Spaces:
Runtime error
Runtime error
jiaweir
commited on
Commit
β’
21c4e64
1
Parent(s):
e59b351
init
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitattributes +1 -0
- .gitignore +35 -0
- .gitmodules +3 -0
- app.py +135 -0
- cam_utils.py +146 -0
- configs/4d.yaml +121 -0
- configs/4d_c4d.yaml +119 -0
- configs/4d_c4d_low.yaml +119 -0
- configs/4d_demo.yaml +121 -0
- configs/4d_low.yaml +121 -0
- configs/dg.yaml +85 -0
- configs/dghd.yaml +72 -0
- configs/refine.yaml +79 -0
- data/anya_rgba.png +0 -0
- data/catstatue_rgba.png +0 -0
- data/csm_luigi_rgba.png +0 -0
- data/zelda_rgba.png +0 -0
- gaussian_model_4d.py +773 -0
- grid_put.py +300 -0
- gs_renderer_4d.py +277 -0
- guidance/imagedream_utils.py +326 -0
- guidance/mvdream_utils.py +271 -0
- guidance/sd_utils.py +334 -0
- guidance/svd_utils.py +221 -0
- guidance/zero123_utils.py +237 -0
- lgm/core/attention.py +156 -0
- lgm/core/gs.py +190 -0
- lgm/core/models.py +171 -0
- lgm/core/options.py +120 -0
- lgm/core/unet.py +319 -0
- lgm/core/utils.py +108 -0
- lgm/infer.py +226 -0
- lgm/mvdream/mv_unet.py +1005 -0
- lgm/mvdream/pipeline_mvdream.py +559 -0
- main_4d.py +601 -0
- requirements.txt +35 -0
- scene/deformation.py +241 -0
- scene/hexplane.py +182 -0
- scene/regulation.py +176 -0
- scene/utils.py +429 -0
- scripts/add_bg_to_gt.py +18 -0
- scripts/convert_obj_to_video.py +20 -0
- scripts/gen_vid.py +117 -0
- scripts/process.py +92 -0
- scripts/runall.py +48 -0
- scripts/runall_mvdream.py +44 -0
- scripts/runall_sd.py +45 -0
- sh_utils.py +118 -0
- utils/camera_utils.py +65 -0
- utils/general_utils.py +136 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
build/
|
3 |
+
*.egg-info/
|
4 |
+
*.so
|
5 |
+
venv_*/
|
6 |
+
.vs/
|
7 |
+
.vscode/
|
8 |
+
.idea/
|
9 |
+
|
10 |
+
tmp_*
|
11 |
+
data?
|
12 |
+
data??
|
13 |
+
scripts2
|
14 |
+
|
15 |
+
model_cache
|
16 |
+
|
17 |
+
logs
|
18 |
+
videos
|
19 |
+
images
|
20 |
+
*.mp4
|
21 |
+
|
22 |
+
vis_data*/
|
23 |
+
logs*/
|
24 |
+
data*/
|
25 |
+
eval_data*/
|
26 |
+
|
27 |
+
|
28 |
+
*.sh
|
29 |
+
*.out
|
30 |
+
batchscript*
|
31 |
+
|
32 |
+
pretrained/
|
33 |
+
diff-gaussian-rasterization/
|
34 |
+
|
35 |
+
tmp_data/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "diff-gaussian-rasterization"]
|
2 |
+
path = diff-gaussian-rasterization
|
3 |
+
url = https://github.com/ashawkey/diff-gaussian-rasterization
|
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import subprocess
|
5 |
+
from gradio_model4dgs import Model4DGS
|
6 |
+
import numpy
|
7 |
+
import hashlib
|
8 |
+
|
9 |
+
os.system('pip install -e ./simple-knn')
|
10 |
+
os.system('pip install -e ./diff-gaussian-rasterization')
|
11 |
+
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16_fixrot.safetensors")
|
14 |
+
|
15 |
+
js_func = """
|
16 |
+
function refresh() {
|
17 |
+
const url = new URL(window.location);
|
18 |
+
|
19 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
20 |
+
url.searchParams.set('__theme', 'light');
|
21 |
+
window.location.href = url.href;
|
22 |
+
}
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
# check if there is a picture uploaded or selected
|
27 |
+
def check_img_input(control_image):
|
28 |
+
if control_image is None:
|
29 |
+
raise gr.Error("Please select or upload an input image")
|
30 |
+
|
31 |
+
# check if there is a picture uploaded or selected
|
32 |
+
def check_video_input(image_block: Image.Image):
|
33 |
+
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
|
34 |
+
if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4')):
|
35 |
+
raise gr.Error("Please generate a video first")
|
36 |
+
|
37 |
+
|
38 |
+
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, seed_slider: int):
|
39 |
+
if not os.path.exists('tmp_data'):
|
40 |
+
os.makedirs('tmp_data')
|
41 |
+
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
|
42 |
+
if preprocess_chk:
|
43 |
+
# save image to a designated path
|
44 |
+
image_block.save(os.path.join('tmp_data', f'{img_hash}.png'))
|
45 |
+
|
46 |
+
# preprocess image
|
47 |
+
print(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}')
|
48 |
+
subprocess.run(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}', shell=True)
|
49 |
+
else:
|
50 |
+
image_block.save(os.path.join('tmp_data', f'{img_hash}_rgba.png'))
|
51 |
+
|
52 |
+
# stage 1
|
53 |
+
subprocess.run(f'export MKL_THREADING_LAYER=GNU;export MKL_SERVICE_FORCE_INTEL=1;python scripts/gen_vid.py --path tmp_data/{img_hash}_rgba.png --seed {seed_slider} --bg white', shell=True)
|
54 |
+
|
55 |
+
# return [os.path.join('logs', 'tmp_rgba_model.ply')]
|
56 |
+
return os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4')
|
57 |
+
|
58 |
+
|
59 |
+
def optimize_stage_2(image_block: Image.Image, seed_slider: int):
|
60 |
+
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
|
61 |
+
subprocess.run(f'python lgm/infer.py big --resume {ckpt_path} --test_path tmp_data/{img_hash}_rgba.png', shell=True)
|
62 |
+
# stage 2
|
63 |
+
subprocess.run(f'python main_4d.py --config {os.path.join("configs", "4d_demo.yaml")} input={os.path.join("tmp_data", f"{img_hash}_rgba.png")}', shell=True)
|
64 |
+
# os.rename(os.path.join('logs', f'{img_hash}_rgba_frames'), os.path.join('logs', f'{img_hash}_{seed_slider:03d}_rgba_frames'))
|
65 |
+
image_dir = os.path.join('logs', f'{img_hash}_rgba_frames')
|
66 |
+
# return 'vis_data/tmp_rgba.mp4', [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.ply')]
|
67 |
+
return [image_dir+f'/{t:03d}.ply' for t in range(28)]
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
_TITLE = '''DreamGaussian4D: Generative 4D Gaussian Splatting'''
|
72 |
+
|
73 |
+
_DESCRIPTION = '''
|
74 |
+
<div>
|
75 |
+
<a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
|
76 |
+
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2312.17142-f9f7f7?logo="></a>
|
77 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
|
78 |
+
</div>
|
79 |
+
We present DreamGausssion4D, an efficient 4D generation framework that builds on Gaussian Splatting.
|
80 |
+
'''
|
81 |
+
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above), select a random seed, and click **Generate Video**. After having the video generated, please click **Generate 4D**."
|
82 |
+
|
83 |
+
# load images in 'data' folder as examples
|
84 |
+
example_folder = os.path.join(os.path.dirname(__file__), 'data')
|
85 |
+
example_fns = os.listdir(example_folder)
|
86 |
+
example_fns.sort()
|
87 |
+
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
|
88 |
+
|
89 |
+
# Compose demo layout & data flow
|
90 |
+
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft(), js=js_func) as demo:
|
91 |
+
with gr.Row():
|
92 |
+
with gr.Column(scale=1):
|
93 |
+
gr.Markdown('# ' + _TITLE)
|
94 |
+
gr.Markdown(_DESCRIPTION)
|
95 |
+
|
96 |
+
# Image-to-3D
|
97 |
+
with gr.Row(variant='panel'):
|
98 |
+
with gr.Column(scale=4):
|
99 |
+
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')
|
100 |
+
|
101 |
+
# elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
|
102 |
+
seed_slider = gr.Slider(0, 100000, value=0, step=1, label='Random Seed')
|
103 |
+
gr.Markdown(
|
104 |
+
"random seed for video generation.")
|
105 |
+
|
106 |
+
preprocess_chk = gr.Checkbox(True,
|
107 |
+
label='Preprocess image automatically (remove background and recenter object)')
|
108 |
+
|
109 |
+
gr.Examples(
|
110 |
+
examples=examples_full, # NOTE: elements must match inputs list!
|
111 |
+
inputs=[image_block],
|
112 |
+
outputs=[image_block],
|
113 |
+
cache_examples=False,
|
114 |
+
label='Examples (click one of the images below to start)',
|
115 |
+
examples_per_page=40
|
116 |
+
)
|
117 |
+
img_run_btn = gr.Button("Generate Video")
|
118 |
+
fourd_run_btn = gr.Button("Generate 4D")
|
119 |
+
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
|
120 |
+
|
121 |
+
with gr.Column(scale=5):
|
122 |
+
obj3d = gr.Video(label="video",height=290)
|
123 |
+
obj4d = Model4DGS(label="4D Model", height=500, fps=14)
|
124 |
+
|
125 |
+
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
|
126 |
+
inputs=[image_block,
|
127 |
+
preprocess_chk,
|
128 |
+
seed_slider],
|
129 |
+
outputs=[
|
130 |
+
obj3d])
|
131 |
+
fourd_run_btn.click(check_video_input, inputs=[image_block], queue=False).success(optimize_stage_2, inputs=[image_block, seed_slider], outputs=[obj4d])
|
132 |
+
|
133 |
+
# demo.queue().launch(share=True)
|
134 |
+
demo.queue(max_size=10) # <-- Sets up a queue with default parameters
|
135 |
+
demo.launch(share=True)
|
cam_utils.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.spatial.transform import Rotation as R
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def dot(x, y):
|
7 |
+
if isinstance(x, np.ndarray):
|
8 |
+
return np.sum(x * y, -1, keepdims=True)
|
9 |
+
else:
|
10 |
+
return torch.sum(x * y, -1, keepdim=True)
|
11 |
+
|
12 |
+
|
13 |
+
def length(x, eps=1e-20):
|
14 |
+
if isinstance(x, np.ndarray):
|
15 |
+
return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps))
|
16 |
+
else:
|
17 |
+
return torch.sqrt(torch.clamp(dot(x, x), min=eps))
|
18 |
+
|
19 |
+
|
20 |
+
def safe_normalize(x, eps=1e-20):
|
21 |
+
return x / length(x, eps)
|
22 |
+
|
23 |
+
|
24 |
+
def look_at(campos, target, opengl=True):
|
25 |
+
# campos: [N, 3], camera/eye position
|
26 |
+
# target: [N, 3], object to look at
|
27 |
+
# return: [N, 3, 3], rotation matrix
|
28 |
+
if not opengl:
|
29 |
+
# camera forward aligns with -z
|
30 |
+
forward_vector = safe_normalize(target - campos)
|
31 |
+
up_vector = np.array([0, 1, 0], dtype=np.float32)
|
32 |
+
right_vector = safe_normalize(np.cross(forward_vector, up_vector))
|
33 |
+
up_vector = safe_normalize(np.cross(right_vector, forward_vector))
|
34 |
+
else:
|
35 |
+
# camera forward aligns with +z
|
36 |
+
forward_vector = safe_normalize(campos - target)
|
37 |
+
up_vector = np.array([0, 1, 0], dtype=np.float32)
|
38 |
+
right_vector = safe_normalize(np.cross(up_vector, forward_vector))
|
39 |
+
up_vector = safe_normalize(np.cross(forward_vector, right_vector))
|
40 |
+
R = np.stack([right_vector, up_vector, forward_vector], axis=1)
|
41 |
+
return R
|
42 |
+
|
43 |
+
|
44 |
+
# elevation & azimuth to pose (cam2world) matrix
|
45 |
+
def orbit_camera(elevation, azimuth, radius=1, is_degree=True, target=None, opengl=True):
|
46 |
+
# radius: scalar
|
47 |
+
# elevation: scalar, in (-90, 90), from +y to -y is (-90, 90)
|
48 |
+
# azimuth: scalar, in (-180, 180), from +z to +x is (0, 90)
|
49 |
+
# return: [4, 4], camera pose matrix
|
50 |
+
if is_degree:
|
51 |
+
elevation = np.deg2rad(elevation)
|
52 |
+
azimuth = np.deg2rad(azimuth)
|
53 |
+
x = radius * np.cos(elevation) * np.sin(azimuth)
|
54 |
+
y = - radius * np.sin(elevation)
|
55 |
+
z = radius * np.cos(elevation) * np.cos(azimuth)
|
56 |
+
if target is None:
|
57 |
+
target = np.zeros([3], dtype=np.float32)
|
58 |
+
campos = np.array([x, y, z]) + target # [3]
|
59 |
+
T = np.eye(4, dtype=np.float32)
|
60 |
+
T[:3, :3] = look_at(campos, target, opengl)
|
61 |
+
T[:3, 3] = campos
|
62 |
+
return T
|
63 |
+
|
64 |
+
|
65 |
+
class OrbitCamera:
|
66 |
+
def __init__(self, W, H, r=2, fovy=60, near=0.01, far=100):
|
67 |
+
self.W = W
|
68 |
+
self.H = H
|
69 |
+
self.radius = r # camera distance from center
|
70 |
+
self.fovy = np.deg2rad(fovy) # deg 2 rad
|
71 |
+
self.near = near
|
72 |
+
self.far = far
|
73 |
+
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
|
74 |
+
self.rot = R.from_matrix(np.eye(3))
|
75 |
+
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!
|
76 |
+
|
77 |
+
@property
|
78 |
+
def fovx(self):
|
79 |
+
return 2 * np.arctan(np.tan(self.fovy / 2) * self.W / self.H)
|
80 |
+
|
81 |
+
@property
|
82 |
+
def campos(self):
|
83 |
+
return self.pose[:3, 3]
|
84 |
+
|
85 |
+
# pose (c2w)
|
86 |
+
@property
|
87 |
+
def pose(self):
|
88 |
+
# first move camera to radius
|
89 |
+
res = np.eye(4, dtype=np.float32)
|
90 |
+
res[2, 3] = self.radius # opengl convention...
