 |
+
spec = np.load(spec_path) # (80, 860)
|
220 |
+
|
221 |
+
# concat spec outside dataload
|
222 |
+
item['input'] = 2 * spec - 1 # (80, 860)
|
223 |
+
item['input'] = item['input'][:, :self.spec_take_first] # (80, 173) (since 2sec audio can only generate 173)
|
224 |
+
item['file_path'] = spec_path
|
225 |
+
|
226 |
+
item['label'] = self.video_idx2label[video_idx]
|
227 |
+
item['target'] = self.label2target[item['label']]
|
228 |
+
|
229 |
+
if self.spec_transform is not None:
|
230 |
+
item = self.spec_transform(item)
|
231 |
+
|
232 |
+
return item
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
class AMT_test(torch.utils.data.Dataset):
|
237 |
+
|
238 |
+
def __init__(self, spec_dir_path, spec_transform=None, action_only=False, material_only=False):
|
239 |
+
super().__init__()
|
240 |
+
self.specs_dir = spec_dir_path
|
241 |
+
self.spec_transform = spec_transform
|
242 |
+
self.spec_take_first = 173
|
243 |
+
|
244 |
+
self.dataset = sorted([os.path.join(self.specs_dir, f) for f in os.listdir(self.specs_dir)])
|
245 |
+
if action_only:
|
246 |
+
self.label2target = {'hit': 0, 'scratch': 1}
|
247 |
+
elif material_only:
|
248 |
+
self.label2target = {'carpet': 0, 'ceramic': 1, 'cloth': 2, 'dirt': 3, 'drywall': 4, 'glass': 5, 'grass': 6, 'gravel': 7, 'leaf': 8, 'metal': 9, 'paper': 10, 'plastic': 11, 'plastic-bag': 12, 'rock': 13, 'tile': 14, 'water': 15, 'wood': 16}
|
249 |
+
else:
|
250 |
+
self.label2target = {'carpet hit': 0, 'carpet scratch': 1, 'ceramic hit': 2, 'ceramic scratch': 3, 'cloth hit': 4, 'cloth scratch': 5, 'dirt hit': 6, 'dirt scratch': 7, 'drywall hit': 8, 'drywall scratch': 9, 'glass hit': 10, 'glass scratch': 11, 'grass hit': 12, 'grass scratch': 13, 'gravel hit': 14, 'gravel scratch': 15, 'leaf hit': 16, 'leaf scratch': 17, 'metal hit': 18, 'metal scratch': 19, 'paper hit': 20, 'paper scratch': 21, 'plastic hit': 22, 'plastic scratch': 23, 'plastic-bag hit': 24, 'plastic-bag scratch': 25, 'rock hit': 26, 'rock scratch': 27, 'tile hit': 28, 'tile scratch': 29, 'water hit': 30, 'water scratch': 31, 'wood hit': 32, 'wood scratch': 33}
|
251 |
+
self.target2label = {v: k for k, v in self.label2target.items()}
|
252 |
+
|
253 |
+
def __len__(self):
|
254 |
+
return len(self.dataset)
|
255 |
+
|
256 |
+
def __getitem__(self, idx):
|
257 |
+
item = {}
|
258 |
+
|
259 |
+
spec_path = self.dataset[idx]
|
260 |
+
spec = np.load(spec_path) # (80, 860)
|
261 |
+
|
262 |
+
# concat spec outside dataload
|
263 |
+
item['input'] = 2 * spec - 1 # (80, 860)
|
264 |
+
item['input'] = item['input'][:, :self.spec_take_first] # (80, 173) (since 2sec audio can only generate 173)
|
265 |
+
item['file_path'] = spec_path
|
266 |
+
|
267 |
+
if self.spec_transform is not None:
|
268 |
+
item = self.spec_transform(item)
|
269 |
+
|
270 |
+
return item
|
271 |
+
|
272 |
+
|
273 |
+
if __name__ == '__main__':
|
274 |
+
from transforms import Crop, StandardNormalizeAudio, ToTensor
|
275 |
+
specs_path = '/home/nvme/data/vggsound/features/melspec_10s_22050hz/'
|
276 |
+
|
277 |
+
transforms = torchvision.transforms.transforms.Compose([
|
278 |
+
StandardNormalizeAudio(specs_path),
|
279 |
+
ToTensor(),
|
280 |
+
Crop([80, 848]),
|
281 |
+
])
|
282 |
+
|
283 |
+
datasets = {
|
284 |
+
'train': VGGSound('train', specs_path, transforms),
|
285 |
+
'valid': VGGSound('valid', specs_path, transforms),
|
286 |
+
'test': VGGSound('test', specs_path, transforms),
|
287 |
+
}
|
288 |
+
|
289 |
+
print(datasets['train'][0])
|
290 |
+
print(datasets['valid'][0])
|
291 |
+
print(datasets['test'][0])
|
292 |
+
|
293 |
+
print(datasets['train'].class_counts)
|
294 |
+
print(datasets['valid'].class_counts)
|
295 |
+
print(datasets['test'].class_counts)
|
foleycrafter/models/specvqgan/modules/losses/vggishish/logger.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from shutil import copytree, ignore_patterns
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from torch.utils.tensorboard import SummaryWriter, summary
|
9 |
+
|
10 |
+
|
11 |
+
class LoggerWithTBoard(SummaryWriter):
|
12 |
+
|
13 |
+
def __init__(self, cfg):
|
14 |
+
# current time stamp and experiment log directory
|
15 |
+
self.start_time = time.strftime('%y-%m-%dT%H-%M-%S', time.localtime())
|
16 |
+
if cfg.exp_name is not None:
|
17 |
+
self.logdir = os.path.join(cfg.logdir, self.start_time + f'_{cfg.exp_name}')
|
18 |
+
else:
|
19 |
+
self.logdir = os.path.join(cfg.logdir, self.start_time)
|
20 |
+
# init tboard
|
21 |
+
super().__init__(self.logdir)
|
22 |
+
# backup the cfg
|
23 |
+
OmegaConf.save(cfg, os.path.join(self.log_dir, 'cfg.yaml'))
|
24 |
+
# backup the code state
|
25 |
+
if cfg.log_code_state:
|
26 |
+
dest_dir = os.path.join(self.logdir, 'code')
|
27 |
+
copytree(os.getcwd(), dest_dir, ignore=ignore_patterns(*cfg.patterns_to_ignore))
|
28 |
+
|
29 |
+
# init logger which handles printing and logging mostly same things to the log file
|
30 |
+
self.print_logger = logging.getLogger('main')
|
31 |
+
self.print_logger.setLevel(logging.INFO)
|
32 |
+
msgfmt = '[%(levelname)s] %(asctime)s - %(name)s \n %(message)s'
|
33 |
+
datefmt = '%d %b %Y %H:%M:%S'
|
34 |
+
formatter = logging.Formatter(msgfmt, datefmt)
|
35 |
+
# stdout
|
36 |
+
sh = logging.StreamHandler()
|
37 |
+
sh.setLevel(logging.DEBUG)
|
38 |
+
sh.setFormatter(formatter)
|
39 |
+
self.print_logger.addHandler(sh)
|
40 |
+
# log file
|
41 |
+
fh = logging.FileHandler(os.path.join(self.log_dir, 'log.txt'))
|
42 |
+
fh.setLevel(logging.INFO)
|
43 |
+
fh.setFormatter(formatter)
|
44 |
+
self.print_logger.addHandler(fh)
|
45 |
+
|
46 |
+
self.print_logger.info(f'Saving logs and checkpoints @ {self.logdir}')
|
47 |
+
|
48 |
+
def log_param_num(self, model):
|
49 |
+
param_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
50 |
+
self.print_logger.info(f'The number of parameters: {param_num/1e+6:.3f} mil')
|
51 |
+
self.add_scalar('num_params', param_num, 0)
|
52 |
+
return param_num
|
53 |
+
|
54 |
+
def log_iter_loss(self, loss, iter, phase):
|
55 |
+
self.add_scalar(f'{phase}/loss_iter', loss, iter)
|
56 |
+
|
57 |
+
def log_epoch_loss(self, loss, epoch, phase):
|
58 |
+
self.add_scalar(f'{phase}/loss', loss, epoch)
|
59 |
+
self.print_logger.info(f'{phase} ({epoch}): loss {loss:.3f};')
|
60 |
+
|
61 |
+
def log_epoch_metrics(self, metrics_dict, epoch, phase):
|
62 |
+
for metric, val in metrics_dict.items():
|
63 |
+
self.add_scalar(f'{phase}/{metric}', val, epoch)
|
64 |
+
metrics_dict = {k: round(v, 4) for k, v in metrics_dict.items()}
|
65 |
+
self.print_logger.info(f'{phase} ({epoch}) metrics: {metrics_dict};')
|
66 |
+
|
67 |
+
def log_test_metrics(self, metrics_dict, hparams_dict, best_epoch):
|
68 |
+
allowed_types = (int, float, str, bool, torch.Tensor)
|
69 |
+
hparams_dict = {k: v for k, v in hparams_dict.items() if isinstance(v, allowed_types)}
|
70 |
+
metrics_dict = {f'test/{k}': round(v, 4) for k, v in metrics_dict.items()}
|
71 |
+
exp, ssi, sei = summary.hparams(hparams_dict, metrics_dict)
|
72 |
+
self.file_writer.add_summary(exp)
|
73 |
+
self.file_writer.add_summary(ssi)
|
74 |
+
self.file_writer.add_summary(sei)
|
75 |
+
for k, v in metrics_dict.items():
|
76 |
+
self.add_scalar(k, v, best_epoch)
|
77 |
+
self.print_logger.info(f'test ({best_epoch}) metrics: {metrics_dict};')
|
78 |
+
|
79 |
+
def log_best_model(self, model, loss, epoch, optimizer, metrics_dict):
|
80 |
+
model_name = model.__class__.__name__
|
81 |
+
self.best_model_path = os.path.join(self.logdir, f'{model_name}-{self.start_time}.pt')
|
82 |
+
checkpoint = {
|
83 |
+
'loss': loss,
|
84 |
+
'metrics': metrics_dict,
|
85 |
+
'epoch': epoch,
|
86 |
+
'optimizer': optimizer.state_dict(),
|
87 |
+
'model': model.state_dict(),
|
88 |
+
}
|
89 |
+
torch.save(checkpoint, self.best_model_path)
|
90 |
+
self.print_logger.info(f'Saved model in {self.best_model_path}')
|
foleycrafter/models/specvqgan/modules/losses/vggishish/loss.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.optim as optim
|
5 |
+
|
6 |
+
class WeightedCrossEntropy(nn.CrossEntropyLoss):
|
7 |
+
|
8 |
+
def __init__(self, weights, **pytorch_ce_loss_args) -> None:
|
9 |
+
super().__init__(reduction='none', **pytorch_ce_loss_args)
|
10 |
+
self.weights = weights
|
11 |
+
|
12 |
+
def __call__(self, outputs, targets, to_weight=True):
|
13 |
+
loss = super().__call__(outputs, targets)
|
14 |
+
if to_weight:
|
15 |
+
return (loss * self.weights[targets]).sum() / self.weights[targets].sum()
|
16 |
+
else:
|
17 |
+
return loss.mean()
|
18 |
+
|
19 |
+
|
20 |
+
if __name__ == '__main__':
|
21 |
+
x = torch.randn(10, 5)
|
22 |
+
target = torch.randint(0, 5, (10,))
|
23 |
+
weights = torch.tensor([1., 2., 3., 4., 5.])
