Spaces:
Running
Running
File size: 7,455 Bytes
0f5a1c8 07da240 4b2b363 07da240 4700115 07da240 4b2b363 07da240 42713e7 07da240 485a97c 791f2ed 485a97c 791f2ed 485a97c 0266f59 32e0edf 485a97c 32e0edf 485a97c 32e0edf 485a97c 07da240 4b2b363 07da240 42713e7 07da240 c9e9b2e a950000 613fb89 4993ea8 07da240 7d57a3e 07da240 f0a6346 07da240 65a6a02 63a8a75 d7de164 63a8a75 7d57a3e 42713e7 63a8a75 42713e7 63a8a75 42713e7 07da240 42713e7 07da240 42713e7 07da240 8e25602 07da240 8adf5fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os, re, cv2
from typing import Mapping, Tuple, Dict
import gradio as gr
import numpy as np
import io
import pandas as pd
from PIL import Image
from huggingface_hub import hf_hub_download
from onnxruntime import InferenceSession
# noinspection PyUnresolvedReferences
def make_square(img, target_size):
old_size = img.shape[:2]
desired_size = max(old_size)
desired_size = max(desired_size, target_size)
delta_w = desired_size - old_size[1]
delta_h = desired_size - old_size[0]
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
left, right = delta_w // 2, delta_w - (delta_w // 2)
color = [255, 255, 255]
return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
# noinspection PyUnresolvedReferences
def smart_resize(img, size):
# Assumes the image has already gone through make_square
if img.shape[0] > size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
elif img.shape[0] < size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
else: # just do nothing
pass
return img
class WaifuDiffusionInterrogator:
def __init__(
self,
repo='SmilingWolf/wd-v1-4-vit-tagger',
model_path='model.onnx',
tags_path='selected_tags.csv',
mode: str = "auto"
) -> None:
self.__repo = repo
self.__model_path = model_path
self.__tags_path = tags_path
self._provider_mode = mode
self.__initialized = False
self._model, self._tags = None, None
def _init(self) -> None:
if self.__initialized:
return
model_path = hf_hub_download(self.__repo, filename=self.__model_path)
tags_path = hf_hub_download(self.__repo, filename=self.__tags_path)
self._model = InferenceSession(str(model_path))
self._tags = pd.read_csv(tags_path)
self.__initialized = True
def _calculation(self, image: Image.Image) -> pd.DataFrame:
# print(image) todo: figure out what to do if URL
self._init()
# code for converting the image and running the model is taken from the link below
# thanks, SmilingWolf!
# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags/blob/main/app.py
# convert an image to fit the model
_, height, _, _ = self._model.get_inputs()[0].shape
# alpha to white
image = image.convert('RGBA')
new_image = Image.new('RGBA', image.size, 'WHITE')
new_image.paste(image, mask=image)
image = new_image.convert('RGB')
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = make_square(image, height)
image = smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
# evaluate model
input_name = self._model.get_inputs()[0].name
label_name = self._model.get_outputs()[0].name
confidence = self._model.run([label_name], {input_name: image})[0]
full_tags = self._tags[['name', 'category']].copy()
full_tags['confidence'] = confidence[0]
return full_tags
def interrogate(self, image: Image) -> Tuple[Dict[str, float], Dict[str, float]]:
full_tags = self._calculation(image)
# first 4 items are for rating (general, sensitive, questionable, explicit)
ratings = dict(full_tags[full_tags['category'] == 9][['name', 'confidence']].values)
# rest are regular tags
tags = dict(full_tags[full_tags['category'] != 9][['name', 'confidence']].values)
return ratings, tags
WAIFU_MODELS: Mapping[str, WaifuDiffusionInterrogator] = {
'chen-vit': WaifuDiffusionInterrogator(),
'chen-convnext': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-convnext-tagger'
),
'chen-convnext2-v2': WaifuDiffusionInterrogator(
repo="SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
),
'chen-swin2': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-swinv2-tagger-v2'
),
'chen-moatv2': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-moat-tagger-v2'
),
'chen-convnextv3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-convnext-tagger-v3'
),
'chen-vitv3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-vit-tagger-v3'
),
'chen-swinv3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-swinv2-tagger-v3'
),
'chen-vit-largev3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-vit-large-tagger-v3'
),
'chen-evangelion': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-eva02-large-tagger-v3'
),
}
RE_SPECIAL = re.compile(r'([\\()])')
def image_to_wd14_tags(image: Image.Image, model_name: str, threshold: float,
use_spaces: bool, use_escape: bool, include_ranks=False, score_descend=True) \
-> Tuple[Mapping[str, float], str, Mapping[str, float]]:
model = WAIFU_MODELS[model_name]
ratings, tags = model.interrogate(image)
filtered_tags = {
tag: score for tag, score in tags.items()
if score >= threshold
}
text_items = []
tags_pairs = filtered_tags.items()
if score_descend:
tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0]))
for tag, score in tags_pairs:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', '-')
else:
tag_outformat = tag_outformat.replace(' ', ', ')
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{score:.3f})"
text_items.append(tag_outformat)
if use_spaces:
output_text = ' '.join(text_items)
else:
output_text = ', '.join(text_items)
return ratings, output_text, filtered_tags
if __name__ == '__main__':
with gr.Blocks(analytics_enabled=False, theme="NoCrypt/miku") as demo:
with gr.Row():
with gr.Column():
gr_input_image = gr.Image(type='pil', label='Chen Chen', sources=['upload', 'clipboard'])
with gr.Row():
gr_model = gr.Radio(list(WAIFU_MODELS.keys()), value='chen-moat2', label='Chen')
gr_threshold = gr.Slider(0.0, 1.0, 0.5, label='Chen Chen Chen Chen Chen')
with gr.Row():
gr_space = gr.Checkbox(value=True, label='Use DashSpace')
gr_escape = gr.Checkbox(value=True, label='Chen Text Escape')
gr_btn_submit = gr.Button(value='橙', variant='primary')
with gr.Column():
gr_ratings = gr.Label(label='橙 橙')
with gr.Tabs():
with gr.Tab("Chens"):
gr_tags = gr.Label(label='Chens')
with gr.Tab("Chen Text"):
gr_output_text = gr.TextArea(label='Chen Text')
gr_btn_submit.click(
image_to_wd14_tags,
inputs=[gr_input_image, gr_model, gr_threshold, gr_space, gr_escape],
outputs=[gr_ratings, gr_output_text, gr_tags],
api_name="classify"
)
demo.queue(os.cpu_count()).launch() |