|
91 |
+
# rotate
|
92 |
+
rot = np.eye(4, dtype=np.float32)
|
93 |
+
rot[:3, :3] = self.rot.as_matrix()
|
94 |
+
res = rot @ res
|
95 |
+
# translate
|
96 |
+
res[:3, 3] -= self.center
|
97 |
+
return res
|
98 |
+
|
99 |
+
# view (w2c)
|
100 |
+
@property
|
101 |
+
def view(self):
|
102 |
+
return np.linalg.inv(self.pose)
|
103 |
+
|
104 |
+
# projection (perspective)
|
105 |
+
@property
|
106 |
+
def perspective(self):
|
107 |
+
y = np.tan(self.fovy / 2)
|
108 |
+
aspect = self.W / self.H
|
109 |
+
return np.array(
|
110 |
+
[
|
111 |
+
[1 / (y * aspect), 0, 0, 0],
|
112 |
+
[0, -1 / y, 0, 0],
|
113 |
+
[
|
114 |
+
0,
|
115 |
+
0,
|
116 |
+
-(self.far + self.near) / (self.far - self.near),
|
117 |
+
-(2 * self.far * self.near) / (self.far - self.near),
|
118 |
+
],
|
119 |
+
[0, 0, -1, 0],
|
120 |
+
],
|
121 |
+
dtype=np.float32,
|
122 |
+
)
|
123 |
+
|
124 |
+
# intrinsics
|
125 |
+
@property
|
126 |
+
def intrinsics(self):
|
127 |
+
focal = self.H / (2 * np.tan(self.fovy / 2))
|
128 |
+
return np.array([focal, focal, self.W // 2, self.H // 2], dtype=np.float32)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def mvp(self):
|
132 |
+
return self.perspective @ np.linalg.inv(self.pose) # [4, 4]
|
133 |
+
|
134 |
+
def orbit(self, dx, dy):
|
135 |
+
# rotate along camera up/side axis!
|
136 |
+
side = self.rot.as_matrix()[:3, 0]
|
137 |
+
rotvec_x = self.up * np.radians(-0.05 * dx)
|
138 |
+
rotvec_y = side * np.radians(-0.05 * dy)
|
139 |
+
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
|
140 |
+
|
141 |
+
def scale(self, delta):
|
142 |
+
self.radius *= 1.1 ** (-delta)
|
143 |
+
|
144 |
+
def pan(self, dx, dy, dz=0):
|
145 |
+
# pan in camera coordinate system (careful on the sensitivity!)
|
146 |
+
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz])
|
configs/4d.yaml
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
7 |
+
mesh:
|
8 |
+
# estimated elevation angle for input image
|
9 |
+
elevation: 0
|
10 |
+
# reference image resolution
|
11 |
+
ref_size: 256
|
12 |
+
# density thresh for mesh extraction
|
13 |
+
density_thresh: 0.5
|
14 |
+
|
15 |
+
### Output
|
16 |
+
outdir: logs
|
17 |
+
mesh_format: frames
|
18 |
+
save_path: ''
|
19 |
+
save_model: False
|
20 |
+
|
21 |
+
### Training
|
22 |
+
# guidance loss weights (0 to disable)
|
23 |
+
mvdream: False
|
24 |
+
imagedream: False
|
25 |
+
lambda_sd: 0
|
26 |
+
lambda_zero123: 1
|
27 |
+
# use stable-zero123 instead of zero123-xl
|
28 |
+
stable_zero123: True
|
29 |
+
lambda_svd: 0
|
30 |
+
# training batch size per iter
|
31 |
+
batch_size: 14
|
32 |
+
# training iterations for stage 1
|
33 |
+
iters: 500
|
34 |
+
# training iterations for stage 2
|
35 |
+
iters_refine: 50
|
36 |
+
# training camera radius
|
37 |
+
radius: 1.5
|
38 |
+
# training camera fovy
|
39 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
40 |
+
# training camera min elevation
|
41 |
+
min_ver: -30
|
42 |
+
# training camera max elevation
|
43 |
+
max_ver: 30
|
44 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
45 |
+
load:
|
46 |
+
# whether allow geom training in stage 2
|
47 |
+
train_geo: False
|
48 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
49 |
+
invert_bg_prob: 0.
|
50 |
+
n_views: 4
|
51 |
+
t_max: 0.5
|
52 |
+
|
53 |
+
|
54 |
+
### GUI
|
55 |
+
gui: False
|
56 |
+
force_cuda_rast: False
|
57 |
+
# GUI resolution
|
58 |
+
H: 800
|
59 |
+
W: 800
|
60 |
+
|
61 |
+
### Gaussian splatting
|
62 |
+
optimize_gaussians: True
|
63 |
+
position_lr_init: 0.001
|
64 |
+
position_lr_final: 0.00002
|
65 |
+
position_lr_delay_mult: 0.02
|
66 |
+
position_lr_max_steps: 500
|
67 |
+
feature_lr: 0.01
|
68 |
+
opacity_lr: 0.05
|
69 |
+
scaling_lr: 0.005
|
70 |
+
rotation_lr: 0.005
|
71 |
+
|
72 |
+
num_pts: 5000
|
73 |
+
sh_degree: 0
|
74 |
+
percent_dense: 0.1
|
75 |
+
density_start_iter: 3000
|
76 |
+
density_end_iter: 3000
|
77 |
+
densification_interval: 100
|
78 |
+
opacity_reset_interval: 700
|
79 |
+
densify_grad_threshold: 0.05
|
80 |
+
|
81 |
+
# deformation field
|
82 |
+
deformation_lr_init: 0.00064
|
83 |
+
deformation_lr_final: 0.00064
|
84 |
+
deformation_lr_delay_mult: 0.01
|
85 |
+
grid_lr_init: 0.0064
|
86 |
+
grid_lr_final: 0.0064
|
87 |
+
|
88 |
+
### Textured Mesh
|
89 |
+
geom_lr: 0.0001
|
90 |
+
texture_lr: 0.2
|
91 |
+
|
92 |
+
deformation:
|
93 |
+
net_width: 64
|
94 |
+
timebase_pe: 4
|
95 |
+
defor_depth: 1
|
96 |
+
posebase_pe: 10
|
97 |
+
scale_rotation_pe: 2
|
98 |
+
opacity_pe: 2
|
99 |
+
timenet_width: 64
|
100 |
+
timenet_output: 32
|
101 |
+
bounds: 1.6
|
102 |
+
plane_tv_weight: 0.0001
|
103 |
+
time_smoothness_weight: 0.01
|
104 |
+
l1_time_planes: 0.0001
|
105 |
+
kplanes_config:
|
106 |
+
grid_dimensions: 2
|
107 |
+
input_coordinate_dim: 4
|
108 |
+
output_coordinate_dim: 32
|
109 |
+
resolution: [32, 32, 32, 12]
|
110 |
+
multires: [1]
|
111 |
+
no_grid: False
|
112 |
+
no_mlp: False
|
113 |
+
no_ds: False
|
114 |
+
no_dr: False
|
115 |
+
no_do: True
|
116 |
+
use_res: True
|
117 |
+
|
118 |
+
data_mode: svd
|
119 |
+
downsample_rate: 1
|
120 |
+
# data_mode: c4d
|
121 |
+
# downsample_rate: 2
|
configs/4d_c4d.yaml
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
7 |
+
mesh:
|
8 |
+
# estimated elevation angle for input image
|
9 |
+
elevation: 0
|
10 |
+
# reference image resolution
|
11 |
+
ref_size: 256
|
12 |
+
# density thresh for mesh extraction
|
13 |
+
density_thresh: 0.5
|
14 |
+
|
15 |
+
### Output
|
16 |
+
outdir: logs
|
17 |
+
mesh_format: frames
|
18 |
+
save_path: ''
|
19 |
+
save_model: False
|
20 |
+
|
21 |
+
### Training
|
22 |
+
# guidance loss weights (0 to disable)
|
23 |
+
mvdream: False
|
24 |
+
imagedream: False
|
25 |
+
lambda_sd: 0
|
26 |
+
lambda_zero123: 1
|
27 |
+
# use stable-zero123 instead of zero123-xl
|
28 |
+
stable_zero123: True
|
29 |
+
lambda_svd: 0
|
30 |
+
# training batch size per iter
|
31 |
+
batch_size: 32
|
32 |
+
# training iterations for stage 1
|
33 |
+
iters: 500
|
34 |
+
# training iterations for stage 2
|
35 |
+
iters_refine: 50
|
36 |
+
# training camera radius
|
37 |
+
radius: 1.5
|
38 |
+
# training camera fovy
|
39 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
40 |
+
# training camera min elevation
|
41 |
+
min_ver: -30
|
42 |
+
# training camera max elevation
|
43 |
+
max_ver: 30
|
44 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
45 |
+
load:
|
46 |
+
# whether allow geom training in stage 2
|
47 |
+
train_geo: False
|
48 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
49 |
+
invert_bg_prob: 0.
|
50 |
+
n_views: 4
|
51 |
+
t_max: 0.5
|
52 |
+
|
53 |
+
|
54 |
+
### GUI
|
55 |
+
gui: False
|
56 |
+
force_cuda_rast: False
|
57 |
+
# GUI resolution
|
58 |
+
H: 800
|
59 |
+
W: 800
|
60 |
+
|
61 |
+
### Gaussian splatting
|
62 |
+
optimize_gaussians: True
|
63 |
+
position_lr_init: 0.001
|
64 |
+
position_lr_final: 0.00002
|
65 |
+
position_lr_delay_mult: 0.02
|
66 |
+
position_lr_max_steps: 500
|
67 |
+
feature_lr: 0.01
|
68 |
+
opacity_lr: 0.05
|
69 |
+
scaling_lr: 0.005
|
70 |
+
rotation_lr: 0.005
|
71 |
+
|
72 |
+
num_pts: 5000
|
73 |
+
sh_degree: 0
|
74 |
+
percent_dense: 0.1
|
75 |
+
density_start_iter: 3000
|
76 |
+
density_end_iter: 3000
|
77 |
+
densification_interval: 100
|
78 |
+
opacity_reset_interval: 700
|
79 |
+
densify_grad_threshold: 0.05
|
80 |
+
|
81 |
+
# deformation field
|
82 |
+
deformation_lr_init: 0.00064
|
83 |
+
deformation_lr_final: 0.00064
|
84 |
+
deformation_lr_delay_mult: 0.01
|
85 |
+
grid_lr_init: 0.0064
|
86 |
+
grid_lr_final: 0.0064
|
87 |
+
|
88 |
+
### Textured Mesh
|
89 |
+
geom_lr: 0.0001
|
90 |
+
texture_lr: 0.2
|
91 |
+
|
92 |
+
deformation:
|
93 |
+
net_width: 64
|
94 |
+
timebase_pe: 4
|
95 |
+
defor_depth: 1
|
96 |
+
posebase_pe: 10
|
97 |
+
scale_rotation_pe: 2
|
98 |
+
opacity_pe: 2
|
99 |
+
timenet_width: 64
|
100 |
+
timenet_output: 32
|
101 |
+
bounds: 1.6
|
102 |
+
plane_tv_weight: 0.0001
|
103 |
+
time_smoothness_weight: 0.01
|
104 |
+
l1_time_planes: 0.0001
|
105 |
+
kplanes_config:
|
106 |
+
grid_dimensions: 2
|
107 |
+
input_coordinate_dim: 4
|
108 |
+
output_coordinate_dim: 32
|
109 |
+
resolution: [32, 32, 32, 32]
|
110 |
+
multires: [1]
|
111 |
+
no_grid: False
|
112 |
+
no_mlp: False
|
113 |
+
no_ds: False
|
114 |
+
no_dr: False
|
115 |
+
no_do: True
|
116 |
+
use_res: True
|
117 |
+
|
118 |
+
data_mode: c4d
|
119 |
+
downsample_rate: 1
|
configs/4d_c4d_low.yaml
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
7 |
+
mesh:
|
8 |
+
# estimated elevation angle for input image
|
9 |
+
elevation: 0
|
10 |
+
# reference image resolution
|
11 |
+
ref_size: 256
|
12 |
+
# density thresh for mesh extraction
|
13 |
+
density_thresh: 0.5
|
14 |
+
|
15 |
+
### Output
|
16 |
+
outdir: logs
|
17 |
+
mesh_format: frames
|
18 |
+
save_path: ''
|
19 |
+
save_model: False
|
20 |
+
|
21 |
+
### Training
|
22 |
+
# guidance loss weights (0 to disable)
|
23 |
+
mvdream: False
|
24 |
+
imagedream: False
|
25 |
+
lambda_sd: 0
|
26 |
+
lambda_zero123: 1
|
27 |
+
# use stable-zero123 instead of zero123-xl
|
28 |
+
stable_zero123: True
|
29 |
+
lambda_svd: 0
|
30 |
+
# training batch size per iter
|
31 |
+
batch_size: 8
|
32 |
+
# training iterations for stage 1
|
33 |
+
iters: 500
|
34 |
+
# training iterations for stage 2
|
35 |
+
iters_refine: 50
|
36 |
+
# training camera radius
|
37 |
+
radius: 1.5
|
38 |
+
# training camera fovy
|
39 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
40 |
+
# training camera min elevation
|
41 |
+
min_ver: -30
|
42 |
+
# training camera max elevation
|
43 |
+
max_ver: 30
|
44 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
45 |
+
load:
|
46 |
+
# whether allow geom training in stage 2
|
47 |
+
train_geo: False
|
48 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
49 |
+
invert_bg_prob: 0.