|
24 |
+
|
25 |
+
# criterion_weighted = nn.CrossEntropyLoss(weight=weights)
|
26 |
+
# loss_weighted = criterion_weighted(x, target)
|
27 |
+
|
28 |
+
# criterion_weighted_manual = nn.CrossEntropyLoss(reduction='none')
|
29 |
+
# loss_weighted_manual = criterion_weighted_manual(x, target)
|
30 |
+
# print(loss_weighted, loss_weighted_manual.mean())
|
31 |
+
# loss_weighted_manual = (loss_weighted_manual * weights[target]).sum() / weights[target].sum()
|
32 |
+
# print(loss_weighted, loss_weighted_manual)
|
33 |
+
# print(torch.allclose(loss_weighted, loss_weighted_manual))
|
34 |
+
|
35 |
+
pytorch_weighted = nn.CrossEntropyLoss(weight=weights)
|
36 |
+
pytorch_unweighted = nn.CrossEntropyLoss()
|
37 |
+
custom = WeightedCrossEntropy(weights)
|
38 |
+
|
39 |
+
assert torch.allclose(pytorch_weighted(x, target), custom(x, target, to_weight=True))
|
40 |
+
assert torch.allclose(pytorch_unweighted(x, target), custom(x, target, to_weight=False))
|
41 |
+
print(custom(x, target, to_weight=True), custom(x, target, to_weight=False))
|
foleycrafter/models/specvqgan/modules/losses/vggishish/metrics.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from sklearn.metrics import average_precision_score, roc_auc_score
|
7 |
+
|
8 |
+
logger = logging.getLogger(f'main.{__name__}')
|
9 |
+
|
10 |
+
def metrics(targets, outputs, topk=(1, 5)):
|
11 |
+
"""
|
12 |
+
Adapted from https://github.com/hche11/VGGSound/blob/master/utils.py
|
13 |
+
|
14 |
+
Calculate statistics including mAP, AUC, and d-prime.
|
15 |
+
Args:
|
16 |
+
output: 2d tensors, (dataset_size, classes_num) - before softmax
|
17 |
+
target: 1d tensors, (dataset_size, )
|
18 |
+
topk: tuple
|
19 |
+
Returns:
|
20 |
+
metric_dict: a dict of metrics
|
21 |
+
"""
|
22 |
+
metrics_dict = dict()
|
23 |
+
|
24 |
+
num_cls = outputs.shape[-1]
|
25 |
+
|
26 |
+
# accuracy@k
|
27 |
+
_, preds = torch.topk(outputs, k=max(topk), dim=1)
|
28 |
+
correct_for_maxtopk = preds == targets.view(-1, 1).expand_as(preds)
|
29 |
+
for k in topk:
|
30 |
+
metrics_dict[f'accuracy_{k}'] = float(correct_for_maxtopk[:, :k].sum() / correct_for_maxtopk.shape[0])
|
31 |
+
|
32 |
+
# avg precision, average roc_auc, and dprime
|
33 |
+
targets = torch.nn.functional.one_hot(targets, num_classes=num_cls)
|
34 |
+
|
35 |
+
# ids of the predicted classes (same as softmax)
|
36 |
+
targets_pred = torch.softmax(outputs, dim=1)
|
37 |
+
|
38 |
+
targets = targets.numpy()
|
39 |
+
targets_pred = targets_pred.numpy()
|
40 |
+
|
41 |
+
# one-vs-rest
|
42 |
+
avg_p = [average_precision_score(targets[:, c], targets_pred[:, c], average=None) for c in range(num_cls)]
|
43 |
+
try:
|
44 |
+
roc_aucs = [roc_auc_score(targets[:, c], targets_pred[:, c], average=None) for c in range(num_cls)]
|
45 |
+
except ValueError:
|
46 |
+
logger.warning('Weird... Some classes never occured in targets. Do not trust the metrics.')
|
47 |
+
roc_aucs = np.array([0.5])
|
48 |
+
avg_p = np.array([0])
|
49 |
+
|
50 |
+
metrics_dict['mAP'] = np.mean(avg_p)
|
51 |
+
metrics_dict['mROCAUC'] = np.mean(roc_aucs)
|
52 |
+
# Percent point function (ppf) (inverse of cdf — percentiles).
|
53 |
+
metrics_dict['dprime'] = scipy.stats.norm().ppf(metrics_dict['mROCAUC']) * np.sqrt(2)
|
54 |
+
|
55 |
+
return metrics_dict
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == '__main__':
|
59 |
+
targets = torch.tensor([3, 3, 1, 2, 1, 0])
|
60 |
+
outputs = torch.tensor([
|
61 |
+
[1.2, 1.3, 1.1, 1.5],
|
62 |
+
[1.3, 1.4, 1.0, 1.1],
|
63 |
+
[1.5, 1.1, 1.4, 1.3],
|
64 |
+
[1.0, 1.2, 1.4, 1.5],
|
65 |
+
[1.2, 1.3, 1.1, 1.1],
|
66 |
+
[1.2, 1.1, 1.1, 1.1],
|
67 |
+
]).float()
|
68 |
+
metrics_dict = metrics(targets, outputs, topk=(1, 3))
|
69 |
+
print(metrics_dict)
|
foleycrafter/models/specvqgan/modules/losses/vggishish/model.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class VGGishish(nn.Module):
|
6 |
+
|
7 |
+
def __init__(self, conv_layers, use_bn, num_classes):
|
8 |
+
'''
|
9 |
+
Mostly from
|
10 |
+
https://pytorch.org/vision/0.8/_modules/torchvision/models/vgg.html
|
11 |
+
'''
|
12 |
+
super().__init__()
|
13 |
+
layers = []
|
14 |
+
in_channels = 1
|
15 |
+
|
16 |
+
# a list of channels with 'MP' (maxpool) from config
|
17 |
+
for v in conv_layers:
|
18 |
+
if v == 'MP':
|
19 |
+
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
|
20 |
+
else:
|
21 |
+
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, stride=1)
|
22 |
+
if use_bn:
|
23 |
+
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
|
24 |
+
else:
|
25 |
+
layers += [conv2d, nn.ReLU(inplace=True)]
|
26 |
+
in_channels = v
|
27 |
+
self.features = nn.Sequential(*layers)
|
28 |
+
|
29 |
+
self.avgpool = nn.AdaptiveAvgPool2d((5, 10))
|
30 |
+
|
31 |
+
self.flatten = nn.Flatten()
|
32 |
+
self.classifier = nn.Sequential(
|
33 |
+
nn.Linear(512 * 5 * 10, 4096),
|
34 |
+
nn.ReLU(True),
|
35 |
+
nn.Linear(4096, 4096),
|
36 |
+
nn.ReLU(True),
|
37 |
+
nn.Linear(4096, num_classes)
|
38 |
+
)
|
39 |
+
|
40 |
+
# weight init
|
41 |
+
self.reset_parameters()
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
# adding channel dim for conv2d (B, 1, F, T) <-
|
45 |
+
x = x.unsqueeze(1)
|
46 |
+
# backbone (B, 1, 5, 53) <- (B, 1, 80, 860)
|
47 |
+
x = self.features(x)
|
48 |
+
# adaptive avg pooling (B, 1, 5, 10) <- (B, 1, 5, 53) – if no MP is used as the end of VGG
|
49 |
+
x = self.avgpool(x)
|
50 |
+
# flatten
|
51 |
+
x = self.flatten(x)
|
52 |
+
# classify
|
53 |
+
x = self.classifier(x)
|
54 |
+
return x
|
55 |
+
|
56 |
+
def reset_parameters(self):
|
57 |
+
for m in self.modules():
|
58 |
+
if isinstance(m, nn.Conv2d):
|
59 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
60 |
+
if m.bias is not None:
|
61 |
+
nn.init.constant_(m.bias, 0)
|
62 |
+
elif isinstance(m, nn.BatchNorm2d):
|
63 |
+
nn.init.constant_(m.weight, 1)
|
64 |
+
nn.init.constant_(m.bias, 0)
|
65 |
+
elif isinstance(m, nn.Linear):
|
66 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
67 |
+
nn.init.constant_(m.bias, 0)
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == '__main__':
|
71 |
+
num_classes = 309
|
72 |
+
inputs = torch.rand(3, 80, 848)
|
73 |
+
conv_layers = [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512]
|
74 |
+
# conv_layers = [64, 'MP', 128, 'MP', 256, 256, 'MP', 512, 512, 'MP']
|
75 |
+
model = VGGishish(conv_layers, use_bn=False, num_classes=num_classes)
|
76 |
+
outputs = model(inputs)
|
77 |
+
print(outputs.shape)
|
foleycrafter/models/specvqgan/modules/losses/vggishish/predict.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
import torchvision
|
4 |
+
from tqdm import tqdm
|
5 |
+
from dataset import VGGSound
