Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import pymongo
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
from transformers import MT5ForConditionalGeneration, MT5Tokenizer
|
6 |
+
import torch
|
7 |
+
from torch.nn.functional import softmax
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
|
11 |
+
# MongoDB bağlantısı
|
12 |
+
mongo_client = pymongo.MongoClient('mongodb://localhost:27017/')
|
13 |
+
db = mongo_client['EgitimDatabase']
|
14 |
+
collection = db['test']
|
15 |
+
|
16 |
+
# Model ve tokenizer'ı yükleme
|
17 |
+
model_name = "alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli"
|
18 |
+
tokenizer = MT5Tokenizer.from_pretrained(model_name)
|
19 |
+
model = MT5ForConditionalGeneration.from_pretrained(model_name)
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
def process_nli(premise: str, hypothesis: str):
|
23 |
+
"""NLI formatına uygun hale getirir"""
|
24 |
+
return "".join(['xnli: premise: ', premise, ' hypothesis: ', hypothesis])
|
25 |
+
|
26 |
+
def generate_text(title, keywords, subheadings):
|
27 |
+
# Prompt oluşturma
|
28 |
+
prompt = f"Başlık: {title}\nAnahtar Kelimeler: {keywords}\nAlt Başlıklar: {subheadings}\n\nBu bilgilerle bir metin oluşturun:"
|
29 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
30 |
+
|
31 |
+
# Modelden çıktı alma
|
32 |
+
outputs = model.generate(**inputs, output_scores=True, return_dict_in_generate=True, num_beams=5)
|
33 |
+
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
return generated_text
|
36 |
+
|
37 |
+
@app.route('/predict', methods=['POST'])
|
38 |
+
def predict():
|
39 |
+
data = request.json
|
40 |
+
title = data.get('title')
|
41 |
+
keywords = data.get('keywords')
|
42 |
+
subheadings = data.get('subheadings')
|
43 |
+
|
44 |
+
# MongoDB'den ilgili verileri çekme
|
45 |
+
query = {
|
46 |
+
'title': title,
|
47 |
+
'keywords': {'$in': keywords.split(',')},
|
48 |
+
'subheadings': {'$in': subheadings.split(',')}
|
49 |
+
}
|
50 |
+
documents = list(collection.find(query))
|
51 |
+
|
52 |
+
if not documents:
|
53 |
+
return jsonify({'error': 'No documents found matching the query'}), 404
|
54 |
+
|
55 |
+
# Verilerle metin oluşturma
|
56 |
+
generated_texts = []
|
57 |
+
for doc in documents:
|
58 |
+
generated_text = generate_text(doc['title'], doc['keywords'], doc['subheadings'])
|
59 |
+
generated_texts.append(generated_text)
|
60 |
+
|
61 |
+
# Sonuçları döndürme
|
62 |
+
response = {
|
63 |
+
'title': title,
|
64 |
+
'keywords': keywords,
|
65 |
+
'subheadings': subheadings,
|
66 |
+
'generated_texts': generated_texts
|
67 |
+
}
|
68 |
+
|
69 |
+
return jsonify(response)
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
app.run(host='0.0.0.0', port=8080)
|