|
50 |
+
n_views: 1
|
51 |
+
t_max: 0.5
|
52 |
+
|
53 |
+
|
54 |
+
### GUI
|
55 |
+
gui: False
|
56 |
+
force_cuda_rast: False
|
57 |
+
# GUI resolution
|
58 |
+
H: 800
|
59 |
+
W: 800
|
60 |
+
|
61 |
+
### Gaussian splatting
|
62 |
+
optimize_gaussians: True
|
63 |
+
position_lr_init: 0.001
|
64 |
+
position_lr_final: 0.00002
|
65 |
+
position_lr_delay_mult: 0.02
|
66 |
+
position_lr_max_steps: 500
|
67 |
+
feature_lr: 0.01
|
68 |
+
opacity_lr: 0.05
|
69 |
+
scaling_lr: 0.005
|
70 |
+
rotation_lr: 0.005
|
71 |
+
|
72 |
+
num_pts: 5000
|
73 |
+
sh_degree: 0
|
74 |
+
percent_dense: 0.1
|
75 |
+
density_start_iter: 3000
|
76 |
+
density_end_iter: 3000
|
77 |
+
densification_interval: 100
|
78 |
+
opacity_reset_interval: 700
|
79 |
+
densify_grad_threshold: 0.05
|
80 |
+
|
81 |
+
# deformation field
|
82 |
+
deformation_lr_init: 0.00064
|
83 |
+
deformation_lr_final: 0.00064
|
84 |
+
deformation_lr_delay_mult: 0.01
|
85 |
+
grid_lr_init: 0.0064
|
86 |
+
grid_lr_final: 0.0064
|
87 |
+
|
88 |
+
### Textured Mesh
|
89 |
+
geom_lr: 0.0001
|
90 |
+
texture_lr: 0.2
|
91 |
+
|
92 |
+
deformation:
|
93 |
+
net_width: 64
|
94 |
+
timebase_pe: 4
|
95 |
+
defor_depth: 1
|
96 |
+
posebase_pe: 10
|
97 |
+
scale_rotation_pe: 2
|
98 |
+
opacity_pe: 2
|
99 |
+
timenet_width: 64
|
100 |
+
timenet_output: 32
|
101 |
+
bounds: 1.6
|
102 |
+
plane_tv_weight: 0.0001
|
103 |
+
time_smoothness_weight: 0.01
|
104 |
+
l1_time_planes: 0.0001
|
105 |
+
kplanes_config:
|
106 |
+
grid_dimensions: 2
|
107 |
+
input_coordinate_dim: 4
|
108 |
+
output_coordinate_dim: 32
|
109 |
+
resolution: [32, 32, 32, 12]
|
110 |
+
multires: [1]
|
111 |
+
no_grid: False
|
112 |
+
no_mlp: False
|
113 |
+
no_ds: False
|
114 |
+
no_dr: False
|
115 |
+
no_do: True
|
116 |
+
use_res: True
|
117 |
+
|
118 |
+
data_mode: c4d
|
119 |
+
downsample_rate: 4
|
configs/4d_demo.yaml
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
7 |
+
mesh:
|
8 |
+
# estimated elevation angle for input image
|
9 |
+
elevation: 0
|
10 |
+
# reference image resolution
|
11 |
+
ref_size: 256
|
12 |
+
# density thresh for mesh extraction
|
13 |
+
density_thresh: 0.5
|
14 |
+
|
15 |
+
### Output
|
16 |
+
outdir: logs
|
17 |
+
mesh_format: frames
|
18 |
+
save_path: ''
|
19 |
+
save_model: False
|
20 |
+
|
21 |
+
### Training
|
22 |
+
# guidance loss weights (0 to disable)
|
23 |
+
mvdream: False
|
24 |
+
imagedream: False
|
25 |
+
lambda_sd: 0
|
26 |
+
lambda_zero123: 1
|
27 |
+
# use stable-zero123 instead of zero123-xl
|
28 |
+
stable_zero123: True
|
29 |
+
lambda_svd: 0
|
30 |
+
# training batch size per iter
|
31 |
+
batch_size: 7
|
32 |
+
# training iterations for stage 1
|
33 |
+
iters: 500
|
34 |
+
# training iterations for stage 2
|
35 |
+
iters_refine: 50
|
36 |
+
# training camera radius
|
37 |
+
radius: 1.5
|
38 |
+
# training camera fovy
|
39 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
40 |
+
# training camera min elevation
|
41 |
+
min_ver: -30
|
42 |
+
# training camera max elevation
|
43 |
+
max_ver: 30
|
44 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
45 |
+
load:
|
46 |
+
# whether allow geom training in stage 2
|
47 |
+
train_geo: False
|
48 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
49 |
+
invert_bg_prob: 0.
|
50 |
+
n_views: 1
|
51 |
+
t_max: 0.5
|
52 |
+
|
53 |
+
|
54 |
+
### GUI
|
55 |
+
gui: False
|
56 |
+
force_cuda_rast: False
|
57 |
+
# GUI resolution
|
58 |
+
H: 800
|
59 |
+
W: 800
|
60 |
+
|
61 |
+
### Gaussian splatting
|
62 |
+
optimize_gaussians: True
|
63 |
+
position_lr_init: 0.001
|
64 |
+
position_lr_final: 0.00002
|
65 |
+
position_lr_delay_mult: 0.02
|
66 |
+
position_lr_max_steps: 500
|
67 |
+
feature_lr: 0.01
|
68 |
+
opacity_lr: 0.05
|
69 |
+
scaling_lr: 0.005
|
70 |
+
rotation_lr: 0.005
|
71 |
+
|
72 |
+
num_pts: 5000
|
73 |
+
sh_degree: 0
|
74 |
+
percent_dense: 0.1
|
75 |
+
density_start_iter: 3000
|
76 |
+
density_end_iter: 3000
|
77 |
+
densification_interval: 100
|
78 |
+
opacity_reset_interval: 700
|
79 |
+
densify_grad_threshold: 0.05
|
80 |
+
|
81 |
+
# deformation field
|
82 |
+
deformation_lr_init: 0.00064
|
83 |
+
deformation_lr_final: 0.00064
|
84 |
+
deformation_lr_delay_mult: 0.01
|
85 |
+
grid_lr_init: 0.0064
|
86 |
+
grid_lr_final: 0.0064
|
87 |
+
|
88 |
+
### Textured Mesh
|
89 |
+
geom_lr: 0.0001
|
90 |
+
texture_lr: 0.2
|
91 |
+
|
92 |
+
deformation:
|
93 |
+
net_width: 64
|
94 |
+
timebase_pe: 4
|
95 |
+
defor_depth: 1
|
96 |
+
posebase_pe: 10
|
97 |
+
scale_rotation_pe: 2
|
98 |
+
opacity_pe: 2
|
99 |
+
timenet_width: 64
|
100 |
+
timenet_output: 32
|
101 |
+
bounds: 1.6
|
102 |
+
plane_tv_weight: 0.0001
|
103 |
+
time_smoothness_weight: 0.01
|
104 |
+
l1_time_planes: 0.0001
|
105 |
+
kplanes_config:
|
106 |
+
grid_dimensions: 2
|
107 |
+
input_coordinate_dim: 4
|
108 |
+
output_coordinate_dim: 32
|
109 |
+
resolution: [32, 32, 32, 12]
|
110 |
+
multires: [1]
|
111 |
+
no_grid: False
|
112 |
+
no_mlp: False
|
113 |
+
no_ds: False
|
114 |
+
no_dr: False
|
115 |
+
no_do: True
|
116 |
+
use_res: True
|
117 |
+
|
118 |
+
data_mode: svd
|
119 |
+
downsample_rate: 2
|
120 |
+
# data_mode: c4d
|
121 |
+
# downsample_rate: 2
|
configs/4d_low.yaml
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
7 |
+
mesh:
|
8 |
+
# estimated elevation angle for input image
|
9 |
+
elevation: 0
|
10 |
+
# reference image resolution
|
11 |
+
ref_size: 256
|
12 |
+
# density thresh for mesh extraction
|
13 |
+
density_thresh: 0.5
|
14 |
+
|
15 |
+
### Output
|
16 |
+
outdir: logs
|
17 |
+
mesh_format: frames
|
18 |
+
save_path: ''
|
19 |
+
save_model: False
|
20 |
+
|
21 |
+
### Training
|
22 |
+
# guidance loss weights (0 to disable)
|
23 |
+
mvdream: False
|
24 |
+
imagedream: False
|
25 |
+
lambda_sd: 0
|
26 |
+
lambda_zero123: 1
|
27 |
+
# use stable-zero123 instead of zero123-xl
|
28 |
+
stable_zero123: True
|
29 |
+
lambda_svd: 0
|
30 |
+
# training batch size per iter
|
31 |
+
batch_size: 14
|
32 |
+
# training iterations for stage 1
|
33 |
+
iters: 500
|
34 |
+
# training iterations for stage 2
|
35 |
+
iters_refine: 50
|
36 |
+
# training camera radius
|
37 |
+
radius: 1.5
|
38 |
+
# training camera fovy
|
39 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
40 |
+
# training camera min elevation
|
41 |
+
min_ver: -30
|
42 |
+
# training camera max elevation
|
43 |
+
max_ver: 30
|
44 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
45 |
+
load:
|
46 |
+
# whether allow geom training in stage 2
|
47 |
+
train_geo: False
|
48 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
49 |
+
invert_bg_prob: 0.
|
50 |
+
n_views: 1
|
51 |
+
t_max: 0.5
|
52 |
+
|
53 |
+
|
54 |
+
### GUI
|
55 |
+
gui: False
|
56 |
+
force_cuda_rast: False
|
57 |
+
# GUI resolution
|
58 |
+
H: 800
|
59 |
+
W: 800
|
60 |
+
|
61 |
+
### Gaussian splatting
|
62 |
+
optimize_gaussians: True
|
63 |
+
position_lr_init: 0.001
|
64 |
+
position_lr_final: 0.00002
|
65 |
+
position_lr_delay_mult: 0.02
|
66 |
+
position_lr_max_steps: 500
|
67 |
+
feature_lr: 0.01
|
68 |
+
opacity_lr: 0.05
|
69 |
+
scaling_lr: 0.005
|
70 |
+
rotation_lr: 0.005
|
71 |
+
|
72 |
+
num_pts: 5000
|
73 |
+
sh_degree: 0
|
74 |
+
percent_dense: 0.1
|
75 |
+
density_start_iter: 3000
|
76 |
+
density_end_iter: 3000
|
77 |
+
densification_interval: 100
|
78 |
+
opacity_reset_interval: 700
|
79 |
+
densify_grad_threshold: 0.05
|
80 |
+
|
81 |
+
# deformation field
|
82 |
+
deformation_lr_init: 0.00064
|
83 |
+
deformation_lr_final: 0.00064
|
84 |
+
deformation_lr_delay_mult: 0.01
|
85 |
+
grid_lr_init: 0.0064
|
86 |
+
grid_lr_final: 0.0064
|
87 |
+
|
88 |
+
### Textured Mesh
|
89 |
+
geom_lr: 0.0001
|
90 |
+
texture_lr: 0.2
|
91 |
+
|
92 |
+
deformation:
|
93 |
+
net_width: 64
|
94 |
+
timebase_pe: 4
|
95 |
+
defor_depth: 1
|
96 |
+
posebase_pe: 10
|
97 |
+
scale_rotation_pe: 2
|
98 |
+
opacity_pe: 2
|
99 |
+
timenet_width: 64
|
100 |
+
timenet_output: 32
|
101 |
+
bounds: 1.6
|
102 |
+
plane_tv_weight: 0.0001
|
103 |
+
time_smoothness_weight: 0.01
|
104 |
+
l1_time_planes: 0.0001
|
105 |
+
kplanes_config:
|
106 |
+
grid_dimensions: 2
|
107 |
+
input_coordinate_dim: 4
|
108 |
+
output_coordinate_dim: 32
|
109 |
+
resolution: [32, 32, 32, 22]
|
110 |
+
multires: [1]
|
111 |
+
no_grid: False
|
112 |
+
no_mlp: False
|
113 |
+
no_ds: False
|
114 |
+
no_dr: False
|
115 |
+
no_do: True
|
116 |
+
use_res: True
|
117 |
+
|
118 |
+
data_mode: svd
|
119 |
+
downsample_rate: 1
|
120 |
+
# data_mode: c4d
|
121 |
+
# downsample_rate: 2
|
configs/dg.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
negative_prompt:
|
7 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
8 |
+
mesh:
|
9 |
+
# estimated elevation angle for input image
|
10 |
+
elevation: 0
|
11 |
+
# reference image resolution
|
12 |
+
ref_size: 256
|
13 |
+
# density thresh for mesh extraction
|
14 |
+
density_thresh: 1
|
15 |
+
|
16 |
+
### Output
|
17 |
+
outdir: logs
|
18 |
+
mesh_format: obj
|
19 |
+
save_path: ''
|
20 |
+
|
21 |
+
### Training
|
22 |
+
# use mvdream instead of sd 2.1
|
23 |
+
mvdream: False
|
24 |
+
# use imagedream
|
25 |
+
imagedream: False
|
26 |
+
# use stable-zero123 instead of zero123-xl
|
27 |
+
stable_zero123: False
|
28 |
+
# guidance loss weights (0 to disable)
|
29 |
+
lambda_sd: 0
|
30 |
+
lambda_zero123: 1
|
31 |
+
# warmup rgb supervision for image-to-3d
|
32 |
+
warmup_rgb_loss: True
|
33 |
+
# training batch size per iter
|
34 |
+
batch_size: 1
|
35 |
+
# training iterations for stage 1
|
36 |
+
iters: 500
|
37 |
+
# whether to linearly anneal timestep
|
38 |
+
anneal_timestep: True
|
39 |
+
# training iterations for stage 2
|
40 |
+
iters_refine: 50
|
41 |
+
# training camera radius
|
42 |
+
radius: 2
|
43 |
+
# training camera fovy
|
44 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
45 |
+
# training camera min elevation
|
46 |
+
min_ver: -30
|
47 |
+
# training camera max elevation
|
48 |
+
max_ver: 30
|
49 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
50 |
+
load:
|
51 |
+
# whether allow geom training in stage 2
|
52 |
+
train_geo: False
|
53 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
54 |
+
invert_bg_prob: 0.5
|
55 |
+
|
56 |
+
|
57 |
+
### GUI
|
58 |
+
gui: False
|
59 |
+
force_cuda_rast: False
|
60 |
+
# GUI resolution
|
61 |
+
H: 800
|
62 |
+
W: 800
|
63 |
+
|
64 |
+
### Gaussian splatting
|
65 |
+
num_pts: 5000
|
66 |
+
sh_degree: 0
|
67 |
+
position_lr_init: 0.001
|
68 |
+
position_lr_final: 0.00002
|
69 |
+
position_lr_delay_mult: 0.02
|
70 |
+
position_lr_max_steps: 500
|
71 |
+
feature_lr: 0.01
|
72 |
+
opacity_lr: 0.05
|
73 |
+
scaling_lr: 0.005
|
74 |
+
rotation_lr: 0.005
|
75 |
+
percent_dense: 0.1
|
76 |
+
density_start_iter: 100
|
77 |
+
density_end_iter: 3000
|
78 |
+
densification_interval: 100
|
79 |
+
opacity_reset_interval: 700
|
80 |
+
densify_grad_threshold: 0.5
|
81 |
+
|
82 |
+
|
83 |
+
### Textured Mesh
|
84 |
+
geom_lr: 0.0001
|
85 |
+
texture_lr: 0.2
|
configs/dghd.yaml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
7 |
+
mesh:
|
8 |
+
# estimated elevation angle for input image
|
9 |
+
elevation: 0
|
10 |
+
# reference image resolution
|
11 |
+
ref_size: 256
|
12 |
+
# density thresh for mesh extraction
|
13 |
+
density_thresh: 1
|
14 |
+
|
15 |
+
### Output
|
16 |
+
outdir: logs
|
17 |
+
mesh_format: obj
|
18 |
+
save_path: ''
|
19 |
+
|
20 |
+
### Training
|
21 |
+
# guidance loss weights (0 to disable)
|
22 |
+
lambda_sd: 0
|
23 |
+
mvdream: False
|
24 |
+
lambda_zero123: 1
|
25 |
+
# use stable-zero123 instead of zero123-xl
|
26 |
+
stable_zero123: False
|
27 |
+
# training batch size per iter
|
28 |
+
batch_size: 16
|
29 |
+
# training iterations for stage 1
|
30 |
+
iters: 500
|
31 |
+
# training iterations for stage 2
|
32 |
+
iters_refine: 50
|
33 |
+
# training camera radius
|
34 |
+
radius: 2
|
35 |
+
# training camera fovy
|
36 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
37 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
38 |
+
load:
|
39 |
+
# whether allow geom training in stage 2
|
40 |
+
train_geo: False
|
41 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
42 |
+
invert_bg_prob: 0.