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from metrics import metrics
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
from model import VGGishish
|
11 |
+
from transforms import Crop, StandardNormalizeAudio, ToTensor
|
12 |
+
|
13 |
+
|
14 |
+
if __name__ == '__main__':
|
15 |
+
cfg_cli = OmegaConf.from_cli()
|
16 |
+
print(cfg_cli.config)
|
17 |
+
cfg_yml = OmegaConf.load(cfg_cli.config)
|
18 |
+
# the latter arguments are prioritized
|
19 |
+
cfg = OmegaConf.merge(cfg_yml, cfg_cli)
|
20 |
+
OmegaConf.set_readonly(cfg, True)
|
21 |
+
print(OmegaConf.to_yaml(cfg))
|
22 |
+
|
23 |
+
# logger = LoggerWithTBoard(cfg)
|
24 |
+
transforms = [
|
25 |
+
StandardNormalizeAudio(cfg.mels_path),
|
26 |
+
ToTensor(),
|
27 |
+
]
|
28 |
+
if cfg.cropped_size not in [None, 'None', 'none']:
|
29 |
+
transforms.append(Crop(cfg.cropped_size))
|
30 |
+
transforms = torchvision.transforms.transforms.Compose(transforms)
|
31 |
+
|
32 |
+
datasets = {
|
33 |
+
'test': VGGSound('test', cfg.mels_path, transforms),
|
34 |
+
}
|
35 |
+
|
36 |
+
loaders = {
|
37 |
+
'test': DataLoader(datasets['test'], batch_size=cfg.batch_size,
|
38 |
+
num_workers=cfg.num_workers, pin_memory=True)
|
39 |
+
}
|
40 |
+
|
41 |
+
device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu')
|
42 |
+
model = VGGishish(cfg.conv_layers, cfg.use_bn, num_classes=len(datasets['test'].target2label))
|
43 |
+
model = model.to(device)
|
44 |
+
|
45 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.learning_rate)
|
46 |
+
criterion = nn.CrossEntropyLoss()
|
47 |
+
|
48 |
+
# loading the best model
|
49 |
+
folder_name = os.path.split(cfg.config)[0].split('/')[-1]
|
50 |
+
print(folder_name)
|
51 |
+
ckpt = torch.load(f'./logs/{folder_name}/vggishish-{folder_name}.pt', map_location='cpu')
|
52 |
+
model.load_state_dict(ckpt['model'])
|
53 |
+
print((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}'))
|
54 |
+
|
55 |
+
# Testing the model
|
56 |
+
model.eval()
|
57 |
+
running_loss = 0
|
58 |
+
preds_from_each_batch = []
|
59 |
+
targets_from_each_batch = []
|
60 |
+
|
61 |
+
for i, batch in enumerate(tqdm(loaders['test'])):
|
62 |
+
inputs = batch['input'].to(device)
|
63 |
+
targets = batch['target'].to(device)
|
64 |
+
|
65 |
+
# zero the parameter gradients
|
66 |
+
optimizer.zero_grad()
|
67 |
+
|
68 |
+
# forward + backward + optimize
|
69 |
+
with torch.set_grad_enabled(False):
|
70 |
+
outputs = model(inputs)
|
71 |
+
loss = criterion(outputs, targets)
|
72 |
+
|
73 |
+
# loss
|
74 |
+
running_loss += loss.item()
|
75 |
+
|
76 |
+
# for metrics calculation later on
|
77 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
78 |
+
targets_from_each_batch += [targets.cpu()]
|
79 |
+
|
80 |
+
# logging metrics
|
81 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
82 |
+
targets_from_each_batch = torch.cat(targets_from_each_batch)
|
83 |
+
test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch)
|
84 |
+
test_metrics_dict['avg_loss'] = running_loss / len(loaders['test'])
|
85 |
+
test_metrics_dict['param_num'] = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
86 |
+
|
87 |
+
# TODO: I have no idea why tboard doesn't keep metrics (hparams) in a tensorboard when
|
88 |
+
# I run this experiment from cli: `python main.py config=./configs/vggish.yaml`
|
89 |
+
# while when I run it in vscode debugger the metrics are present in the tboard (weird)
|
90 |
+
print(test_metrics_dict)
|
foleycrafter/models/specvqgan/modules/losses/vggishish/predict_gh.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import json
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
import torchvision
|
6 |
+
from tqdm import tqdm
|
7 |
+
from dataset import GreatestHit, AMT_test
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from metrics import metrics
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
from model import VGGishish
|
13 |
+
from transforms import Crop, StandardNormalizeAudio, ToTensor
|
14 |
+
|
15 |
+
|
16 |
+
if __name__ == '__main__':
|
17 |
+
cfg_cli = sys.argv[1]
|
18 |
+
target_path = sys.argv[2]
|
19 |
+
model_path = sys.argv[3]
|
20 |
+
cfg_yml = OmegaConf.load(cfg_cli)
|
21 |
+
# the latter arguments are prioritized
|
22 |
+
cfg = cfg_yml
|
23 |
+
OmegaConf.set_readonly(cfg, True)
|
24 |
+
# print(OmegaConf.to_yaml(cfg))
|
25 |
+
|
26 |
+
device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu')
|
27 |
+
transforms = [
|
28 |
+
StandardNormalizeAudio(cfg.mels_path),
|
29 |
+
]
|
30 |
+
if cfg.cropped_size not in [None, 'None', 'none']:
|
31 |
+
transforms.append(Crop(cfg.cropped_size))
|
32 |
+
transforms.append(ToTensor())
|
33 |
+
transforms = torchvision.transforms.transforms.Compose(transforms)
|
34 |
+
|
35 |
+
testset = AMT_test(target_path, transforms, action_only=cfg.action_only, material_only=cfg.material_only)
|
36 |
+
loader = DataLoader(testset, batch_size=cfg.batch_size,
|
37 |
+
num_workers=cfg.num_workers, pin_memory=True)
|
38 |
+
|
39 |
+
model = VGGishish(cfg.conv_layers, cfg.use_bn, num_classes=len(testset.label2target))
|
40 |
+
ckpt = torch.load(model_path)['model']
|
41 |
+
model.load_state_dict(ckpt, strict=True)
|
42 |
+
model = model.to(device)
|
43 |
+
|
44 |
+
model.eval()
|
45 |
+
|
46 |
+
if cfg.cls_weights_in_loss:
|
47 |
+
weights = 1 / testset.class_counts
|
48 |
+
else:
|
49 |
+
weights = torch.ones(len(testset.label2target))
|
50 |
+
|
51 |
+
preds_from_each_batch = []
|
52 |
+
file_path_from_each_batch = []
|
53 |
+
for batch in tqdm(loader):
|
54 |
+
inputs = batch['input'].to(device)
|
55 |
+
file_path = batch['file_path']
|
56 |
+
with torch.set_grad_enabled(False):
|
57 |
+
outputs = model(inputs)
|
58 |
+
# for metrics calculation later on
|
59 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
60 |
+
file_path_from_each_batch += file_path
|
61 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
62 |
+
_, preds = torch.topk(preds_from_each_batch, k=1)
|
63 |
+
pred_dict = {fp: int(p.item()) for fp, p in zip(file_path_from_each_batch, preds)}
|
64 |
+
mel_parent_dir = os.path.dirname(list(pred_dict.keys())[0])
|
65 |
+
pred_list = [pred_dict[os.path.join(mel_parent_dir, f'{i}.npy')] for i in range(len(pred_dict))]
|
66 |
+
json.dump(pred_list, open(target_path + f'_{cfg.exp_name}_preds.json', 'w'))
|
foleycrafter/models/specvqgan/modules/losses/vggishish/train_melception.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
from torch.utils.data.dataloader import DataLoader
|
8 |
+
from torchvision.models.inception import BasicConv2d, Inception3
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from dataset import VGGSound
