__all__ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] from fastai.vision.all import * import gradio as gr import timm import skimage # Some magic according to https://forums.fast.ai/t/lesson-2-official-topic/96033/376?page=17 def is_cat(x): return x[0].isupper() # Used by model import sys sys.modules["__main__"].is_cat = is_cat # Upload your model learn = load_learner('corgi-classifier.pkl') categories = learn.dls.vocab def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.Image() label = gr.Label() # Upload your own images and link them examples = ['cardigan.jpg', 'pembroke.jpg'] title = "Corgi Breed Classifier" description = "A Corgie breed classifier to distinguish between Welsh Corgi Pembroke and Welsh Corgi Cardigan." interpretation='default' intf = gr.Interface( fn=classify_image, inputs=image, outputs=label, examples=examples, title=title, description=description, #interpretation=interpretation ) intf.launch()