|
43 |
+
|
44 |
+
|
45 |
+
### GUI
|
46 |
+
gui: False
|
47 |
+
force_cuda_rast: False
|
48 |
+
# GUI resolution
|
49 |
+
H: 800
|
50 |
+
W: 800
|
51 |
+
|
52 |
+
### Gaussian splatting
|
53 |
+
num_pts: 5000
|
54 |
+
sh_degree: 0
|
55 |
+
position_lr_init: 0.001
|
56 |
+
position_lr_final: 0.00002
|
57 |
+
position_lr_delay_mult: 0.02
|
58 |
+
position_lr_max_steps: 500
|
59 |
+
feature_lr: 0.01
|
60 |
+
opacity_lr: 0.05
|
61 |
+
scaling_lr: 0.005
|
62 |
+
rotation_lr: 0.005
|
63 |
+
percent_dense: 0.1
|
64 |
+
density_start_iter: 0
|
65 |
+
density_end_iter: 3000
|
66 |
+
densification_interval: 100
|
67 |
+
opacity_reset_interval: 700
|
68 |
+
densify_grad_threshold: 0.05
|
69 |
+
|
70 |
+
### Textured Mesh
|
71 |
+
geom_lr: 0.0001
|
72 |
+
texture_lr: 0.2
|
configs/refine.yaml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Input
|
2 |
+
# input rgba image path (default to None, can be load in GUI too)
|
3 |
+
input:
|
4 |
+
# input text prompt (default to None, can be input in GUI too)
|
5 |
+
prompt:
|
6 |
+
# input mesh for stage 2 (auto-search from stage 1 output path if None)
|
7 |
+
mesh:
|
8 |
+
# estimated elevation angle for input image
|
9 |
+
elevation: 0
|
10 |
+
# reference image resolution
|
11 |
+
ref_size: 256
|
12 |
+
# density thresh for mesh extraction
|
13 |
+
density_thresh: 1
|
14 |
+
|
15 |
+
### Output
|
16 |
+
outdir: logs
|
17 |
+
mesh_format: obj
|
18 |
+
save_path: ''
|
19 |
+
|
20 |
+
### Training
|
21 |
+
# guidance loss weights (0 to disable)
|
22 |
+
lambda_sd: 0
|
23 |
+
mvdream: False
|
24 |
+
lambda_zero123: 0
|
25 |
+
# use stable-zero123 instead of zero123-xl
|
26 |
+
stable_zero123: False
|
27 |
+
lambda_svd: 1
|
28 |
+
# training batch size per iter
|
29 |
+
batch_size: 1
|
30 |
+
# training iterations for stage 1
|
31 |
+
iters: 500
|
32 |
+
# training iterations for stage 2
|
33 |
+
iters_refine: 50
|
34 |
+
# training camera radius
|
35 |
+
radius: 1.5
|
36 |
+
# training camera fovy
|
37 |
+
fovy: 49.1 # align with zero123 rendering setting (ref: https://github.com/cvlab-columbia/zero123/blob/main/objaverse-rendering/scripts/blender_script.py#L61
|
38 |
+
# checkpoint to load for stage 1 (should be a ply file)
|
39 |
+
load:
|
40 |
+
# whether allow geom training in stage 2
|
41 |
+
train_geo: False
|
42 |
+
# prob to invert background color during training (0 = always black, 1 = always white)
|
43 |
+
invert_bg_prob: 0.5
|
44 |
+
|
45 |
+
|
46 |
+
### GUI
|
47 |
+
gui: False
|
48 |
+
force_cuda_rast: False
|
49 |
+
# GUI resolution
|
50 |
+
H: 800
|
51 |
+
W: 800
|
52 |
+
|
53 |
+
### Gaussian splatting
|
54 |
+
num_pts: 5000
|
55 |
+
sh_degree: 0
|
56 |
+
position_lr_init: 0.001
|
57 |
+
position_lr_final: 0.00002
|
58 |
+
position_lr_delay_mult: 0.02
|
59 |
+
position_lr_max_steps: 500
|
60 |
+
feature_lr: 0.01
|
61 |
+
opacity_lr: 0.05
|
62 |
+
scaling_lr: 0.005
|
63 |
+
rotation_lr: 0.005
|
64 |
+
percent_dense: 0.1
|
65 |
+
density_start_iter: 100
|
66 |
+
density_end_iter: 3000
|
67 |
+
densification_interval: 100
|
68 |
+
opacity_reset_interval: 700
|
69 |
+
densify_grad_threshold: 0.5
|
70 |
+
|
71 |
+
### Textured Mesh
|
72 |
+
geom_lr: 0.0001
|
73 |
+
texture_lr: 0.2
|
74 |
+
|
75 |
+
static_model: lgm
|
76 |
+
data_mode: svd
|
77 |
+
downsample_rate: 2
|
78 |
+
|
79 |
+
oom_hack: False
|
data/anya_rgba.png
ADDED
data/catstatue_rgba.png
ADDED
data/csm_luigi_rgba.png
ADDED
data/zelda_rgba.png
ADDED
gaussian_model_4d.py
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact [email protected]
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import numpy as np
|
14 |
+
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
|
15 |
+
from torch import nn
|
16 |
+
import os
|
17 |
+
from utils.system_utils import mkdir_p
|
18 |
+
from plyfile import PlyData, PlyElement
|
19 |
+
from random import randint
|
20 |
+
from utils.sh_utils import RGB2SH
|
21 |
+
from simple_knn._C import distCUDA2
|
22 |
+
from utils.graphics_utils import BasicPointCloud
|
23 |
+
from utils.general_utils import strip_symmetric, build_scaling_rotation
|
24 |
+
from scene.deformation import deform_network
|
25 |
+
from scene.regulation import compute_plane_smoothness
|
26 |
+
|
27 |
+
|
28 |
+
def gaussian_3d_coeff(xyzs, covs):
|
29 |
+
# xyzs: [N, 3]
|
30 |
+
# covs: [N, 6]
|
31 |
+
x, y, z = xyzs[:, 0], xyzs[:, 1], xyzs[:, 2]
|
32 |
+
a, b, c, d, e, f = covs[:, 0], covs[:, 1], covs[:, 2], covs[:, 3], covs[:, 4], covs[:, 5]
|
33 |
+
|
34 |
+
# eps must be small enough !!!
|
35 |
+
inv_det = 1 / (a * d * f + 2 * e * c * b - e**2 * a - c**2 * d - b**2 * f + 1e-24)
|
36 |
+
inv_a = (d * f - e**2) * inv_det
|
37 |
+
inv_b = (e * c - b * f) * inv_det
|
38 |
+
inv_c = (e * b - c * d) * inv_det
|
39 |
+
inv_d = (a * f - c**2) * inv_det
|
40 |
+
inv_e = (b * c - e * a) * inv_det
|
41 |
+
inv_f = (a * d - b**2) * inv_det
|
42 |
+
|
43 |
+
power = -0.5 * (x**2 * inv_a + y**2 * inv_d + z**2 * inv_f) - x * y * inv_b - x * z * inv_c - y * z * inv_e
|
44 |
+
|
45 |
+
power[power > 0] = -1e10 # abnormal values... make weights 0
|
46 |
+
|
47 |
+
return torch.exp(power)
|
48 |
+
|
49 |
+
class GaussianModel:
|
50 |
+
|
51 |
+
def setup_functions(self):
|
52 |
+
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
|
53 |
+
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
|
54 |
+
actual_covariance = L @ L.transpose(1, 2)
|
55 |
+
symm = strip_symmetric(actual_covariance)
|
56 |
+
return symm
|
57 |
+
|
58 |
+
self.scaling_activation = torch.exp
|
59 |
+
self.scaling_inverse_activation = torch.log
|
60 |
+
|
61 |
+
self.covariance_activation = build_covariance_from_scaling_rotation
|
62 |
+
|
63 |
+
self.opacity_activation = torch.sigmoid
|
64 |
+
self.inverse_opacity_activation = inverse_sigmoid
|
65 |
+
|
66 |
+
self.rotation_activation = torch.nn.functional.normalize
|
67 |
+
|
68 |
+
|
69 |
+
def __init__(self, sh_degree : int, args):
|
70 |
+
self.active_sh_degree = 0
|
71 |
+
self.max_sh_degree = sh_degree
|
72 |
+
self._xyz = torch.empty(0)
|
73 |
+
# self._deformation = torch.empty(0)
|
74 |
+
self._deformation = deform_network(args)
|
75 |
+
# self.grid = TriPlaneGrid()
|
76 |
+
self._features_dc = torch.empty(0)
|
77 |
+
self._features_rest = torch.empty(0)
|
78 |
+
self._scaling = torch.empty(0)
|
79 |
+
self._rotation = torch.empty(0)
|
80 |
+
self._opacity = torch.empty(0)
|
81 |
+
self.max_radii2D = torch.empty(0)
|
82 |
+
self.xyz_gradient_accum = torch.empty(0)
|
83 |
+
self.denom = torch.empty(0)
|
84 |
+
self.optimizer = None
|
85 |
+
self.percent_dense = 0
|
86 |
+
self.spatial_lr_scale = 0
|
87 |
+
self._deformation_table = torch.empty(0)
|
88 |
+
self.setup_functions()
|
89 |
+
|
90 |
+
def capture(self):
|
91 |
+
return (
|
92 |
+
self.active_sh_degree,
|
93 |
+
self._xyz,
|
94 |
+
self._deformation.state_dict(),
|
95 |
+
self._deformation_table,
|
96 |
+
# self.grid,
|
97 |
+
self._features_dc,
|
98 |
+
self._features_rest,
|
99 |
+
self._scaling,
|
100 |
+
self._rotation,
|
101 |
+
self._opacity,
|
102 |
+
self.max_radii2D,
|
103 |
+
self.xyz_gradient_accum,
|
104 |
+
self.denom,
|
105 |
+
self.optimizer.state_dict(),
|
106 |
+
self.spatial_lr_scale,
|
107 |
+
)
|
108 |
+
|
109 |
+
def restore(self, model_args, training_args):
|
110 |
+
(self.active_sh_degree,
|
111 |
+
self._xyz,
|
112 |
+
self._deformation_table,
|
113 |
+
self._deformation,
|
114 |
+
# self.grid,
|
115 |
+
self._features_dc,
|
116 |
+
self._features_rest,
|
117 |
+
self._scaling,
|
118 |
+
self._rotation,
|
119 |
+
self._opacity,
|
120 |
+
self.max_radii2D,
|
121 |
+
xyz_gradient_accum,
|
122 |
+
denom,
|
123 |
+
opt_dict,
|
124 |
+
self.spatial_lr_scale) = model_args
|
125 |
+
self.training_setup(training_args)
|
126 |
+
self.xyz_gradient_accum = xyz_gradient_accum
|
127 |
+
self.denom = denom
|
128 |
+
self.optimizer.load_state_dict(opt_dict)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def get_scaling(self):
|
132 |
+
return self.scaling_activation(self._scaling)
|
133 |
+
|
134 |
+
@property
|
135 |
+
def get_rotation(self):
|
136 |
+
return self.rotation_activation(self._rotation)
|
137 |
+
|
138 |
+
@property
|
139 |
+
def get_xyz(self):
|
140 |
+
return self._xyz
|
141 |
+
|
142 |
+
@property
|
143 |
+
def get_features(self):
|
144 |
+
features_dc = self._features_dc
|
145 |
+
features_rest = self._features_rest
|
146 |
+
return torch.cat((features_dc, features_rest), dim=1)
|
147 |
+
|
148 |
+
@property
|
149 |
+
def get_opacity(self):
|
150 |
+
return self.opacity_activation(self._opacity)
|
151 |
+
|
152 |
+
|
153 |
+
def get_deformed_everything(self, time):
|
154 |
+
means3D = self.get_xyz
|
155 |
+
time = torch.tensor(time).to(means3D.device).repeat(means3D.shape[0],1)
|
156 |
+
time = ((time.float() / self.T) - 0.5) * 2
|
157 |
+
|
158 |
+
opacity = self._opacity
|
159 |
+
scales = self._scaling
|
160 |
+
rotations = self._rotation
|
161 |
+
|
162 |
+
deformation_point = self._deformation_table
|
163 |
+
means3D_deform, scales_deform, rotations_deform, opacity_deform = self._deformation(means3D[deformation_point], scales[deformation_point],
|
164 |
+
rotations[deformation_point], opacity[deformation_point],
|
165 |
+
time[deformation_point])
|
166 |
+
|
167 |
+
means3D_final = means3D + means3D_deform
|
168 |
+
rotations_final = rotations + rotations_deform
|
169 |
+
scales_final = scales + scales_deform
|
170 |
+
opacity_final = opacity
|
171 |
+
|
172 |
+
return means3D_final, rotations_final, scales_final, opacity_final
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def extract_fields_t(self, resolution=128, num_blocks=16, relax_ratio=1.5, t=0):
|
178 |
+
# resolution: resolution of field
|
179 |
+
|
180 |
+
block_size = 2 / num_blocks
|
181 |
+
|
182 |
+
assert resolution % block_size == 0
|
183 |
+
split_size = resolution // num_blocks
|
184 |
+
|
185 |
+
xyzs, rotation, scale, opacities = self.get_deformed_everything(t)
|
186 |
+
|
187 |
+
scale = self.scaling_activation(scale)
|
188 |
+
opacities = self.opacity_activation(opacities)
|
189 |
+
|
190 |
+
# pre-filter low opacity gaussians to save computation
|
191 |
+
mask = (opacities > 0.005).squeeze(1)
|
192 |
+
|
193 |
+
opacities = opacities[mask]
|
194 |
+
xyzs = xyzs[mask]
|
195 |
+
stds = scale[mask]
|
196 |
+
|
197 |
+
# normalize to ~ [-1, 1]
|
198 |
+
mn, mx = xyzs.amin(0), xyzs.amax(0)
|
199 |
+
self.center = (mn + mx) / 2
|
200 |
+
self.scale = 1.8 / (mx - mn).amax().item()
|
201 |
+
|
202 |
+
xyzs = (xyzs - self.center) * self.scale
|
203 |
+
stds = stds * self.scale
|
204 |
+
|
205 |
+
covs = self.covariance_activation(stds, 1, rotation[mask])
|
206 |
+
|
207 |
+
# tile
|
208 |
+
device = opacities.device
|
209 |
+
occ = torch.zeros([resolution] * 3, dtype=torch.float32, device=device)
|
210 |
+
|
211 |
+
X = torch.linspace(-1, 1, resolution).split(split_size)
|
212 |
+
Y = torch.linspace(-1, 1, resolution).split(split_size)
|
213 |
+
Z = torch.linspace(-1, 1, resolution).split(split_size)