|
12 |
+
from logger import LoggerWithTBoard
|
13 |
+
from loss import WeightedCrossEntropy
|
14 |
+
from metrics import metrics
|
15 |
+
from transforms import Crop, StandardNormalizeAudio, ToTensor
|
16 |
+
|
17 |
+
|
18 |
+
# TODO: refactor ./evaluation/feature_extractors/melception.py to handle this class as well.
|
19 |
+
# So far couldn't do it because of the difference in outputs
|
20 |
+
class Melception(Inception3):
|
21 |
+
|
22 |
+
def __init__(self, num_classes, **kwargs):
|
23 |
+
# inception = Melception(num_classes=309)
|
24 |
+
super().__init__(num_classes=num_classes, **kwargs)
|
25 |
+
# the same as https://github.com/pytorch/vision/blob/5339e63148/torchvision/models/inception.py#L95
|
26 |
+
# but for 1-channel input instead of RGB.
|
27 |
+
self.Conv2d_1a_3x3 = BasicConv2d(1, 32, kernel_size=3, stride=2)
|
28 |
+
# also the 'hight' of the mel spec is 80 (vs 299 in RGB) we remove all max pool from Inception
|
29 |
+
self.maxpool1 = torch.nn.Identity()
|
30 |
+
self.maxpool2 = torch.nn.Identity()
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
x = x.unsqueeze(1)
|
34 |
+
return super().forward(x)
|
35 |
+
|
36 |
+
def train_inception_scorer(cfg):
|
37 |
+
logger = LoggerWithTBoard(cfg)
|
38 |
+
|
39 |
+
random.seed(cfg.seed)
|
40 |
+
np.random.seed(cfg.seed)
|
41 |
+
torch.manual_seed(cfg.seed)
|
42 |
+
torch.cuda.manual_seed_all(cfg.seed)
|
43 |
+
# makes iterations faster (in this case 30%) if your inputs are of a fixed size
|
44 |
+
# https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
|
45 |
+
torch.backends.cudnn.benchmark = True
|
46 |
+
|
47 |
+
meta_path = './data/vggsound.csv'
|
48 |
+
train_ids_path = './data/vggsound_train.txt'
|
49 |
+
cache_path = './data/'
|
50 |
+
splits_path = cache_path
|
51 |
+
|
52 |
+
transforms = [
|
53 |
+
StandardNormalizeAudio(cfg.mels_path, train_ids_path, cache_path),
|
54 |
+
]
|
55 |
+
if cfg.cropped_size not in [None, 'None', 'none']:
|
56 |
+
logger.print_logger.info(f'Using cropping {cfg.cropped_size}')
|
57 |
+
transforms.append(Crop(cfg.cropped_size))
|
58 |
+
transforms.append(ToTensor())
|
59 |
+
transforms = torchvision.transforms.transforms.Compose(transforms)
|
60 |
+
|
61 |
+
datasets = {
|
62 |
+
'train': VGGSound('train', cfg.mels_path, transforms, splits_path, meta_path),
|
63 |
+
'valid': VGGSound('valid', cfg.mels_path, transforms, splits_path, meta_path),
|
64 |
+
'test': VGGSound('test', cfg.mels_path, transforms, splits_path, meta_path),
|
65 |
+
}
|
66 |
+
|
67 |
+
loaders = {
|
68 |
+
'train': DataLoader(datasets['train'], batch_size=cfg.batch_size, shuffle=True, drop_last=True,
|
69 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
70 |
+
'valid': DataLoader(datasets['valid'], batch_size=cfg.batch_size,
|
71 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
72 |
+
'test': DataLoader(datasets['test'], batch_size=cfg.batch_size,
|
73 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
74 |
+
}
|
75 |
+
|
76 |
+
device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu')
|
77 |
+
|
78 |
+
model = Melception(num_classes=len(datasets['train'].target2label))
|
79 |
+
model = model.to(device)
|
80 |
+
param_num = logger.log_param_num(model)
|
81 |
+
|
82 |
+
if cfg.optimizer == 'adam':
|
83 |
+
optimizer = torch.optim.Adam(
|
84 |
+
model.parameters(), lr=cfg.learning_rate, betas=cfg.betas, weight_decay=cfg.weight_decay)
|
85 |
+
elif cfg.optimizer == 'sgd':
|
86 |
+
optimizer = torch.optim.SGD(
|
87 |
+
model.parameters(), lr=cfg.learning_rate, momentum=cfg.momentum, weight_decay=cfg.weight_decay)
|
88 |
+
else:
|
89 |
+
raise NotImplementedError
|
90 |
+
|
91 |
+
if cfg.cls_weights_in_loss:
|
92 |
+
weights = 1 / datasets['train'].class_counts
|
93 |
+
else:
|
94 |
+
weights = torch.ones(len(datasets['train'].target2label))
|
95 |
+
criterion = WeightedCrossEntropy(weights.to(device))
|
96 |
+
|
97 |
+
# loop over the train and validation multiple times (typical PT boilerplate)
|
98 |
+
no_change_epochs = 0
|
99 |
+
best_valid_loss = float('inf')
|
100 |
+
early_stop_triggered = False
|
101 |
+
|
102 |
+
for epoch in range(cfg.num_epochs):
|
103 |
+
|
104 |
+
for phase in ['train', 'valid']:
|
105 |
+
if phase == 'train':
|
106 |
+
model.train()
|
107 |
+
else:
|
108 |
+
model.eval()
|
109 |
+
|
110 |
+
running_loss = 0
|
111 |
+
preds_from_each_batch = []
|
112 |
+
targets_from_each_batch = []
|
113 |
+
|
114 |
+
prog_bar = tqdm(loaders[phase], f'{phase} ({epoch})', ncols=0)
|
115 |
+
for i, batch in enumerate(prog_bar):
|
116 |
+
inputs = batch['input'].to(device)
|
117 |
+
targets = batch['target'].to(device)
|
118 |
+
|
119 |
+
# zero the parameter gradients
|
120 |
+
optimizer.zero_grad()
|
121 |
+
|
122 |
+
# forward + backward + optimize
|
123 |
+
with torch.set_grad_enabled(phase == 'train'):
|
124 |
+
# inception v3
|
125 |
+
if phase == 'train':
|
126 |
+
outputs, aux_outputs = model(inputs)
|
127 |
+
loss1 = criterion(outputs, targets)
|
128 |
+
loss2 = criterion(aux_outputs, targets)
|
129 |
+
loss = loss1 + 0.4*loss2
|
130 |
+
loss = criterion(outputs, targets, to_weight=True)
|
131 |
+
else:
|
132 |
+
outputs = model(inputs)
|
133 |
+
loss = criterion(outputs, targets, to_weight=False)
|
134 |
+
|
135 |
+
if phase == 'train':
|
136 |
+
loss.backward()
|
137 |
+
optimizer.step()
|
138 |
+
|
139 |
+
# loss
|
140 |
+
running_loss += loss.item()
|
141 |
+
|
142 |
+
# for metrics calculation later on
|
143 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
144 |
+
targets_from_each_batch += [targets.cpu()]
|
145 |
+
|
146 |
+
# iter logging
|
147 |
+
if i % 50 == 0:
|
148 |
+
logger.log_iter_loss(loss.item(), epoch*len(loaders[phase])+i, phase)
|
149 |
+
# tracks loss in the tqdm progress bar
|
150 |
+
prog_bar.set_postfix(loss=loss.item())
|
151 |
+
|
152 |
+
# logging loss
|
153 |
+
epoch_loss = running_loss / len(loaders[phase])
|
154 |
+
logger.log_epoch_loss(epoch_loss, epoch, phase)
|
155 |
+
|
156 |
+
# logging metrics
|
157 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
158 |
+
targets_from_each_batch = torch.cat(targets_from_each_batch)
|
159 |
+
metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch)
|
160 |
+
logger.log_epoch_metrics(metrics_dict, epoch, phase)
|
161 |
+
|
162 |
+
# Early stopping
|
163 |
+
if phase == 'valid':
|
164 |
+
if epoch_loss < best_valid_loss:
|
165 |
+
no_change_epochs = 0
|
166 |
+
best_valid_loss = epoch_loss
|
167 |
+
logger.log_best_model(model, epoch_loss, epoch, optimizer, metrics_dict)
|
168 |
+
else:
|
169 |
+
no_change_epochs += 1
|
170 |
+
logger.print_logger.info(
|
171 |
+
f'Valid loss hasnt changed for {no_change_epochs} patience: {cfg.patience}'
|
172 |
+
)
|
173 |
+
if no_change_epochs >= cfg.patience:
|
174 |
+
early_stop_triggered = True
|
175 |
+
|
176 |
+
if early_stop_triggered:
|
177 |
+
logger.print_logger.info(f'Training is early stopped @ {epoch}')
|
178 |
+
break
|
179 |
+
|
180 |
+
logger.print_logger.info('Finished Training')
|
181 |
+
|
182 |
+
# loading the best model
|
183 |
+
ckpt = torch.load(logger.best_model_path)
|
184 |
+
model.load_state_dict(ckpt['model'])
|
185 |
+
logger.print_logger.info(f'Loading the best model from {logger.best_model_path}')
|
186 |
+
logger.print_logger.info((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}'))
|
187 |
+
|
188 |
+
# Testing the model
|
189 |
+
model.eval()
|
190 |
+
running_loss = 0
|
191 |
+
preds_from_each_batch = []
|
192 |
+
targets_from_each_batch = []
|
193 |
+
|
194 |
+
for i, batch in enumerate(loaders['test']):
|
195 |
+
inputs = batch['input'].to(device)
|
196 |
+
targets = batch['target'].to(device)
|
197 |
+
|
198 |
+
# zero the parameter gradients
|
199 |
+
optimizer.zero_grad()
|
200 |
+
|
201 |
+
# forward + backward + optimize
|
202 |
+
with torch.set_grad_enabled(False):
|
203 |
+
outputs = model(inputs)
|
204 |
+
loss = criterion(outputs, targets, to_weight=False)
|
205 |
+
|
206 |
+
# loss
|
207 |
+
running_loss += loss.item()
|
208 |
+
|
209 |
+
# for metrics calculation later on
|
210 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
211 |
+
targets_from_each_batch += [targets.cpu()]
|
212 |
+
|
213 |
+
# logging metrics
|
214 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
