Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from PIL import Image | |
import subprocess | |
from gradio_model4dgs import Model4DGS | |
import numpy | |
import hashlib | |
import shlex | |
subprocess.run(shlex.split("pip install wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl")) | |
import rembg | |
import glob | |
import cv2 | |
import numpy as np | |
from diffusers import StableVideoDiffusionPipeline | |
from scripts.gen_vid import * | |
import sys | |
sys.path.append('lgm') | |
from safetensors.torch import load_file | |
from kiui.cam import orbit_camera | |
from core.options import config_defaults, Options | |
from core.models import LGM | |
from mvdream.pipeline_mvdream import MVDreamPipeline | |
from infer_demo import process as process_lgm | |
from main_4d_demo import process as process_dg4d | |
import spaces | |
from huggingface_hub import hf_hub_download | |
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16_fixrot.safetensors") | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'light') { | |
url.searchParams.set('__theme', 'light'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
device = torch.device('cuda') | |
# # device = torch.device('cpu') | |
session = rembg.new_session(model_name='u2net') | |
pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16" | |
) | |
pipe.to(device) | |
opt = config_defaults['big'] | |
opt.resume = ckpt_path | |
# model | |
model = LGM(opt) | |
# resume pretrained checkpoint | |
if opt.resume is not None: | |
if opt.resume.endswith('safetensors'): | |
ckpt = load_file(opt.resume, device='cpu') | |
else: | |
ckpt = torch.load(opt.resume, map_location='cpu') | |
model.load_state_dict(ckpt, strict=False) | |
print(f'[INFO] Loaded checkpoint from {opt.resume}') | |
else: | |
print(f'[WARN] model randomly initialized, are you sure?') | |
# device | |
model = model.half().to(device) | |
model.eval() | |
rays_embeddings = model.prepare_default_rays(device) | |
# load image dream | |
pipe_mvdream = MVDreamPipeline.from_pretrained( | |
"ashawkey/imagedream-ipmv-diffusers", # remote weights | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
# local_files_only=True, | |
) | |
pipe_mvdream = pipe_mvdream.to(device) | |
from guidance.zero123_utils import Zero123 | |
guidance_zero123 = Zero123(device, model_key='ashawkey/stable-zero123-diffusers') | |
def preprocess(path, recenter=True, size=256, border_ratio=0.2): | |
files = [path] | |
out_dir = os.path.dirname(path) | |
for file in files: | |
out_base = os.path.basename(file).split('.')[0] | |
out_rgba = os.path.join(out_dir, out_base + '_rgba.png') | |
# load image | |
print(f'[INFO] loading image {file}...') | |
image = cv2.imread(file, cv2.IMREAD_UNCHANGED) | |
# carve background | |
print(f'[INFO] background removal...') | |
carved_image = rembg.remove(image, session=session) # [H, W, 4] | |
mask = carved_image[..., -1] > 0 | |
# recenter | |
if recenter: | |
print(f'[INFO] recenter...') | |
final_rgba = np.zeros((size, size, 4), dtype=np.uint8) | |
coords = np.nonzero(mask) | |
x_min, x_max = coords[0].min(), coords[0].max() | |
y_min, y_max = coords[1].min(), coords[1].max() | |
h = x_max - x_min | |
w = y_max - y_min | |
desired_size = int(size * (1 - border_ratio)) | |
scale = desired_size / max(h, w) | |
h2 = int(h * scale) | |
w2 = int(w * scale) | |
x2_min = (size - h2) // 2 | |
x2_max = x2_min + h2 | |
y2_min = (size - w2) // 2 | |
y2_max = y2_min + w2 | |
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA) | |
else: | |
final_rgba = carved_image | |
# write image | |
cv2.imwrite(out_rgba, final_rgba) | |
def gen_vid(input_path, seed, bg='white'): | |
name = input_path.split('/')[-1].split('.')[0] | |
input_dir = os.path.dirname(input_path) | |
height, width = 512, 512 | |
image = load_image(input_path, width, height, bg) | |
generator = torch.manual_seed(seed) | |
# frames = pipe(image, height, width, decode_chunk_size=2, generator=generator).frames[0] | |
frames = pipe(image, height, width, generator=generator).frames[0] | |
imageio.mimwrite(f"{input_dir}/{name}_generated.mp4", frames, fps=7) | |
os.makedirs(f"{input_dir}/{name}_frames", exist_ok=True) | |
for idx, img in enumerate(frames): | |
img.save(f"{input_dir}/{name}_frames/{idx:03}.png") | |
# check if there is a picture uploaded or selected | |
def check_img_input(control_image): | |
if control_image is None: | |
raise gr.Error("Please select or upload an input image") | |
# check if there is a picture uploaded or selected | |
def check_video_3d_input(image_block: Image.Image): | |
if image_block is None: | |
raise gr.Error("Please select or upload an input image") | |
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest() | |
if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4')): | |
raise gr.Error("Please generate a video first") | |
if not os.path.exists(os.path.join('vis_data', f'{img_hash}_rgba_static.mp4')): | |
raise gr.Error("Please generate a 3D first") | |
def optimize_stage_0(image_block: Image.Image, preprocess_chk: bool, seed_slider: int): | |
if not os.path.exists('tmp_data'): | |
os.makedirs('tmp_data') | |
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest() | |
if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba.png')): | |
if preprocess_chk: | |
# save image to a designated path | |
image_block.save(os.path.join('tmp_data', f'{img_hash}.png')) | |
# preprocess image | |
# print(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}') | |
# subprocess.run(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}', shell=True) | |
preprocess(os.path.join("tmp_data", f"{img_hash}.png")) | |