|
214 |
+
|
215 |
+
|
216 |
+
# loop blocks (assume max size of gaussian is small than relax_ratio * block_size !!!)
|
217 |
+
for xi, xs in enumerate(X):
|
218 |
+
for yi, ys in enumerate(Y):
|
219 |
+
for zi, zs in enumerate(Z):
|
220 |
+
xx, yy, zz = torch.meshgrid(xs, ys, zs)
|
221 |
+
# sample points [M, 3]
|
222 |
+
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(device)
|
223 |
+
# in-tile gaussians mask
|
224 |
+
vmin, vmax = pts.amin(0), pts.amax(0)
|
225 |
+
vmin -= block_size * relax_ratio
|
226 |
+
vmax += block_size * relax_ratio
|
227 |
+
mask = (xyzs < vmax).all(-1) & (xyzs > vmin).all(-1)
|
228 |
+
# if hit no gaussian, continue to next block
|
229 |
+
if not mask.any():
|
230 |
+
continue
|
231 |
+
mask_xyzs = xyzs[mask] # [L, 3]
|
232 |
+
mask_covs = covs[mask] # [L, 6]
|
233 |
+
mask_opas = opacities[mask].view(1, -1) # [L, 1] --> [1, L]
|
234 |
+
|
235 |
+
# query per point-gaussian pair.
|
236 |
+
g_pts = pts.unsqueeze(1).repeat(1, mask_covs.shape[0], 1) - mask_xyzs.unsqueeze(0) # [M, L, 3]
|
237 |
+
g_covs = mask_covs.unsqueeze(0).repeat(pts.shape[0], 1, 1) # [M, L, 6]
|
238 |
+
|
239 |
+
# batch on gaussian to avoid OOM
|
240 |
+
batch_g = 1024
|
241 |
+
val = 0
|
242 |
+
for start in range(0, g_covs.shape[1], batch_g):
|
243 |
+
end = min(start + batch_g, g_covs.shape[1])
|
244 |
+
w = gaussian_3d_coeff(g_pts[:, start:end].reshape(-1, 3), g_covs[:, start:end].reshape(-1, 6)).reshape(pts.shape[0], -1) # [M, l]
|
245 |
+
val += (mask_opas[:, start:end] * w).sum(-1)
|
246 |
+
|
247 |
+
# kiui.lo(val, mask_opas, w)
|
248 |
+
|
249 |
+
occ[xi * split_size: xi * split_size + len(xs),
|
250 |
+
yi * split_size: yi * split_size + len(ys),
|
251 |
+
zi * split_size: zi * split_size + len(zs)] = val.reshape(len(xs), len(ys), len(zs))
|
252 |
+
return occ
|
253 |
+
|
254 |
+
def extract_mesh_t(self, path, density_thresh=1, t=0, resolution=128, decimate_target=1e5):
|
255 |
+
from mesh import Mesh
|
256 |
+
from mesh_utils import decimate_mesh, clean_mesh
|
257 |
+
|
258 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
259 |
+
|
260 |
+
occ = self.extract_fields_t(resolution, t=t).detach().cpu().numpy()
|
261 |
+
|
262 |
+
import mcubes
|
263 |
+
vertices, triangles = mcubes.marching_cubes(occ, density_thresh)
|
264 |
+
vertices = vertices / (resolution - 1.0) * 2 - 1
|
265 |
+
|
266 |
+
# transform back to the original space
|
267 |
+
vertices = vertices / self.scale + self.center.detach().cpu().numpy()
|
268 |
+
|
269 |
+
vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.015)
|
270 |
+
if decimate_target > 0 and triangles.shape[0] > decimate_target:
|
271 |
+
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target)
|
272 |
+
|
273 |
+
v = torch.from_numpy(vertices.astype(np.float32)).contiguous().cuda()
|
274 |
+
f = torch.from_numpy(triangles.astype(np.int32)).contiguous().cuda()
|
275 |
+
|
276 |
+
print(
|
277 |
+
f"[INFO] marching cubes result: {v.shape} ({v.min().item()}-{v.max().item()}), {f.shape}"
|
278 |
+
)
|
279 |
+
|
280 |
+
mesh = Mesh(v=v, f=f, device='cuda')
|
281 |
+
|
282 |
+
return mesh
|
283 |
+
|
284 |
+
def get_covariance(self, scaling_modifier = 1):
|
285 |
+
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)
|
286 |
+
|
287 |
+
def oneupSHdegree(self):
|
288 |
+
if self.active_sh_degree < self.max_sh_degree:
|
289 |
+
self.active_sh_degree += 1
|
290 |
+
|
291 |
+
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float, time_line: int):
|
292 |
+
self.spatial_lr_scale = spatial_lr_scale
|
293 |
+
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
|
294 |
+
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
|
295 |
+
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
|
296 |
+
features[:, :3, 0 ] = fused_color
|
297 |
+
features[:, 3:, 1:] = 0.0
|
298 |
+
|
299 |
+
print("Number of points at initialisation : ", fused_point_cloud.shape[0])
|
300 |
+
|
301 |
+
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
|
302 |
+
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
|
303 |
+
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
|
304 |
+
rots[:, 0] = 1
|
305 |
+
|
306 |
+
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))
|
307 |
+
|
308 |
+
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
|
309 |
+
self._deformation = self._deformation.to("cuda")
|
310 |
+
# self.grid = self.grid.to("cuda")
|
311 |
+
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
|
312 |
+
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
|
313 |
+
self._scaling = nn.Parameter(scales.requires_grad_(True))
|
314 |
+
self._rotation = nn.Parameter(rots.requires_grad_(True))
|
315 |
+
self._opacity = nn.Parameter(opacities.requires_grad_(True))
|
316 |
+
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
|
317 |
+
self._deformation_table = torch.gt(torch.ones((self.get_xyz.shape[0]),device="cuda"),0)
|
318 |
+
|
319 |
+
def training_setup(self, training_args):
|
320 |
+
self.percent_dense = training_args.percent_dense
|
321 |
+
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
322 |
+
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
323 |
+
self._deformation_accum = torch.zeros((self.get_xyz.shape[0],3),device="cuda")
|
324 |
+
self.T = training_args.batch_size
|
325 |
+
|
326 |
+
if training_args.optimize_gaussians:
|
327 |
+
l = [
|
328 |
+
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"},
|
329 |
+
{'params': list(self._deformation.get_mlp_parameters()), 'lr': training_args.deformation_lr_init * self.spatial_lr_scale, "name": "deformation"},
|
330 |
+
{'params': list(self._deformation.get_grid_parameters()), 'lr': training_args.grid_lr_init * self.spatial_lr_scale, "name": "grid"},
|
331 |
+
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
|
332 |
+
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
|
333 |
+
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
|
334 |
+
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"},
|
335 |
+
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}
|
336 |
+
]
|
337 |
+
else:
|
338 |
+
l = [
|
339 |
+
{'params': list(self._deformation.get_mlp_parameters()), 'lr': training_args.deformation_lr_init * self.spatial_lr_scale, "name": "deformation"},
|
340 |
+
{'params': list(self._deformation.get_grid_parameters()), 'lr': training_args.grid_lr_init * self.spatial_lr_scale, "name": "grid"},
|
341 |
+
]
|
342 |
+
|
343 |
+
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
|
344 |
+
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
|
345 |
+
lr_final=training_args.position_lr_final*self.spatial_lr_scale,
|
346 |
+
lr_delay_mult=training_args.position_lr_delay_mult,
|
347 |
+
max_steps=training_args.position_lr_max_steps)
|
348 |
+
self.deformation_scheduler_args = get_expon_lr_func(lr_init=training_args.deformation_lr_init*self.spatial_lr_scale,
|
349 |
+
lr_final=training_args.deformation_lr_final*self.spatial_lr_scale,
|
350 |
+
lr_delay_mult=training_args.deformation_lr_delay_mult,
|
351 |
+
max_steps=training_args.position_lr_max_steps)
|
352 |
+
self.grid_scheduler_args = get_expon_lr_func(lr_init=training_args.grid_lr_init*self.spatial_lr_scale,
|
353 |
+
lr_final=training_args.grid_lr_final*self.spatial_lr_scale,
|
354 |
+
lr_delay_mult=training_args.deformation_lr_delay_mult,
|
355 |
+
max_steps=training_args.position_lr_max_steps)
|
356 |
+
|
357 |
+
def update_learning_rate(self, iteration):
|
358 |
+
''' Learning rate scheduling per step '''
|
359 |
+
for param_group in self.optimizer.param_groups:
|
360 |
+
if param_group["name"] == "xyz":
|
361 |
+
lr = self.xyz_scheduler_args(iteration)
|
362 |
+
param_group['lr'] = lr
|
363 |
+
# return lr
|
364 |
+
if "grid" in param_group["name"]:
|
365 |
+
lr = self.grid_scheduler_args(iteration)
|
366 |
+
param_group['lr'] = lr
|
367 |
+
# return lr
|
368 |
+
elif param_group["name"] == "deformation":
|
369 |
+
lr = self.deformation_scheduler_args(iteration)
|
370 |
+
param_group['lr'] = lr
|
371 |
+
# return lr
|
372 |
+
|
373 |
+
def construct_list_of_attributes(self):
|
374 |
+
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
|
375 |
+
# All channels except the 3 DC
|
376 |
+
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
|
377 |
+
l.append('f_dc_{}'.format(i))
|
378 |
+
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
|
379 |
+
l.append('f_rest_{}'.format(i))
|
380 |
+
l.append('opacity')
|
381 |
+
for i in range(self._scaling.shape[1]):
|
382 |
+
l.append('scale_{}'.format(i))
|
383 |
+
for i in range(self._rotation.shape[1]):
|
384 |
+
l.append('rot_{}'.format(i))
|
385 |
+
return l
|
386 |
+
def compute_deformation(self,time):
|
387 |
+
|
388 |
+
deform = self._deformation[:,:,:time].sum(dim=-1)
|
389 |
+
xyz = self._xyz + deform
|
390 |
+
return xyz
|
391 |
+
|
392 |
+
def load_model(self, path, name):
|
393 |
+
print("loading model from exists{}".format(path))
|
394 |
+
weight_dict = torch.load(os.path.join(path, name+"_deformation.pth"),map_location="cuda")
|
395 |
+
self._deformation.load_state_dict(weight_dict)
|
396 |
+
self._deformation = self._deformation.to("cuda")
|
397 |
+
self._deformation_table = torch.gt(torch.ones((self.get_xyz.shape[0]),device="cuda"),0)
|
398 |
+
self._deformation_accum = torch.zeros((self.get_xyz.shape[0],3),device="cuda")
|
399 |
+
if os.path.exists(os.path.join(path, name+"_deformation_table.pth")):
|
400 |
+
self._deformation_table = torch.load(os.path.join(path, name+"_deformation_table.pth"),map_location="cuda")
|
401 |
+
if os.path.exists(os.path.join(path,name+"_deformation_accum.pth")):
|
402 |
+
self._deformation_accum = torch.load(os.path.join(path, name+"_deformation_accum.pth"),map_location="cuda")
|
403 |
+
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
|
404 |
+
|
405 |
+
def save_deformation(self, path, name):
|
406 |
+
torch.save(self._deformation.state_dict(),os.path.join(path, name+"_deformation.pth"))
|
407 |
+
torch.save(self._deformation_table,os.path.join(path, name+"_deformation_table.pth"))
|
408 |
+
torch.save(self._deformation_accum,os.path.join(path, name+"_deformation_accum.pth"))
|
409 |
+
|
410 |
+
def save_ply(self, path):
|
411 |
+
mkdir_p(os.path.dirname(path))
|
412 |
+
|
413 |
+
xyz = self._xyz.detach().cpu().numpy()
|
414 |
+
normals = np.zeros_like(xyz)
|
415 |
+
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
416 |
+
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
417 |
+
opacities = self._opacity.detach().cpu().numpy()
|
418 |
+
scale = self._scaling.detach().cpu().numpy()
|
419 |
+
rotation = self._rotation.detach().cpu().numpy()
|
420 |
+
|
421 |
+
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
|
422 |
+
|
423 |
+
elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
424 |
+
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
|
425 |
+
elements[:] = list(map(tuple, attributes))
|
426 |
+
el = PlyElement.describe(elements, 'vertex')
|
427 |
+
PlyData([el]).write(path)
|
428 |
+
|
429 |
+
def save_frame_ply(self, path, t):
|
430 |
+
mkdir_p(os.path.dirname(path))
|
431 |
+
|
432 |
+
xyzs, rotation, scale, opacities = self.get_deformed_everything(t)
|
433 |
+
|
434 |
+
xyz = xyzs.detach().cpu().numpy()
|
435 |
+
normals = np.zeros_like(xyz)
|
436 |
+
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
437 |
+
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
438 |
+
opacities = opacities.detach().cpu().numpy()
|
439 |
+
scale = scale.detach().cpu().numpy()
|
440 |
+
rotation = rotation.detach().cpu().numpy()
|
441 |
+
|
442 |
+
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
|
443 |
+
|
444 |
+
elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
445 |
+
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
|
446 |
+
elements[:] = list(map(tuple, attributes))
|
447 |
+
el = PlyElement.describe(elements, 'vertex')
|
448 |
+
PlyData([el]).write(path)
|
449 |
+
# def save_frame_ply(self, path, t):
|
450 |
+
# mkdir_p(os.path.dirname(path))
|
451 |
+
|
452 |
+
# xyz = self._xyz.detach().cpu().numpy()
|
453 |
+
# normals = np.zeros_like(xyz)
|
454 |
+
# f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
455 |