215 |
+
targets_from_each_batch = torch.cat(targets_from_each_batch)
|
216 |
+
test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch)
|
217 |
+
test_metrics_dict['avg_loss'] = running_loss / len(loaders['test'])
|
218 |
+
test_metrics_dict['param_num'] = param_num
|
219 |
+
# TODO: I have no idea why tboard doesn't keep metrics (hparams) when
|
220 |
+
# I run this experiment from cli: `python train_melception.py config=./configs/vggish.yaml`
|
221 |
+
# while when I run it in vscode debugger the metrics are logger (wtf)
|
222 |
+
logger.log_test_metrics(test_metrics_dict, dict(cfg), ckpt['epoch'])
|
223 |
+
|
224 |
+
logger.print_logger.info('Finished the experiment')
|
225 |
+
|
226 |
+
|
227 |
+
if __name__ == '__main__':
|
228 |
+
# input = torch.rand(16, 1, 80, 848)
|
229 |
+
# output, aux = inception(input)
|
230 |
+
# print(output.shape, aux.shape)
|
231 |
+
# Expected input size: (3, 299, 299) in RGB -> (1, 80, 848) in Mel Spec
|
232 |
+
# train_inception_scorer()
|
233 |
+
|
234 |
+
cfg_cli = OmegaConf.from_cli()
|
235 |
+
cfg_yml = OmegaConf.load(cfg_cli.config)
|
236 |
+
# the latter arguments are prioritized
|
237 |
+
cfg = OmegaConf.merge(cfg_yml, cfg_cli)
|
238 |
+
OmegaConf.set_readonly(cfg, True)
|
239 |
+
print(OmegaConf.to_yaml(cfg))
|
240 |
+
|
241 |
+
train_inception_scorer(cfg)
|
foleycrafter/models/specvqgan/modules/losses/vggishish/train_vggishish.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from loss import WeightedCrossEntropy
|
2 |
+
import random
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from torch.utils.data.dataloader import DataLoader
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from dataset import VGGSound
|
12 |
+
from transforms import Crop, StandardNormalizeAudio, ToTensor
|
13 |
+
from logger import LoggerWithTBoard
|
14 |
+
from metrics import metrics
|
15 |
+
from model import VGGishish
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
cfg_cli = OmegaConf.from_cli()
|
19 |
+
cfg_yml = OmegaConf.load(cfg_cli.config)
|
20 |
+
# the latter arguments are prioritized
|
21 |
+
cfg = OmegaConf.merge(cfg_yml, cfg_cli)
|
22 |
+
OmegaConf.set_readonly(cfg, True)
|
23 |
+
print(OmegaConf.to_yaml(cfg))
|
24 |
+
|
25 |
+
logger = LoggerWithTBoard(cfg)
|
26 |
+
|
27 |
+
random.seed(cfg.seed)
|
28 |
+
np.random.seed(cfg.seed)
|
29 |
+
torch.manual_seed(cfg.seed)
|
30 |
+
torch.cuda.manual_seed_all(cfg.seed)
|
31 |
+
# makes iterations faster (in this case 30%) if your inputs are of a fixed size
|
32 |
+
# https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
|
33 |
+
torch.backends.cudnn.benchmark = True
|
34 |
+
|
35 |
+
transforms = [
|
36 |
+
StandardNormalizeAudio(cfg.mels_path),
|
37 |
+
]
|
38 |
+
if cfg.cropped_size not in [None, 'None', 'none']:
|
39 |
+
logger.print_logger.info(f'Using cropping {cfg.cropped_size}')
|
40 |
+
transforms.append(Crop(cfg.cropped_size))
|
41 |
+
transforms.append(ToTensor())
|
42 |
+
transforms = torchvision.transforms.transforms.Compose(transforms)
|
43 |
+
|
44 |
+
datasets = {
|
45 |
+
'train': VGGSound('train', cfg.mels_path, transforms),
|
46 |
+
'valid': VGGSound('valid', cfg.mels_path, transforms),
|
47 |
+
'test': VGGSound('test', cfg.mels_path, transforms),
|
48 |
+
}
|
49 |
+
|
50 |
+
loaders = {
|
51 |
+
'train': DataLoader(datasets['train'], batch_size=cfg.batch_size, shuffle=True, drop_last=True,
|
52 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
53 |
+
'valid': DataLoader(datasets['valid'], batch_size=cfg.batch_size,
|
54 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
55 |
+
'test': DataLoader(datasets['test'], batch_size=cfg.batch_size,
|
56 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
57 |
+
}
|
58 |
+
|
59 |
+
device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu')
|
60 |
+
|
61 |
+
model = VGGishish(cfg.conv_layers, cfg.use_bn, num_classes=len(datasets['train'].target2label))
|
62 |
+
model = model.to(device)
|
63 |
+
param_num = logger.log_param_num(model)
|
64 |
+
|
65 |
+
if cfg.optimizer == 'adam':
|
66 |
+
optimizer = torch.optim.Adam(
|
67 |
+
model.parameters(), lr=cfg.learning_rate, betas=cfg.betas, weight_decay=cfg.weight_decay)
|
68 |
+
elif cfg.optimizer == 'sgd':
|
69 |
+
optimizer = torch.optim.SGD(
|
70 |
+
model.parameters(), lr=cfg.learning_rate, momentum=cfg.momentum, weight_decay=cfg.weight_decay)
|
71 |
+
else:
|
72 |
+
raise NotImplementedError
|
73 |
+
|
74 |
+
if cfg.cls_weights_in_loss:
|
75 |
+
weights = 1 / datasets['train'].class_counts
|
76 |
+
else:
|
77 |
+
weights = torch.ones(len(datasets['train'].target2label))
|
78 |
+
criterion = WeightedCrossEntropy(weights.to(device))
|
79 |
+
|
80 |
+
# loop over the train and validation multiple times (typical PT boilerplate)
|
81 |
+
no_change_epochs = 0
|
82 |
+
best_valid_loss = float('inf')
|
83 |
+
early_stop_triggered = False
|
84 |
+
|
85 |
+
for epoch in range(cfg.num_epochs):
|
86 |
+
|
87 |
+
for phase in ['train', 'valid']:
|
88 |
+
if phase == 'train':
|
89 |
+
model.train()
|
90 |
+
else:
|
91 |
+
model.eval()
|
92 |
+
|
93 |
+
running_loss = 0
|
94 |
+
preds_from_each_batch = []
|
95 |
+
targets_from_each_batch = []
|
96 |
+
|
97 |
+
prog_bar = tqdm(loaders[phase], f'{phase} ({epoch})', ncols=0)
|
98 |
+
for i, batch in enumerate(prog_bar):
|
99 |
+
inputs = batch['input'].to(device)
|
100 |
+
targets = batch['target'].to(device)
|
101 |
+
|
102 |
+
# zero the parameter gradients
|
103 |
+
optimizer.zero_grad()
|
104 |
+
|
105 |
+
# forward + backward + optimize
|
106 |
+
with torch.set_grad_enabled(phase == 'train'):
|
107 |
+
outputs = model(inputs)
|
108 |
+
loss = criterion(outputs, targets, to_weight=phase == 'train')
|
109 |
+
|
110 |
+
if phase == 'train':
|
111 |
+
loss.backward()
|
112 |
+
optimizer.step()
|
113 |
+
|
114 |
+
# loss
|
115 |
+
running_loss += loss.item()
|
116 |
+
|
117 |
+
# for metrics calculation later on
|
118 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
119 |
+
targets_from_each_batch += [targets.cpu()]
|
120 |
+
|
121 |
+
# iter logging
|
122 |
+
if i % 50 == 0:
|
123 |
+
logger.log_iter_loss(loss.item(), epoch*len(loaders[phase])+i, phase)
|
124 |
+
# tracks loss in the tqdm progress bar
|
125 |
+
prog_bar.set_postfix(loss=loss.item())
|
126 |
+
|
127 |
+
# logging loss
|
128 |
+
epoch_loss = running_loss / len(loaders[phase])
|
129 |
+
logger.log_epoch_loss(epoch_loss, epoch, phase)
|
130 |
+
|
131 |
+
# logging metrics
|
132 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
133 |
+
targets_from_each_batch = torch.cat(targets_from_each_batch)
|
134 |
+
metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch)
|
135 |
+
logger.log_epoch_metrics(metrics_dict, epoch, phase)
|
136 |
+
|
137 |
+
# Early stopping
|
138 |
+
if phase == 'valid':
|
139 |
+
if epoch_loss < best_valid_loss:
|
140 |
+
no_change_epochs = 0
|
141 |
+
best_valid_loss = epoch_loss
|
142 |
+
logger.log_best_model(model, epoch_loss, epoch, optimizer, metrics_dict)
|
143 |
+
else:
|
144 |
+
no_change_epochs += 1
|
145 |
+
logger.print_logger.info(
|
146 |
+
f'Valid loss hasnt changed for {no_change_epochs} patience: {cfg.patience}'
|
147 |
+
)
|
148 |
+
if no_change_epochs >= cfg.patience:
|
149 |
+
early_stop_triggered = True
|
150 |
+
|
151 |
+
if early_stop_triggered:
|
152 |
+
logger.print_logger.info(f'Training is early stopped @ {epoch}')
|
153 |
+
break
|
154 |
+
|
155 |
+
logger.print_logger.info('Finished Training')
|
156 |
+
|
157 |
+
# loading the best model
|
158 |
+
ckpt = torch.load(logger.best_model_path)
|
159 |
+
model.load_state_dict(ckpt['model'])
|
160 |
+
logger.print_logger.info(f'Loading the best model from {logger.best_model_path}')
|
161 |
+
logger.print_logger.info((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}'))
|
162 |
+
|
163 |
+
# Testing the model
|
164 |
+
model.eval()
|
165 |
+
running_loss = 0
|
166 |
+
preds_from_each_batch = []
|
167 |
+
targets_from_each_batch = []
|
168 |
+
|
169 |
+
for i, batch in enumerate(loaders['test']):
|
170 |
+
inputs = batch['input'].to(device)
|
171 |
+
targets = batch['target'].to(device)
|
172 |
+
|
173 |
+
# zero the parameter gradients
|
174 |
+
optimizer.zero_grad()
|
175 |
+
|
176 |
+
# forward + backward + optimize
|
177 |
