#endpointe ait model import requests from config import HUGGINGFACE_API_URL, HUGGINGFACE_API_KEY def get_huggingface_prediction(input_data): #input_data'yı main.py ile entegre etmeliyim headers = { "Authorization": f"Bearer {HUGGINGFACE_API_KEY}" } payload = { "inputs": input_data } response = requests.post(HUGGINGFACE_API_URL, headers=headers, json=payload) return response.json() def calculate_similarity(text1, text2): model = SentenceTransformer('paraphrase-MiniLM-L6-v2') embedding1 = model.encode(text1, convert_to_tensor=True) embedding2 = model.encode(text2, convert_to_tensor=True) similarity_score = util.pytorch_cos_sim(embedding1, embedding2) return similarity_score.item()