+
# f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
456 |
+
# opacities = self._opacity.detach().cpu().numpy()
|
457 |
+
# scale = self._scaling.detach().cpu().numpy()
|
458 |
+
# rotation = self._rotation.detach().cpu().numpy()
|
459 |
+
|
460 |
+
# dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
|
461 |
+
|
462 |
+
# elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
463 |
+
# attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
|
464 |
+
# elements[:] = list(map(tuple, attributes))
|
465 |
+
# el = PlyElement.describe(elements, 'vertex')
|
466 |
+
# PlyData([el]).write(path)
|
467 |
+
|
468 |
+
def reset_opacity(self):
|
469 |
+
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
|
470 |
+
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
|
471 |
+
self._opacity = optimizable_tensors["opacity"]
|
472 |
+
|
473 |
+
def load_ply(self, path):
|
474 |
+
self.spatial_lr_scale = 1
|
475 |
+
plydata = PlyData.read(path)
|
476 |
+
|
477 |
+
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
|
478 |
+
np.asarray(plydata.elements[0]["y"]),
|
479 |
+
np.asarray(plydata.elements[0]["z"])), axis=1)
|
480 |
+
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
|
481 |
+
|
482 |
+
features_dc = np.zeros((xyz.shape[0], 3, 1))
|
483 |
+
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
|
484 |
+
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
|
485 |
+
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
|
486 |
+
|
487 |
+
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
|
488 |
+
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
|
489 |
+
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
|
490 |
+
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
|
491 |
+
for idx, attr_name in enumerate(extra_f_names):
|
492 |
+
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
493 |
+
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
|
494 |
+
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))
|
495 |
+
|
496 |
+
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
|
497 |
+
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
|
498 |
+
scales = np.zeros((xyz.shape[0], len(scale_names)))
|
499 |
+
for idx, attr_name in enumerate(scale_names):
|
500 |
+
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
501 |
+
|
502 |
+
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
|
503 |
+
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
|
504 |
+
rots = np.zeros((xyz.shape[0], len(rot_names)))
|
505 |
+
for idx, attr_name in enumerate(rot_names):
|
506 |
+
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
507 |
+
|
508 |
+
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
|
509 |
+
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
|
510 |
+
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
|
511 |
+
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
|
512 |
+
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
|
513 |
+
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))
|
514 |
+
self.active_sh_degree = self.max_sh_degree
|
515 |
+
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
|
516 |
+
self._deformation = self._deformation.to("cuda")
|
517 |
+
self._deformation_table = torch.gt(torch.ones((self.get_xyz.shape[0]),device="cuda"),0) # everything deformed
|
518 |
+
|
519 |
+
print(self._xyz.shape)
|
520 |
+
|
521 |
+
|
522 |
+
def replace_tensor_to_optimizer(self, tensor, name):
|
523 |
+
optimizable_tensors = {}
|
524 |
+
for group in self.optimizer.param_groups:
|
525 |
+
if group["name"] == name:
|
526 |
+
stored_state = self.optimizer.state.get(group['params'][0], None)
|
527 |
+
stored_state["exp_avg"] = torch.zeros_like(tensor)
|
528 |
+
stored_state["exp_avg_sq"] = torch.zeros_like(tensor)
|
529 |
+
|
530 |
+
del self.optimizer.state[group['params'][0]]
|
531 |
+
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
|
532 |
+
self.optimizer.state[group['params'][0]] = stored_state
|
533 |
+
|
534 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
535 |
+
return optimizable_tensors
|
536 |
+
|
537 |
+
def _prune_optimizer(self, mask):
|
538 |
+
optimizable_tensors = {}
|
539 |
+
for group in self.optimizer.param_groups:
|
540 |
+
if len(group["params"]) > 1:
|
541 |
+
continue
|
542 |
+
stored_state = self.optimizer.state.get(group['params'][0], None)
|
543 |
+
if stored_state is not None:
|
544 |
+
stored_state["exp_avg"] = stored_state["exp_avg"][mask]
|
545 |
+
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]
|
546 |
+
|
547 |
+
del self.optimizer.state[group['params'][0]]
|
548 |
+
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
|
549 |
+
self.optimizer.state[group['params'][0]] = stored_state
|
550 |
+
|
551 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
552 |
+
else:
|
553 |
+
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
|
554 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
555 |
+
return optimizable_tensors
|
556 |
+
|
557 |
+
def prune_points(self, mask):
|
558 |
+
valid_points_mask = ~mask
|
559 |
+
optimizable_tensors = self._prune_optimizer(valid_points_mask)
|
560 |
+
|
561 |
+
self._xyz = optimizable_tensors["xyz"]
|
562 |
+
self._features_dc = optimizable_tensors["f_dc"]
|
563 |
+
self._features_rest = optimizable_tensors["f_rest"]
|
564 |
+
self._opacity = optimizable_tensors["opacity"]
|
565 |
+
self._scaling = optimizable_tensors["scaling"]
|
566 |
+
self._rotation = optimizable_tensors["rotation"]
|
567 |
+
self._deformation_accum = self._deformation_accum[valid_points_mask]
|
568 |
+
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]
|
569 |
+
self._deformation_table = self._deformation_table[valid_points_mask]
|
570 |
+
self.denom = self.denom[valid_points_mask]
|
571 |
+
self.max_radii2D = self.max_radii2D[valid_points_mask]
|
572 |
+
|
573 |
+
def cat_tensors_to_optimizer(self, tensors_dict):
|
574 |
+
optimizable_tensors = {}
|
575 |
+
for group in self.optimizer.param_groups:
|
576 |
+
if len(group["params"])>1:continue
|
577 |
+
assert len(group["params"]) == 1
|
578 |
+
extension_tensor = tensors_dict[group["name"]]
|
579 |
+
stored_state = self.optimizer.state.get(group['params'][0], None)
|
580 |
+
if stored_state is not None:
|
581 |
+
|
582 |
+
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
|
583 |
+
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)
|
584 |
+
|
585 |
+
del self.optimizer.state[group['params'][0]]
|
586 |
+
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
|
587 |
+
self.optimizer.state[group['params'][0]] = stored_state
|
588 |
+
|
589 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
590 |
+
else:
|
591 |
+
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
|
592 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
593 |
+
|
594 |
+
return optimizable_tensors
|
595 |
+
|
596 |
+
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_deformation_table):
|
597 |
+
d = {"xyz": new_xyz,
|
598 |
+
"f_dc": new_features_dc,
|
599 |
+
"f_rest": new_features_rest,
|
600 |
+
"opacity": new_opacities,
|
601 |
+
"scaling" : new_scaling,
|
602 |
+
"rotation" : new_rotation,
|
603 |
+
# "deformation": new_deformation
|
604 |
+
}
|
605 |
+
|
606 |
+
optimizable_tensors = self.cat_tensors_to_optimizer(d)
|
607 |
+
self._xyz = optimizable_tensors["xyz"]
|
608 |
+
self._features_dc = optimizable_tensors["f_dc"]
|
609 |
+
self._features_rest = optimizable_tensors["f_rest"]
|
610 |
+
self._opacity = optimizable_tensors["opacity"]
|
611 |
+
self._scaling = optimizable_tensors["scaling"]
|
612 |
+
self._rotation = optimizable_tensors["rotation"]
|
613 |
+
# self._deformation = optimizable_tensors["deformation"]
|
614 |
+
|
615 |
+
self._deformation_table = torch.cat([self._deformation_table,new_deformation_table],-1)
|
616 |
+
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
617 |
+
self._deformation_accum = torch.zeros((self.get_xyz.shape[0], 3), device="cuda")
|
618 |
+
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
619 |
+
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
|
620 |
+
|
621 |
+
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
|
622 |
+
n_init_points = self.get_xyz.shape[0]
|
623 |
+
# Extract points that satisfy the gradient condition
|
624 |
+
padded_grad = torch.zeros((n_init_points), device="cuda")
|
625 |
+
padded_grad[:grads.shape[0]] = grads.squeeze()
|
626 |
+
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
|
627 |
+
selected_pts_mask = torch.logical_and(selected_pts_mask,
|
628 |
+
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)
|
629 |
+
if not selected_pts_mask.any():
|
630 |
+
return
|
631 |
+
stds = self.get_scaling[selected_pts_mask].repeat(N,1)
|
632 |
+
means =torch.zeros((stds.size(0), 3),device="cuda")
|
633 |
+
samples = torch.normal(mean=means, std=stds)
|
634 |
+
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
|
635 |
+
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
|
636 |
+
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
|
637 |
+
new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
|
638 |
+
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
|
639 |
+
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
|
640 |
+
new_opacity = self._opacity[selected_pts_mask].repeat(N,1)
|
641 |
+
new_deformation_table = self._deformation_table[selected_pts_mask].repeat(N)
|
642 |
+
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation, new_deformation_table)
|
643 |
+
|
644 |
+
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
|
645 |
+
self.prune_points(prune_filter)
|
646 |
+
|
647 |
+
def densify_and_clone(self, grads, grad_threshold, scene_extent):
|
648 |
+
# Extract points that satisfy the gradient condition
|
649 |
+
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
|
650 |
+
selected_pts_mask = torch.logical_and(selected_pts_mask,
|
651 |
+
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
|
652 |
+
|
653 |
+
new_xyz = self._xyz[selected_pts_mask]
|
654 |
+
# - 0.001 * self._xyz.grad[selected_pts_mask]
|
655 |
+
new_features_dc = self._features_dc[selected_pts_mask]
|
656 |
+
new_features_rest = self._features_rest[selected_pts_mask]
|
657 |
+
new_opacities = self._opacity[selected_pts_mask]
|
658 |
+
new_scaling = self._scaling[selected_pts_mask]
|
659 |
+
new_rotation = self._rotation[selected_pts_mask]
|
660 |
+
new_deformation_table = self._deformation_table[selected_pts_mask]
|
661 |
+
|
662 |
+
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_deformation_table)
|
663 |
+
|
664 |
+
def prune(self, min_opacity, extent, max_screen_size):
|
665 |
+
prune_mask = (self.get_opacity < min_opacity).squeeze()
|
666 |
+
# prune_mask_2 = torch.logical_and(self.get_opacity <= inverse_sigmoid(0.101 , dtype=torch.float, device="cuda"), self.get_opacity >= inverse_sigmoid(0.999 , dtype=torch.float, device="cuda"))
|
667 |
+
# prune_mask = torch.logical_or(prune_mask, prune_mask_2)
|
668 |
+
# deformation_sum = abs(self._deformation).sum(dim=-1).mean(dim=-1)
|
669 |
+
# deformation_mask = (deformation_sum < torch.quantile(deformation_sum, torch.tensor([0.5]).to("cuda")))
|
670 |
+
# prune_mask = prune_mask & deformation_mask
|
671 |
+
if max_screen_size:
|
672 |
+
big_points_vs = self.max_radii2D > max_screen_size
|
673 |
+
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
|
674 |
+
prune_mask = torch.logical_or(prune_mask, big_points_vs)
|
675 |
+
|
676 |
+
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
|
677 |
+
self.prune_points(prune_mask)
|
678 |
+
|
679 |
+
torch.cuda.empty_cache()
|
680 |
+
def densify(self, max_grad, min_opacity, extent, max_screen_size):
|
681 |
+
grads = self.xyz_gradient_accum / self.denom
|
682 |
+
grads[grads.isnan()] = 0.0
|
683 |
+
|
684 |
+
self.densify_and_clone(grads, max_grad, extent)
|
685 |
+
self.densify_and_split(grads, max_grad, extent)
|
686 |
+
def standard_constaint(self):
|
687 |
+
|
688 |
+
means3D = self._xyz.detach()
|
689 |
+
scales = self._scaling.detach()
|
690 |
+
rotations = self._rotation.detach()
|
691 |
+
opacity = self._opacity.detach()
|
692 |
+
time = torch.tensor(0).to("cuda").repeat(means3D.shape[0],1)