+
with torch.set_grad_enabled(False):
|
178 |
+
outputs = model(inputs)
|
179 |
+
loss = criterion(outputs, targets, to_weight=False)
|
180 |
+
|
181 |
+
# loss
|
182 |
+
running_loss += loss.item()
|
183 |
+
|
184 |
+
# for metrics calculation later on
|
185 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
186 |
+
targets_from_each_batch += [targets.cpu()]
|
187 |
+
|
188 |
+
# logging metrics
|
189 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
190 |
+
targets_from_each_batch = torch.cat(targets_from_each_batch)
|
191 |
+
test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch)
|
192 |
+
test_metrics_dict['avg_loss'] = running_loss / len(loaders['test'])
|
193 |
+
test_metrics_dict['param_num'] = param_num
|
194 |
+
# TODO: I have no idea why tboard doesn't keep metrics (hparams) when
|
195 |
+
# I run this experiment from cli: `python train_vggishish.py config=./configs/vggish.yaml`
|
196 |
+
# while when I run it in vscode debugger the metrics are logger (wtf)
|
197 |
+
logger.log_test_metrics(test_metrics_dict, dict(cfg), ckpt['epoch'])
|
198 |
+
|
199 |
+
logger.print_logger.info('Finished the experiment')
|
foleycrafter/models/specvqgan/modules/losses/vggishish/train_vggishish_gh.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from loss import WeightedCrossEntropy
|
2 |
+
import random
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import json
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torchvision
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
from torch.utils.data.dataloader import DataLoader
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from dataset import GreatestHit, AMT_test
|
15 |
+
from transforms import Crop, StandardNormalizeAudio, ToTensor
|
16 |
+
from logger import LoggerWithTBoard
|
17 |
+
from metrics import metrics
|
18 |
+
from model import VGGishish
|
19 |
+
|
20 |
+
|
21 |
+
if __name__ == "__main__":
|
22 |
+
cfg_cli = sys.argv[1]
|
23 |
+
cfg_yml = OmegaConf.load(cfg_cli)
|
24 |
+
# the latter arguments are prioritized
|
25 |
+
cfg = cfg_yml
|
26 |
+
OmegaConf.set_readonly(cfg, True)
|
27 |
+
print(OmegaConf.to_yaml(cfg))
|
28 |
+
|
29 |
+
logger = LoggerWithTBoard(cfg)
|
30 |
+
|
31 |
+
random.seed(cfg.seed)
|
32 |
+
np.random.seed(cfg.seed)
|
33 |
+
torch.manual_seed(cfg.seed)
|
34 |
+
torch.cuda.manual_seed_all(cfg.seed)
|
35 |
+
# makes iterations faster (in this case 30%) if your inputs are of a fixed size
|
36 |
+
# https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
|
37 |
+
torch.backends.cudnn.benchmark = True
|
38 |
+
|
39 |
+
transforms = [
|
40 |
+
StandardNormalizeAudio(cfg.mels_path),
|
41 |
+
]
|
42 |
+
if cfg.cropped_size not in [None, 'None', 'none']:
|
43 |
+
logger.print_logger.info(f'Using cropping {cfg.cropped_size}')
|
44 |
+
transforms.append(Crop(cfg.cropped_size))
|
45 |
+
transforms.append(ToTensor())
|
46 |
+
transforms = torchvision.transforms.transforms.Compose(transforms)
|
47 |
+
|
48 |
+
datasets = {
|
49 |
+
'train': GreatestHit('train', cfg.mels_path, transforms, action_only=cfg.action_only, material_only=cfg.material_only),
|
50 |
+
'valid': GreatestHit('valid', cfg.mels_path, transforms, action_only=cfg.action_only, material_only=cfg.material_only),
|
51 |
+
'test': GreatestHit('test', cfg.mels_path, transforms, action_only=cfg.action_only, material_only=cfg.material_only),
|
52 |
+
}
|
53 |
+
|
54 |
+
loaders = {
|
55 |
+
'train': DataLoader(datasets['train'], batch_size=cfg.batch_size, shuffle=True, drop_last=True,
|
56 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
57 |
+
'valid': DataLoader(datasets['valid'], batch_size=cfg.batch_size,
|
58 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
59 |
+
'test': DataLoader(datasets['test'], batch_size=cfg.batch_size,
|
60 |
+
num_workers=cfg.num_workers, pin_memory=True),
|
61 |
+
}
|
62 |
+
|
63 |
+
device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu')
|
64 |
+
|
65 |
+
model = VGGishish(cfg.conv_layers, cfg.use_bn, num_classes=len(datasets['train'].label2target))
|
66 |
+
model = model.to(device)
|
67 |
+
if cfg.load_model is not None:
|
68 |
+
state_dict = torch.load(cfg.load_model, map_location=device)['model']
|
69 |
+
target_dict = {}
|
70 |
+
# ignore the last layer
|
71 |
+
for key, v in state_dict.items():
|
72 |
+
# ignore classifier
|
73 |
+
if 'classifier' not in key:
|
74 |
+
target_dict[key] = v
|
75 |
+
model.load_state_dict(target_dict, strict=False)
|
76 |
+
param_num = logger.log_param_num(model)
|
77 |
+
|
78 |
+
if cfg.optimizer == 'adam':
|
79 |
+
optimizer = torch.optim.Adam(
|
80 |
+
model.parameters(), lr=cfg.learning_rate, betas=cfg.betas, weight_decay=cfg.weight_decay)
|
81 |
+
elif cfg.optimizer == 'sgd':
|
82 |
+
optimizer = torch.optim.SGD(
|
83 |
+
model.parameters(), lr=cfg.learning_rate, momentum=cfg.momentum, weight_decay=cfg.weight_decay)
|
84 |
+
else:
|
85 |
+
raise NotImplementedError
|
86 |
+
|
87 |
+
if cfg.cls_weights_in_loss:
|
88 |
+
weights = 1 / datasets['train'].class_counts
|
89 |
+
else:
|
90 |
+
weights = torch.ones(len(datasets['train'].label2target))
|
91 |
+
criterion = WeightedCrossEntropy(weights.to(device))
|
92 |
+
|
93 |
+
# loop over the train and validation multiple times (typical PT boilerplate)
|
94 |
+
no_change_epochs = 0
|
95 |
+
best_valid_loss = float('inf')
|
96 |
+
early_stop_triggered = False
|
97 |
+
|
98 |
+
for epoch in range(cfg.num_epochs):
|
99 |
+
|
100 |
+
for phase in ['train', 'valid']:
|
101 |
+
if phase == 'train':
|
102 |
+
model.train()
|
103 |
+
else:
|
104 |
+
model.eval()
|
105 |
+
|
106 |
+
running_loss = 0
|
107 |
+
preds_from_each_batch = []
|
108 |
+
targets_from_each_batch = []
|
109 |
+
|
110 |
+
prog_bar = tqdm(loaders[phase], f'{phase} ({epoch})', ncols=0)
|
111 |
+
for i, batch in enumerate(prog_bar):
|
112 |
+
inputs = batch['input'].to(device)
|
113 |
+
targets = batch['target'].to(device)
|
114 |
+
|
115 |
+
# zero the parameter gradients
|
116 |
+
optimizer.zero_grad()
|
117 |
+
|
118 |
+
# forward + backward + optimize
|
119 |
+
with torch.set_grad_enabled(phase == 'train'):
|
120 |
+
outputs = model(inputs)
|
121 |
+
loss = criterion(outputs, targets, to_weight=phase == 'train')
|
122 |
+
|
123 |
+
if phase == 'train':
|
124 |
+
loss.backward()
|
125 |
+
optimizer.step()
|
126 |
+
|
127 |
+
# loss
|
128 |
+
running_loss += loss.item()
|
129 |
+
|
130 |
+
# for metrics calculation later on
|
131 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
132 |
+
targets_from_each_batch += [targets.cpu()]
|
133 |
+
|
134 |
+
# iter logging
|
135 |
+
if i % 50 == 0:
|
136 |
+
logger.log_iter_loss(loss.item(), epoch*len(loaders[phase])+i, phase)
|
137 |
+
# tracks loss in the tqdm progress bar
|
138 |
+
prog_bar.set_postfix(loss=loss.item())
|
139 |
+
|
140 |
+
# logging loss
|
141 |
+
epoch_loss = running_loss / len(loaders[phase])
|
142 |
+
logger.log_epoch_loss(epoch_loss, epoch, phase)
|
143 |
+
|
144 |
+
# logging metrics
|
145 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
146 |
+
targets_from_each_batch = torch.cat(targets_from_each_batch)
|
147 |
+
if cfg.action_only:
|
148 |
+
metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch, topk=(1,))
|
149 |
+
else:
|
150 |
+
metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch, topk=(1, 5))
|
151 |
+
logger.log_epoch_metrics(metrics_dict, epoch, phase)
|
152 |
+
|
153 |
+
# Early stopping
|
154 |
+
if phase == 'valid':
|
155 |
+
if epoch_loss < best_valid_loss:
|
156 |
+
no_change_epochs = 0
|
157 |
+
best_valid_loss = epoch_loss
|
158 |
+
logger.log_best_model(model, epoch_loss, epoch, optimizer, metrics_dict)
|
159 |
+
else:
|
160 |
+
no_change_epochs += 1
|
161 |
+
logger.print_logger.info(
|
162 |
+
f'Valid loss hasnt changed for {no_change_epochs} patience: {cfg.patience}'
|
163 |
+
)
|
164 |
+
if no_change_epochs >= cfg.patience:
|
165 |
+
early_stop_triggered = True
|
166 |
+
|
167 |
+
if early_stop_triggered:
|
168 |
+
logger.print_logger.info(f'Training is early stopped @ {epoch}')
|
169 |
+
break
|
170 |
+
|
171 |
+
logger.print_logger.info('Finished Training')
|
172 |
+
|
173 |
+
# loading the best model
|
174 |
+
ckpt = torch.load(logger.best_model_path)
|
175 |
+
model.load_state_dict(ckpt['model'])