else: | |
image_block.save(os.path.join('tmp_data', f'{img_hash}_rgba.png')) | |
# stage 1 | |
# subprocess.run(f'export MKL_THREADING_LAYER=GNU;export MKL_SERVICE_FORCE_INTEL=1;python scripts/gen_vid.py --path tmp_data/{img_hash}_rgba.png --seed {seed_slider} --bg white', shell=True) | |
gen_vid(f'tmp_data/{img_hash}_rgba.png', seed_slider) | |
# return [os.path.join('logs', 'tmp_rgba_model.ply')] | |
return os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4') | |
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, seed_slider: int): | |
if not os.path.exists('tmp_data'): | |
os.makedirs('tmp_data') | |
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest() | |
if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba.png')): | |
if preprocess_chk: | |
# save image to a designated path | |
image_block.save(os.path.join('tmp_data', f'{img_hash}.png')) | |
# preprocess image | |
# print(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}') | |
# subprocess.run(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}', shell=True) | |
preprocess(os.path.join("tmp_data", f"{img_hash}.png")) | |
else: | |
image_block.save(os.path.join('tmp_data', f'{img_hash}_rgba.png')) | |
# stage 1 | |
# subprocess.run(f'python lgm/infer.py big --resume {ckpt_path} --test_path tmp_data/{img_hash}_rgba.png', shell=True) | |
process_lgm(opt, f'tmp_data/{img_hash}_rgba.png', pipe_mvdream, model, rays_embeddings, seed_slider) | |
# return os.path.join('logs', f'{img_hash}_rgba_model.ply') | |
return os.path.join('vis_data', f'{img_hash}_rgba_static.mp4') | |
def optimize_stage_2(image_block: Image.Image, seed_slider: int): | |
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest() | |
# stage 2 | |
# subprocess.run(f'python main_4d.py --config {os.path.join("configs", "4d_demo.yaml")} input={os.path.join("tmp_data", f"{img_hash}_rgba.png")}', shell=True) | |
process_dg4d(os.path.join("configs", "4d_demo.yaml"), os.path.join("tmp_data", f"{img_hash}_rgba.png"), guidance_zero123) | |
# os.rename(os.path.join('logs', f'{img_hash}_rgba_frames'), os.path.join('logs', f'{img_hash}_{seed_slider:03d}_rgba_frames')) | |
image_dir = os.path.join('logs', f'{img_hash}_rgba_frames') | |
return os.path.join('vis_data', f'{img_hash}_rgba.mp4'), [image_dir+f'/{t:03d}.ply' for t in range(28)] | |
# return [image_dir+f'/{t:03d}.ply' for t in range(28)] | |
if __name__ == "__main__": | |
_TITLE = '''DreamGaussian4D: Generative 4D Gaussian Splatting''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> | |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2312.17142-f9f7f7?logo="></a> | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a> | |
</div> | |
We present DreamGausssion4D, an efficient 4D generation framework that builds on Gaussian Splatting. | |
''' | |
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above), click **Generate Video** and **Generate 3D** (they can run in parallel). Finally, click **Generate 4D**." | |
example_folder = os.path.join(os.path.dirname(__file__), 'data') | |
examples_full = [ | |
[example_folder+'/csm_luigi_rgba.png', 10], | |
[example_folder+'/anya_rgba.png', 42], | |
[example_folder+'/panda.png', 42262], | |
] | |
# Compose demo layout & data flow | |
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft(), js=js_func) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
# Image-to-3D | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=5): | |
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image') | |
# elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle') | |
seed_slider = gr.Slider(0, 100000, value=0, step=1, label='Random Seed (Video)') | |
seed_slider2 = gr.Slider(0, 100000, value=0, step=1, label='Random Seed (3D)') | |
gr.Markdown( | |
"random seed for video generation.") | |
preprocess_chk = gr.Checkbox(True, | |
label='Preprocess image automatically (remove background and recenter object)') | |
with gr.Row(): | |
with gr.Column(scale=5): | |
img_run_btn = gr.Button("Generate Video") | |
with gr.Column(scale=5): | |
threed_run_btn = gr.Button("Generate 3D") | |
fourd_run_btn = gr.Button("Generate 4D") | |
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True) | |
gr.Examples( | |
examples=examples_full, # NOTE: elements must match inputs list! | |
inputs=[image_block, seed_slider], | |
outputs=[image_block], | |
cache_examples=False, | |
label='Examples (click one of the examples below to start)', | |
examples_per_page=40 | |
) | |
with gr.Column(scale=5): | |
with gr.Row(): | |
with gr.Column(scale=5): | |
dirving_video = gr.Video(label="video",height=290) | |
with gr.Column(scale=5): | |
obj3d = gr.Video(label="3D Model",height=290) | |
# obj3d = gr.Model3D(label="3D Model",height=290) | |
video4d = gr.Video(label="4D Render",height=290) | |
obj4d = Model4DGS(label="4D Model", height=500, fps=28) | |
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_0, | |
inputs=[image_block, | |
preprocess_chk, | |
seed_slider], | |
outputs=[ | |
dirving_video]) | |
threed_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1, | |
inputs=[image_block, | |
preprocess_chk, | |
seed_slider2], | |
outputs=[ | |
obj3d]) | |
fourd_run_btn.click(check_video_3d_input, inputs=[image_block], queue=False).success(optimize_stage_2, inputs=[image_block, seed_slider], outputs=[video4d, obj4d]) | |
# demo.queue().launch(share=True) | |
demo.queue(max_size=10) # <-- Sets up a queue with default parameters | |
demo.launch() |