|
693 |
+
means3D_deform, scales_deform, rotations_deform, _ = self._deformation(means3D, scales, rotations, opacity, time)
|
694 |
+
position_error = (means3D_deform - means3D)**2
|
695 |
+
rotation_error = (rotations_deform - rotations)**2
|
696 |
+
scaling_erorr = (scales_deform - scales)**2
|
697 |
+
return position_error.mean() + rotation_error.mean() + scaling_erorr.mean()
|
698 |
+
|
699 |
+
|
700 |
+
def add_densification_stats(self, viewspace_point_tensor, update_filter):
|
701 |
+
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor[update_filter,:2], dim=-1, keepdim=True)
|
702 |
+
self.denom[update_filter] += 1
|
703 |
+
@torch.no_grad()
|
704 |
+
def update_deformation_table(self,threshold):
|
705 |
+
# print("origin deformation point nums:",self._deformation_table.sum())
|
706 |
+
self._deformation_table = torch.gt(self._deformation_accum.max(dim=-1).values/100,threshold)
|
707 |
+
def print_deformation_weight_grad(self):
|
708 |
+
for name, weight in self._deformation.named_parameters():
|
709 |
+
if weight.requires_grad:
|
710 |
+
if weight.grad is None:
|
711 |
+
|
712 |
+
print(name," :",weight.grad)
|
713 |
+
else:
|
714 |
+
if weight.grad.mean() != 0:
|
715 |
+
print(name," :",weight.grad.mean(), weight.grad.min(), weight.grad.max())
|
716 |
+
print("-"*50)
|
717 |
+
def _plane_regulation(self):
|
718 |
+
multi_res_grids = self._deformation.deformation_net.grid.grids
|
719 |
+
total = 0
|
720 |
+
# model.grids is 6 x [1, rank * F_dim, reso, reso]
|
721 |
+
for grids in multi_res_grids:
|
722 |
+
if len(grids) == 3:
|
723 |
+
time_grids = []
|
724 |
+
else:
|
725 |
+
time_grids = [0,1,3]
|
726 |
+
for grid_id in time_grids:
|
727 |
+
total += compute_plane_smoothness(grids[grid_id])
|
728 |
+
return total
|
729 |
+
def _time_regulation(self):
|
730 |
+
multi_res_grids = self._deformation.deformation_net.grid.grids
|
731 |
+
total = 0
|
732 |
+
# model.grids is 6 x [1, rank * F_dim, reso, reso]
|
733 |
+
for grids in multi_res_grids:
|
734 |
+
if len(grids) == 3:
|
735 |
+
time_grids = []
|
736 |
+
else:
|
737 |
+
time_grids =[2, 4, 5]
|
738 |
+
for grid_id in time_grids:
|
739 |
+
total += compute_plane_smoothness(grids[grid_id])
|
740 |
+
return total
|
741 |
+
def _l1_regulation(self):
|
742 |
+
# model.grids is 6 x [1, rank * F_dim, reso, reso]
|
743 |
+
multi_res_grids = self._deformation.deformation_net.grid.grids
|
744 |
+
|
745 |
+
total = 0.0
|
746 |
+
for grids in multi_res_grids:
|
747 |
+
if len(grids) == 3:
|
748 |
+
continue
|
749 |
+
else:
|
750 |
+
# These are the spatiotemporal grids
|
751 |
+
spatiotemporal_grids = [2, 4, 5]
|
752 |
+
for grid_id in spatiotemporal_grids:
|
753 |
+
total += torch.abs(1 - grids[grid_id]).mean()
|
754 |
+
return total
|
755 |
+
def compute_regulation(self, time_smoothness_weight, l1_time_planes_weight, plane_tv_weight):
|
756 |
+
return plane_tv_weight * self._plane_regulation() + time_smoothness_weight * self._time_regulation() + l1_time_planes_weight * self._l1_regulation()
|
757 |
+
|
758 |
+
|
759 |
+
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
|
760 |
+
grads = self.xyz_gradient_accum / self.denom
|
761 |
+
grads[grads.isnan()] = 0.0
|
762 |
+
|
763 |
+
self.densify_and_clone(grads, max_grad, extent)
|
764 |
+
self.densify_and_split(grads, max_grad, extent)
|
765 |
+
|
766 |
+
prune_mask = (self.get_opacity < min_opacity).squeeze()
|
767 |
+
if max_screen_size:
|
768 |
+
big_points_vs = self.max_radii2D > max_screen_size
|
769 |
+
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
|
770 |
+
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
|
771 |
+
self.prune_points(prune_mask)
|
772 |
+
|
773 |
+
torch.cuda.empty_cache()
|
grid_put.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
def stride_from_shape(shape):
|
5 |
+
stride = [1]
|
6 |
+
for x in reversed(shape[1:]):
|
7 |
+
stride.append(stride[-1] * x)
|
8 |
+
return list(reversed(stride))
|
9 |
+
|
10 |
+
|
11 |
+
def scatter_add_nd(input, indices, values):
|
12 |
+
# input: [..., C], D dimension + C channel
|
13 |
+
# indices: [N, D], long
|
14 |
+
# values: [N, C]
|
15 |
+
|
16 |
+
D = indices.shape[-1]
|
17 |
+
C = input.shape[-1]
|
18 |
+
size = input.shape[:-1]
|
19 |
+
stride = stride_from_shape(size)
|
20 |
+
|
21 |
+
assert len(size) == D
|
22 |
+
|
23 |
+
input = input.view(-1, C) # [HW, C]
|
24 |
+
flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1) # [N]
|
25 |
+
|
26 |
+
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
|
27 |
+
|
28 |
+
return input.view(*size, C)
|
29 |
+
|
30 |
+
|
31 |
+
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
|
32 |
+
# input: [..., C], D dimension + C channel
|
33 |
+
# count: [..., 1], D dimension
|
34 |
+
# indices: [N, D], long
|
35 |
+
# values: [N, C]
|
36 |
+
|
37 |
+
D = indices.shape[-1]
|
38 |
+
C = input.shape[-1]
|
39 |
+
size = input.shape[:-1]
|
40 |
+
stride = stride_from_shape(size)
|
41 |
+
|
42 |
+
assert len(size) == D
|
43 |
+
|
44 |
+
input = input.view(-1, C) # [HW, C]
|
45 |
+
count = count.view(-1, 1)
|
46 |
+
|
47 |
+
flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1) # [N]
|
48 |
+
|
49 |
+
if weights is None:
|
50 |
+
weights = torch.ones_like(values[..., :1])
|
51 |
+
|
52 |
+
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
|
53 |
+
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
|
54 |
+
|
55 |
+
return input.view(*size, C), count.view(*size, 1)
|
56 |
+
|
57 |
+
def nearest_grid_put_2d(H, W, coords, values, return_count=False):
|
58 |
+
# coords: [N, 2], float in [-1, 1]
|
59 |
+
# values: [N, C]
|
60 |
+
|
61 |
+
C = values.shape[-1]
|
62 |
+
|
63 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
64 |
+
[H - 1, W - 1], dtype=torch.float32, device=coords.device
|
65 |
+
)
|
66 |
+
indices = indices.round().long() # [N, 2]
|
67 |
+
|
68 |
+
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
69 |
+
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
70 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
71 |
+
|
72 |
+
result, count = scatter_add_nd_with_count(result, count, indices, values, weights)
|
73 |
+
|
74 |
+
if return_count:
|
75 |
+
return result, count
|
76 |
+
|
77 |
+
mask = (count.squeeze(-1) > 0)
|
78 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
79 |
+
|
80 |
+
return result
|
81 |
+
|
82 |
+
|
83 |
+
def linear_grid_put_2d(H, W, coords, values, return_count=False):
|
84 |
+
# coords: [N, 2], float in [-1, 1]
|
85 |
+
# values: [N, C]
|
86 |
+
|
87 |
+
C = values.shape[-1]
|
88 |
+
|
89 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
90 |
+
[H - 1, W - 1], dtype=torch.float32, device=coords.device
|
91 |
+
)
|
92 |
+
indices_00 = indices.floor().long() # [N, 2]
|
93 |
+
indices_00[:, 0].clamp_(0, H - 2)
|
94 |
+
indices_00[:, 1].clamp_(0, W - 2)
|
95 |
+
indices_01 = indices_00 + torch.tensor(
|
96 |
+
[0, 1], dtype=torch.long, device=indices.device
|
97 |
+
)
|
98 |
+
indices_10 = indices_00 + torch.tensor(
|
99 |
+
[1, 0], dtype=torch.long, device=indices.device
|
100 |
+
)
|
101 |
+
indices_11 = indices_00 + torch.tensor(
|
102 |
+
[1, 1], dtype=torch.long, device=indices.device
|
103 |
+
)
|
104 |
+
|
105 |
+
h = indices[..., 0] - indices_00[..., 0].float()
|
106 |
+
w = indices[..., 1] - indices_00[..., 1].float()
|
107 |
+
w_00 = (1 - h) * (1 - w)
|
108 |
+
w_01 = (1 - h) * w
|
109 |
+
w_10 = h * (1 - w)
|
110 |
+
w_11 = h * w
|
111 |
+
|
112 |
+
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
113 |
+
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
114 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
115 |
+
|
116 |
+
result, count = scatter_add_nd_with_count(result, count, indices_00, values * w_00.unsqueeze(1), weights* w_00.unsqueeze(1))
|
117 |
+
result, count = scatter_add_nd_with_count(result, count, indices_01, values * w_01.unsqueeze(1), weights* w_01.unsqueeze(1))
|
118 |
+
result, count = scatter_add_nd_with_count(result, count, indices_10, values * w_10.unsqueeze(1), weights* w_10.unsqueeze(1))
|
119 |
+
result, count = scatter_add_nd_with_count(result, count, indices_11, values * w_11.unsqueeze(1), weights* w_11.unsqueeze(1))
|
120 |
+
|
121 |
+
if return_count:
|
122 |
+
return result, count
|
123 |
+
|
124 |
+
mask = (count.squeeze(-1) > 0)
|
125 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
126 |
+
|
127 |
+
return result
|
128 |
+
|
129 |
+
def mipmap_linear_grid_put_2d(H, W, coords, values, min_resolution=32, return_count=False):
|
130 |
+
# coords: [N, 2], float in [-1, 1]
|
131 |
+
# values: [N, C]
|
132 |
+
|
133 |
+
C = values.shape[-1]
|
134 |
+
|
135 |
+
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
136 |
+
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
137 |
+
|
138 |
+
cur_H, cur_W = H, W
|
139 |
+
|
140 |
+
while min(cur_H, cur_W) > min_resolution:
|
141 |
+
|
142 |
+
# try to fill the holes
|
143 |
+
mask = (count.squeeze(-1) == 0)
|
144 |
+
if not mask.any():
|
145 |
+
break
|
146 |
+
|
147 |
+
cur_result, cur_count = linear_grid_put_2d(cur_H, cur_W, coords, values, return_count=True)
|
148 |
+
result[mask] = result[mask] + F.interpolate(cur_result.permute(2,0,1).unsqueeze(0).contiguous(), (H, W), mode='bilinear', align_corners=False).squeeze(0).permute(1,2,0).contiguous()[mask]
|
149 |
+
count[mask] = count[mask] + F.interpolate(cur_count.view(1, 1, cur_H, cur_W), (H, W), mode='bilinear', align_corners=False).view(H, W, 1)[mask]
|
150 |
+
cur_H //= 2
|
151 |
+
cur_W //= 2
|
152 |
+
|
153 |
+
if return_count:
|
154 |
+
return result, count
|
155 |
+
|
156 |
+
mask = (count.squeeze(-1) > 0)
|
157 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
158 |
+
|
159 |
+
return result
|
160 |
+
|
161 |
+
def nearest_grid_put_3d(H, W, D, coords, values, return_count=False):
|
162 |
+
# coords: [N, 3], float in [-1, 1]
|
163 |
+
# values: [N, C]
|
164 |
+
|
165 |
+
C = values.shape[-1]
|
166 |
+
|
167 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
168 |
+
[H - 1, W - 1, D - 1], dtype=torch.float32, device=coords.device
|
169 |
+
)
|
170 |
+
indices = indices.round().long() # [N, 2]
|
171 |
+
|
172 |
+
result = torch.zeros(H, W, D, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
173 |
+
count = torch.zeros(H, W, D, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
174 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
175 |
+
|
176 |
+
result, count = scatter_add_nd_with_count(result, count, indices, values, weights)
|
177 |
+
|
178 |
+
if return_count:
|
179 |
+
return result, count
|
180 |
+
|
181 |
+
mask = (count.squeeze(-1) > 0)
|
182 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
183 |
+
|
184 |
+
return result
|
185 |
+
|
186 |
+
|
187 |
+
def linear_grid_put_3d(H, W, D, coords, values, return_count=False):
|
188 |
+
# coords: [N, 3], float in [-1, 1]
|
189 |
+
# values: [N, C]
|
190 |
+
|
191 |
+
C = values.shape[-1]
|
192 |
+
|
193 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
194 |
+
[H - 1, W - 1, D - 1], dtype=torch.float32, device=coords.device
|
195 |
+
)
|
196 |
+
indices_000 = indices.floor().long() # [N, 3]
|
197 |
+
indices_000[:, 0].clamp_(0, H - 2)
|
198 |
+
indices_000[:, 1].clamp_(0, W - 2)
|
199 |
+
indices_000[:, 2].clamp_(0, D - 2)
|
200 |
+
|
201 |
+
indices_001 = indices_000 + torch.tensor([0, 0, 1], dtype=torch.long, device=indices.device)
|
202 |
+
indices_010 = indices_000 + torch.tensor([0, 1, 0], dtype=torch.long, device=indices.device)
|
203 |
+
indices_011 = indices_000 + torch.tensor([0, 1, 1], dtype=torch.long, device=indices.device)
|
204 |
+
indices_100 = indices_000 + torch.tensor([1, 0, 0], dtype=torch.long, device=indices.device)
|
205 |
+
indices_101 = indices_000 + torch.tensor([1, 0, 1], dtype=torch.long, device=indices.device)
|
206 |
+
indices_110 = indices_000 + torch.tensor([1, 1, 0], dtype=torch.long, device=indices.device)
|
207 |
+
indices_111 = indices_000 + torch.tensor([1, 1, 1], dtype=torch.long, device=indices.device)
|
208 |
+
|
209 |
+
h = indices[..., 0] - indices_000[..., 0].float()
|
210 |
+
w = indices[..., 1] - indices_000[..., 1].float()
|
211 |
+