|
176 |
+
logger.print_logger.info(f'Loading the best model from {logger.best_model_path}')
|
177 |
+
logger.print_logger.info((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}'))
|
178 |
+
|
179 |
+
# Testing the model
|
180 |
+
model.eval()
|
181 |
+
running_loss = 0
|
182 |
+
preds_from_each_batch = []
|
183 |
+
targets_from_each_batch = []
|
184 |
+
|
185 |
+
for i, batch in enumerate(loaders['test']):
|
186 |
+
inputs = batch['input'].to(device)
|
187 |
+
targets = batch['target'].to(device)
|
188 |
+
|
189 |
+
# zero the parameter gradients
|
190 |
+
optimizer.zero_grad()
|
191 |
+
|
192 |
+
# forward + backward + optimize
|
193 |
+
with torch.set_grad_enabled(False):
|
194 |
+
outputs = model(inputs)
|
195 |
+
loss = criterion(outputs, targets, to_weight=False)
|
196 |
+
|
197 |
+
# loss
|
198 |
+
running_loss += loss.item()
|
199 |
+
|
200 |
+
# for metrics calculation later on
|
201 |
+
preds_from_each_batch += [outputs.detach().cpu()]
|
202 |
+
targets_from_each_batch += [targets.cpu()]
|
203 |
+
|
204 |
+
# logging metrics
|
205 |
+
preds_from_each_batch = torch.cat(preds_from_each_batch)
|
206 |
+
targets_from_each_batch = torch.cat(targets_from_each_batch)
|
207 |
+
if cfg.action_only:
|
208 |
+
test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch, topk=(1,))
|
209 |
+
else:
|
210 |
+
test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch, topk=(1, 5))
|
211 |
+
test_metrics_dict['avg_loss'] = running_loss / len(loaders['test'])
|
212 |
+
test_metrics_dict['param_num'] = param_num
|
213 |
+
# TODO: I have no idea why tboard doesn't keep metrics (hparams) when
|
214 |
+
# I run this experiment from cli: `python train_vggishish.py config=./configs/vggish.yaml`
|
215 |
+
# while when I run it in vscode debugger the metrics are logger (wtf)
|
216 |
+
logger.log_test_metrics(test_metrics_dict, dict(cfg), ckpt['epoch'])
|
217 |
+
|
218 |
+
logger.print_logger.info('Finished the experiment')
|
foleycrafter/models/specvqgan/modules/losses/vggishish/transforms.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import albumentations
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
logger = logging.getLogger(f'main.{__name__}')
|
11 |
+
|
12 |
+
|
13 |
+
class StandardNormalizeAudio(object):
|
14 |
+
'''
|
15 |
+
Frequency-wise normalization
|
16 |
+
'''
|
17 |
+
def __init__(self, specs_dir, train_ids_path='./data/vggsound_train.txt', cache_path='./data/'):
|
18 |
+
self.specs_dir = specs_dir
|
19 |
+
self.train_ids_path = train_ids_path
|
20 |
+
# making the stats filename to match the specs dir name
|
21 |
+
self.cache_path = os.path.join(cache_path, f'train_means_stds_{Path(specs_dir).stem}.txt')
|
22 |
+
logger.info('Assuming that the input stats are calculated using preprocessed spectrograms (log)')
|
23 |
+
self.train_stats = self.calculate_or_load_stats()
|
24 |
+
|
25 |
+
def __call__(self, item):
|
26 |
+
# just to generalizat the input handling. Useful for FID, IS eval and training other staff
|
27 |
+
if isinstance(item, dict):
|
28 |
+
if 'input' in item:
|
29 |
+
input_key = 'input'
|
30 |
+
elif 'image' in item:
|
31 |
+
input_key = 'image'
|
32 |
+
else:
|
33 |
+
raise NotImplementedError
|
34 |
+
item[input_key] = (item[input_key] - self.train_stats['means']) / self.train_stats['stds']
|
35 |
+
elif isinstance(item, torch.Tensor):
|
36 |
+
# broadcasts np.ndarray (80, 1) to (1, 80, 1) because item is torch.Tensor (B, 80, T)
|
37 |
+
item = (item - self.train_stats['means']) / self.train_stats['stds']
|
38 |
+
else:
|
39 |
+
raise NotImplementedError
|
40 |
+
return item
|
41 |
+
|
42 |
+
def calculate_or_load_stats(self):
|
43 |
+
try:
|
44 |
+
# (F, 2)
|
45 |
+
train_stats = np.loadtxt(self.cache_path)
|
46 |
+
means, stds = train_stats.T
|
47 |
+
logger.info('Trying to load train stats for Standard Normalization of inputs')
|
48 |
+
except OSError:
|
49 |
+
logger.info('Could not find the precalculated stats for Standard Normalization. Calculating...')
|
50 |
+
train_vid_ids = open(self.train_ids_path)
|
51 |
+
specs_paths = [os.path.join(self.specs_dir, f'{i.rstrip()}_mel.npy') for i in train_vid_ids]
|
52 |
+
means = [None] * len(specs_paths)
|
53 |
+
stds = [None] * len(specs_paths)
|
54 |
+
for i, path in enumerate(tqdm(specs_paths)):
|
55 |
+
spec = np.load(path)
|
56 |
+
means[i] = spec.mean(axis=1)
|
57 |
+
stds[i] = spec.std(axis=1)
|
58 |
+
# (F) <- (num_files, F)
|
59 |
+
means = np.array(means).mean(axis=0)
|
60 |
+
stds = np.array(stds).mean(axis=0)
|
61 |
+
# saving in two columns
|
62 |
+
np.savetxt(self.cache_path, np.vstack([means, stds]).T, fmt='%0.8f')
|
63 |
+
means = means.reshape(-1, 1)
|
64 |
+
stds = stds.reshape(-1, 1)
|
65 |
+
return {'means': means, 'stds': stds}
|
66 |
+
|
67 |
+
class ToTensor(object):
|
68 |
+
|
69 |
+
def __call__(self, item):
|
70 |
+
item['input'] = torch.from_numpy(item['input']).float()
|
71 |
+
if 'target' in item:
|
72 |
+
item['target'] = torch.tensor(item['target'])
|
73 |
+
return item
|
74 |
+
|
75 |
+
class Crop(object):
|
76 |
+
|
77 |
+
def __init__(self, cropped_shape=None, random_crop=False):
|
78 |
+
self.cropped_shape = cropped_shape
|
79 |
+
if cropped_shape is not None:
|
80 |
+
mel_num, spec_len = cropped_shape
|
81 |
+
if random_crop:
|
82 |
+
self.cropper = albumentations.RandomCrop
|
83 |
+
else:
|
84 |
+
self.cropper = albumentations.CenterCrop
|
85 |
+
self.preprocessor = albumentations.Compose([self.cropper(mel_num, spec_len)])
|
86 |
+
else:
|
87 |
+
self.preprocessor = lambda **kwargs: kwargs
|
88 |
+
|
89 |
+
def __call__(self, item):
|
90 |
+
item['input'] = self.preprocessor(image=item['input'])['image']
|
91 |
+
return item
|
92 |
+
|
93 |
+
|
94 |
+
if __name__ == '__main__':
|
95 |
+
cropper = Crop([80, 848])
|
96 |
+
item = {'input': torch.rand([80, 860])}
|
97 |
+
outputs = cropper(item)
|
98 |
+
print(outputs['input'].shape)
|
foleycrafter/models/specvqgan/modules/losses/vqperceptual.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import sys
|
5 |
+
|
6 |
+
sys.path.insert(0, '.') # nopep8
|
7 |
+
from foleycrafter.models.specvqgan.modules.discriminator.model import (NLayerDiscriminator, NLayerDiscriminator1dFeats,
|
8 |
+
NLayerDiscriminator1dSpecs,
|
9 |
+
weights_init)
|
10 |
+
from foleycrafter.models.specvqgan.modules.losses.lpaps import LPAPS
|
11 |
+
|
12 |
+
|
13 |
+
class DummyLoss(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
|
18 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
19 |
+
if global_step < threshold:
|
20 |
+
weight = value
|
21 |
+
return weight
|
22 |
+
|
23 |
+
|
24 |
+
def hinge_d_loss(logits_real, logits_fake):
|
25 |
+
loss_real = torch.mean(F.relu(1. - logits_real))
|
26 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake))
|
27 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
28 |
+
return d_loss
|
29 |
+
|
30 |
+
|
31 |
+
def vanilla_d_loss(logits_real, logits_fake):
|
32 |
+
d_loss = 0.5 * (
|
33 |
+
torch.mean(torch.nn.functional.softplus(-logits_real)) +
|
34 |
+
torch.mean(torch.nn.functional.softplus(logits_fake)))
|
35 |
+
return d_loss
|
36 |
+
|
37 |
+
|
38 |
+
class VQLPAPSWithDiscriminator(nn.Module):
|
39 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
40 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
41 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
42 |
+
disc_ndf=64, disc_loss="hinge", min_adapt_weight=0.0, max_adapt_weight=1e4):
|
43 |
+
super().__init__()
|
44 |
+
assert disc_loss in ["hinge", "vanilla"]
|
45 |
+
self.codebook_weight = codebook_weight
|
46 |
+
self.pixel_weight = pixelloss_weight
|
47 |
+
self.perceptual_loss = LPAPS().eval()
|
48 |
+
self.perceptual_weight = perceptual_weight
|
49 |
+
|
50 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
51 |
+
n_layers=disc_num_layers,
|
52 |
+
use_actnorm=use_actnorm,
|
53 |
+
ndf=disc_ndf
|
54 |
+
).apply(weights_init)
|
55 |
+
self.discriminator_iter_start = disc_start
|
56 |
+
if disc_loss == "hinge":
|
57 |
+
self.disc_loss = hinge_d_loss
|
58 |
+
elif disc_loss == "vanilla":
|
59 |
+
self.disc_loss = vanilla_d_loss
|
60 |
+
else:
|
61 |
+
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
62 |
+
print(f"VQLPAPSWithDiscriminator running with {disc_loss} loss.")
|
63 |
+
self.disc_factor = disc_factor
|
64 |
+
self.discriminator_weight = disc_weight
|
65 |
+
self.disc_conditional = disc_conditional
|
66 |
+
self.min_adapt_weight = min_adapt_weight
|
67 |
+
self.max_adapt_weight = max_adapt_weight
|
68 |
+
|
69 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
70 |
+
if last_layer is not None:
|
71 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
72 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
73 |
+
else:
|
74 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
75 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
76 |
+
|
77 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
78 |
+
d_weight = torch.clamp(d_weight, self.min_adapt_weight, self.max_adapt_weight).detach()
|
79 |
+
d_weight = d_weight * self.discriminator_weight
|
80 |
+
return d_weight
|
81 |
+
|
82 |
+
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
83 |
+
global_step, last_layer=None, cond=None, split="train"):
|
84 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
85 |
+
if self.perceptual_weight > 0:
|
86 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
87 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
88 |
+
else:
|
89 |
+
p_loss = torch.tensor([0.0])
|
90 |
+
|
91 |
+
nll_loss = rec_loss
|
92 |
+
# nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
93 |
+
nll_loss = torch.mean(nll_loss)
|
94 |
+
|
95 |
+
# now the GAN part
|
96 |
+
if optimizer_idx == 0:
|
97 |
+
# generator update
|
98 |
+
if cond is None:
|
99 |
+
assert not self.disc_conditional
|
100 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
101 |
+
else:
|
102 |
+
assert self.disc_conditional
|
103 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
104 |
+
g_loss = -torch.mean(logits_fake)
|
105 |
+
|
106 |
+
try:
|
107 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
108 |
+
except RuntimeError:
|
109 |
+
assert not self.training
|
110 |
+
d_weight = torch.tensor(0.0)
|
111 |
+
|
112 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
113 |
+
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
114 |
+
|
115 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
116 |
+
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
117 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
118 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
119 |
+
"{}/p_loss".format(split): p_loss.detach().mean(),
|
120 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
121 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
122 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
123 |
+
}
|
124 |
+
return loss, log
|
125 |
+
|
126 |
+
if optimizer_idx == 1:
|
127 |
+
# second pass for discriminator update
|
128 |
+
if cond is None:
|
129 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
130 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
131 |
+
else:
|
132 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
133 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
134 |
+
|
135 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
136 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
137 |
+
|
138 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
139 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
140 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
141 |
+
}
|
142 |
+
return d_loss, log
|
143 |
+
|
144 |
+
|
145 |
+
class VQLPAPSWithDiscriminator1dFeats(VQLPAPSWithDiscriminator):
|
146 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
147 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
148 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
149 |
+
disc_ndf=64, disc_loss="hinge", min_adapt_weight=0.0, max_adapt_weight=1e4):
|
150 |
+
super().__init__(disc_start=disc_start, codebook_weight=codebook_weight,
|
151 |
+
pixelloss_weight=pixelloss_weight, disc_num_layers=disc_num_layers,
|
152 |
+
disc_in_channels=disc_in_channels, disc_factor=disc_factor, disc_weight=disc_weight,
|
153 |
+
perceptual_weight=perceptual_weight, use_actnorm=use_actnorm,
|
154 |
+
disc_conditional=disc_conditional, disc_ndf=disc_ndf, disc_loss=disc_loss,
|
155 |
+
min_adapt_weight=min_adapt_weight, max_adapt_weight=max_adapt_weight)
|
156 |
+
|
157 |
+
self.discriminator = NLayerDiscriminator1dFeats(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
158 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
159 |
+
|
160 |
+
class VQLPAPSWithDiscriminator1dSpecs(VQLPAPSWithDiscriminator):
|
161 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
162 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
163 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
164 |
+
disc_ndf=64, disc_loss="hinge", min_adapt_weight=0.0, max_adapt_weight=1e4):
|
165 |
+
super().__init__(disc_start=disc_start, codebook_weight=codebook_weight,
|
166 |
+
pixelloss_weight=pixelloss_weight, disc_num_layers=disc_num_layers,
|
167 |
+
disc_in_channels=disc_in_channels, disc_factor=disc_factor, disc_weight=disc_weight,
|
168 |
+
perceptual_weight=perceptual_weight, use_actnorm=use_actnorm,
|
169 |
+
disc_conditional=disc_conditional, disc_ndf=disc_ndf, disc_loss=disc_loss,
|
170 |
+
min_adapt_weight=min_adapt_weight, max_adapt_weight=max_adapt_weight)
|
171 |
+
|
172 |
+
self.discriminator = NLayerDiscriminator1dSpecs(input_nc=disc_in_channels, n_layers=disc_num_layers,
|
173 |
+
use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init)
|
174 |
+
|
175 |
+
|
176 |
+
if __name__ == '__main__':
|
177 |
+
from foleycrafter.models.specvqgan.modules.diffusionmodules.model import Decoder, Decoder1d
|
178 |
+
|
179 |
+
optimizer_idx = 0
|
180 |
+
loss_config = {
|
181 |
+
'disc_conditional': False,
|
182 |
+
'disc_start': 30001,
|
183 |
+
'disc_weight': 0.8,
|
184 |
+
'codebook_weight': 1.0,
|
185 |
+
}
|
186 |
+
ddconfig = {
|
187 |
+
'ch': 128,
|
188 |
+
'num_res_blocks': 2,
|
189 |
+
'dropout': 0.0,
|
190 |
+
'z_channels': 256,
|
191 |
+
'double_z': False,
|
192 |
+
}
|
193 |
+
qloss = torch.rand(1, requires_grad=True)
|
194 |
+
|
195 |
+
## AUDIO
|
196 |
+
loss_config['disc_in_channels'] = 1
|
197 |
+
ddconfig['in_channels'] = 1
|
198 |
+
ddconfig['resolution'] = 848
|
199 |
+
ddconfig['attn_resolutions'] = [53]
|
200 |
+
ddconfig['out_ch'] = 1
|
201 |
+
ddconfig['ch_mult'] = [1, 1, 2, 2, 4]
|
202 |
+
decoder = Decoder(**ddconfig)
|
203 |
+
loss = VQLPAPSWithDiscriminator(**loss_config)
|
204 |
+
x = torch.rand(16, 1, 80, 848)
|
205 |
+
# subtracting something which uses dec_conv_out so that it will be in a graph
|
206 |
+
xrec = torch.rand(16, 1, 80, 848) - decoder.conv_out(torch.rand(16, 128, 80, 848)).mean()
|
207 |
+
aeloss, log_dict_ae = loss(qloss, x, xrec, optimizer_idx, global_step=0,last_layer=decoder.conv_out.weight)
|
208 |
+
print(aeloss)
|
209 |
+
print(log_dict_ae)
|
foleycrafter/models/specvqgan/modules/misc/class_cond.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
class ClassOnlyStage(object):
|
4 |
+
def __init__(self):
|
5 |
+
pass
|
6 |
+
|
7 |
+
def eval(self):
|
8 |
+
return self
|
9 |
+
|
10 |
+
def encode(self, c):
|
11 |
+
"""fake vqmodel interface because self.cond_stage_model should have something
|
12 |
+
similar to coord.py but even more `dummy`"""
|
13 |
+
# assert 0.0 <= c.min() and c.max() <= 1.0
|
14 |
+
info = None, None, c
|
15 |
+
return c, None, info
|
16 |
+
|
17 |
+
def decode(self, c):
|
18 |
+
return c
|
19 |
+
|
20 |
+
def get_input(self, batch, k):
|
21 |
+
return batch[k].unsqueeze(1).to(memory_format=torch.contiguous_format)
|