d = indices[..., 2] - indices_000[..., 2].float()
|
212 |
+
|
213 |
+
w_000 = (1 - h) * (1 - w) * (1 - d)
|
214 |
+
w_001 = (1 - h) * w * (1 - d)
|
215 |
+
w_010 = h * (1 - w) * (1 - d)
|
216 |
+
w_011 = h * w * (1 - d)
|
217 |
+
w_100 = (1 - h) * (1 - w) * d
|
218 |
+
w_101 = (1 - h) * w * d
|
219 |
+
w_110 = h * (1 - w) * d
|
220 |
+
w_111 = h * w * d
|
221 |
+
|
222 |
+
result = torch.zeros(H, W, D, C, device=values.device, dtype=values.dtype) # [H, W, D, C]
|
223 |
+
count = torch.zeros(H, W, D, 1, device=values.device, dtype=values.dtype) # [H, W, D, 1]
|
224 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
225 |
+
|
226 |
+
result, count = scatter_add_nd_with_count(result, count, indices_000, values * w_000.unsqueeze(1), weights * w_000.unsqueeze(1))
|
227 |
+
result, count = scatter_add_nd_with_count(result, count, indices_001, values * w_001.unsqueeze(1), weights * w_001.unsqueeze(1))
|
228 |
+
result, count = scatter_add_nd_with_count(result, count, indices_010, values * w_010.unsqueeze(1), weights * w_010.unsqueeze(1))
|
229 |
+
result, count = scatter_add_nd_with_count(result, count, indices_011, values * w_011.unsqueeze(1), weights * w_011.unsqueeze(1))
|
230 |
+
result, count = scatter_add_nd_with_count(result, count, indices_100, values * w_100.unsqueeze(1), weights * w_100.unsqueeze(1))
|
231 |
+
result, count = scatter_add_nd_with_count(result, count, indices_101, values * w_101.unsqueeze(1), weights * w_101.unsqueeze(1))
|
232 |
+
result, count = scatter_add_nd_with_count(result, count, indices_110, values * w_110.unsqueeze(1), weights * w_110.unsqueeze(1))
|
233 |
+
result, count = scatter_add_nd_with_count(result, count, indices_111, values * w_111.unsqueeze(1), weights * w_111.unsqueeze(1))
|
234 |
+
|
235 |
+
if return_count:
|
236 |
+
return result, count
|
237 |
+
|
238 |
+
mask = (count.squeeze(-1) > 0)
|
239 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
240 |
+
|
241 |
+
return result
|
242 |
+
|
243 |
+
def mipmap_linear_grid_put_3d(H, W, D, coords, values, min_resolution=32, return_count=False):
|
244 |
+
# coords: [N, 3], float in [-1, 1]
|
245 |
+
# values: [N, C]
|
246 |
+
|
247 |
+
C = values.shape[-1]
|
248 |
+
|
249 |
+
result = torch.zeros(H, W, D, C, device=values.device, dtype=values.dtype) # [H, W, D, C]
|
250 |
+
count = torch.zeros(H, W, D, 1, device=values.device, dtype=values.dtype) # [H, W, D, 1]
|
251 |
+
cur_H, cur_W, cur_D = H, W, D
|
252 |
+
|
253 |
+
while min(min(cur_H, cur_W), cur_D) > min_resolution:
|
254 |
+
|
255 |
+
# try to fill the holes
|
256 |
+
mask = (count.squeeze(-1) == 0)
|
257 |
+
if not mask.any():
|
258 |
+
break
|
259 |
+
|
260 |
+
cur_result, cur_count = linear_grid_put_3d(cur_H, cur_W, cur_D, coords, values, return_count=True)
|
261 |
+
result[mask] = result[mask] + F.interpolate(cur_result.permute(3,0,1,2).unsqueeze(0).contiguous(), (H, W, D), mode='trilinear', align_corners=False).squeeze(0).permute(1,2,3,0).contiguous()[mask]
|
262 |
+
count[mask] = count[mask] + F.interpolate(cur_count.view(1, 1, cur_H, cur_W, cur_D), (H, W, D), mode='trilinear', align_corners=False).view(H, W, D, 1)[mask]
|
263 |
+
cur_H //= 2
|
264 |
+
cur_W //= 2
|
265 |
+
cur_D //= 2
|
266 |
+
|
267 |
+
if return_count:
|
268 |
+
return result, count
|
269 |
+
|
270 |
+
mask = (count.squeeze(-1) > 0)
|
271 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
272 |
+
|
273 |
+
return result
|
274 |
+
|
275 |
+
|
276 |
+
def grid_put(shape, coords, values, mode='linear-mipmap', min_resolution=32, return_raw=False):
|
277 |
+
# shape: [D], list/tuple
|
278 |
+
# coords: [N, D], float in [-1, 1]
|
279 |
+
# values: [N, C]
|
280 |
+
|
281 |
+
D = len(shape)
|
282 |
+
assert D in [2, 3], f'only support D == 2 or 3, but got D == {D}'
|
283 |
+
|
284 |
+
if mode == 'nearest':
|
285 |
+
if D == 2:
|
286 |
+
return nearest_grid_put_2d(*shape, coords, values, return_raw)
|
287 |
+
else:
|
288 |
+
return nearest_grid_put_3d(*shape, coords, values, return_raw)
|
289 |
+
elif mode == 'linear':
|
290 |
+
if D == 2:
|
291 |
+
return linear_grid_put_2d(*shape, coords, values, return_raw)
|
292 |
+
else:
|
293 |
+
return linear_grid_put_3d(*shape, coords, values, return_raw)
|
294 |
+
elif mode == 'linear-mipmap':
|
295 |
+
if D == 2:
|
296 |
+
return mipmap_linear_grid_put_2d(*shape, coords, values, min_resolution, return_raw)
|
297 |
+
else:
|
298 |
+
return mipmap_linear_grid_put_3d(*shape, coords, values, min_resolution, return_raw)
|
299 |
+
else:
|
300 |
+
raise NotImplementedError(f"got mode {mode}")
|
gs_renderer_4d.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from diff_gaussian_rasterization import (
|
7 |
+
GaussianRasterizationSettings,
|
8 |
+
GaussianRasterizer,
|
9 |
+
)
|
10 |
+
|
11 |
+
from sh_utils import eval_sh, SH2RGB, RGB2SH
|
12 |
+
|
13 |
+
from gaussian_model_4d import GaussianModel, BasicPointCloud
|
14 |
+
|
15 |
+
def getProjectionMatrix(znear, zfar, fovX, fovY):
|
16 |
+
tanHalfFovY = math.tan((fovY / 2))
|
17 |
+
tanHalfFovX = math.tan((fovX / 2))
|
18 |
+
|
19 |
+
P = torch.zeros(4, 4)
|
20 |
+
|
21 |
+
z_sign = 1.0
|
22 |
+
|
23 |
+
P[0, 0] = 1 / tanHalfFovX
|
24 |
+
P[1, 1] = 1 / tanHalfFovY
|
25 |
+
P[3, 2] = z_sign
|
26 |
+
P[2, 2] = z_sign * zfar / (zfar - znear)
|
27 |
+
P[2, 3] = -(zfar * znear) / (zfar - znear)
|
28 |
+
return P
|
29 |
+
|
30 |
+
|
31 |
+
class MiniCam:
|
32 |
+
def __init__(self, c2w, width, height, fovy, fovx, znear, zfar, time=0, gs_convention=True):
|
33 |
+
# c2w (pose) should be in NeRF convention.
|
34 |
+
|
35 |
+
self.image_width = width
|
36 |
+
self.image_height = height
|
37 |
+
self.FoVy = fovy
|
38 |
+
self.FoVx = fovx
|
39 |
+
self.znear = znear
|
40 |
+
self.zfar = zfar
|
41 |
+
|
42 |
+
w2c = np.linalg.inv(c2w)
|
43 |
+
|
44 |
+
if gs_convention:
|
45 |
+
# rectify...
|
46 |
+
w2c[1:3, :3] *= -1
|
47 |
+
w2c[:3, 3] *= -1
|
48 |
+
|
49 |
+
self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda()
|
50 |
+
self.projection_matrix = (
|
51 |
+
getProjectionMatrix(
|
52 |
+
znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy
|
53 |
+
)
|
54 |
+
.transpose(0, 1)
|
55 |
+
.cuda()
|
56 |
+
)
|
57 |
+
self.full_proj_transform = self.world_view_transform @ self.projection_matrix
|
58 |
+
self.camera_center = -torch.tensor(c2w[:3, 3]).cuda()
|
59 |
+
|
60 |
+
self.time = time
|
61 |
+
|
62 |
+
|
63 |
+
class Renderer:
|
64 |
+
def __init__(self, opt, sh_degree=3, white_background=True, radius=1):
|
65 |
+
|
66 |
+
self.sh_degree = sh_degree
|
67 |
+
self.white_background = white_background
|
68 |
+
self.radius = radius
|
69 |
+
self.opt = opt
|
70 |
+
self.T = self.opt.batch_size
|
71 |
+
|
72 |
+
self.gaussians = GaussianModel(sh_degree, opt.deformation)
|
73 |
+
|
74 |
+
self.bg_color = torch.tensor(
|
75 |
+
[1, 1, 1] if white_background else [0, 0, 0],
|
76 |
+
dtype=torch.float32,
|
77 |
+
device="cuda",
|
78 |
+
)
|
79 |
+
self.means3D_deform_T = None
|
80 |
+
self.opacity_deform_T = None
|
81 |
+
self.scales_deform_T = None
|
82 |
+
self.rotations_deform_T = None
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
def initialize(self, input=None, num_pts=5000, radius=0.5):
|
87 |
+
# load checkpoint
|
88 |
+
if input is None:
|
89 |
+
# init from random point cloud
|
90 |
+
|
91 |
+
phis = np.random.random((num_pts,)) * 2 * np.pi
|
92 |
+
costheta = np.random.random((num_pts,)) * 2 - 1
|
93 |
+
thetas = np.arccos(costheta)
|
94 |
+
mu = np.random.random((num_pts,))
|
95 |
+
radius = radius * np.cbrt(mu)
|
96 |
+
x = radius * np.sin(thetas) * np.cos(phis)
|
97 |
+
y = radius * np.sin(thetas) * np.sin(phis)
|
98 |
+
z = radius * np.cos(thetas)
|
99 |
+
xyz = np.stack((x, y, z), axis=1)
|
100 |
+
# xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
|
101 |
+
|
102 |
+
shs = np.random.random((num_pts, 3)) / 255.0
|
103 |
+
pcd = BasicPointCloud(
|
104 |
+
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
|
105 |
+
)
|
106 |
+
# self.gaussians.create_from_pcd(pcd, 10)
|
107 |
+
self.gaussians.create_from_pcd(pcd, 10, 1)
|
108 |
+
elif isinstance(input, BasicPointCloud):
|
109 |
+
# load from a provided pcd
|
110 |
+
self.gaussians.create_from_pcd(input, 1)
|
111 |
+
else:
|
112 |
+
# load from saved ply
|
113 |
+
self.gaussians.load_ply(input)
|
114 |
+
|
115 |
+
def prepare_render(
|
116 |
+
self,
|
117 |
+
):
|
118 |
+
means3D = self.gaussians.get_xyz
|
119 |
+
opacity = self.gaussians._opacity
|
120 |
+
scales = self.gaussians._scaling
|
121 |
+
rotations = self.gaussians._rotation
|
122 |
+
|
123 |
+
means3D_T = []
|
124 |
+
opacity_T = []
|
125 |
+
scales_T = []
|
126 |
+
rotations_T = []
|
127 |
+
time_T = []
|
128 |
+
|
129 |
+
for t in range(self.T):
|
130 |
+
time = torch.tensor(t).to(means3D.device).repeat(means3D.shape[0],1)
|
131 |
+
time = ((time.float() / self.T) - 0.5) * 2
|
132 |
+
|
133 |
+
means3D_T.append(means3D)
|
134 |
+
opacity_T.append(opacity)
|
135 |
+
scales_T.append(scales)
|
136 |
+
rotations_T.append(rotations)
|
137 |
+
time_T.append(time)
|
138 |
+
|
139 |
+
means3D_T = torch.cat(means3D_T)
|
140 |
+
opacity_T = torch.cat(opacity_T)
|
141 |
+
scales_T = torch.cat(scales_T)
|
142 |
+
rotations_T = torch.cat(rotations_T)
|
143 |
+
time_T = torch.cat(time_T)
|
144 |
+
|
145 |
+
|
146 |
+
means3D_deform_T, scales_deform_T, rotations_deform_T, opacity_deform_T = self.gaussians._deformation(means3D_T, scales_T,
|
147 |
+
rotations_T, opacity_T,
|
148 |
+
time_T) # time is not none
|
149 |
+
self.means3D_deform_T = means3D_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1])
|
150 |
+
self.opacity_deform_T = opacity_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1])
|
151 |
+
self.scales_deform_T = scales_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1])
|
152 |
+
self.rotations_deform_T = rotations_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1])
|
153 |
+
|
154 |
+
|
155 |
+
def render(
|
156 |
+
self,
|
157 |
+
viewpoint_camera,
|
158 |
+
scaling_modifier=1.0,
|
159 |
+
bg_color=None,
|
160 |
+
override_color=None,
|
161 |
+
compute_cov3D_python=False,
|
162 |
+
convert_SHs_python=False,
|
163 |
+
):
|
164 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
165 |
+
screenspace_points = (
|
166 |
+
torch.zeros_like(
|
167 |
+
self.gaussians.get_xyz,
|
168 |
+
dtype=self.gaussians.get_xyz.dtype,
|
169 |
+
requires_grad=True,
|
170 |
+
device="cuda",
|
171 |
+
)
|
172 |
+
+ 0
|
173 |
+
)
|
174 |
+
try:
|
175 |
+
screenspace_points.retain_grad()
|
176 |
+
except:
|
177 |
+
pass
|
178 |
+
|
179 |
+
# Set up rasterization configuration
|
180 |
+
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
181 |
+
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
182 |
+
|
183 |
+
raster_settings = GaussianRasterizationSettings(
|
184 |
+
image_height=int(viewpoint_camera.image_height),
|
185 |
+
image_width=int(viewpoint_camera.image_width),
|
186 |
+
tanfovx=tanfovx,
|
187 |
+
tanfovy=tanfovy,
|
188 |
+
bg=self.bg_color if bg_color is None else bg_color,
|
189 |
+
scale_modifier=scaling_modifier,
|
190 |
+
viewmatrix=viewpoint_camera.world_view_transform,
|
191 |
+
projmatrix=viewpoint_camera.full_proj_transform,
|
192 |
+
sh_degree=self.gaussians.active_sh_degree,
|
193 |
+
campos=viewpoint_camera.camera_center,
|
194 |
+
prefiltered=False,
|
195 |
+
debug=False,
|
196 |
+
)
|
197 |
+
|
198 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
199 |
+
|
200 |
+
means3D = self.gaussians.get_xyz
|
201 |
+
time = torch.tensor(viewpoint_camera.time).to(means3D.device).repeat(means3D.shape[0],1)
|
202 |
+
time = ((time.float() / self.T) - 0.5) * 2
|
203 |
+
|
204 |
+
means2D = screenspace_points
|
205 |
+
opacity = self.gaussians._opacity
|
206 |
+
|
207 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
208 |
+
# scaling / rotation by the rasterizer.
|
209 |
+
scales = None
|
210 |
+
rotations = None
|
211 |
+
cov3D_precomp = None
|
212 |
+
if compute_cov3D_python:
|
213 |
+
cov3D_precomp = self.gaussians.get_covariance(scaling_modifier)
|
214 |
+
else:
|
215 |
+
scales = self.gaussians._scaling
|
216 |
+
rotations = self.gaussians._rotation
|
217 |
+
|
218 |
+
means3D_deform, scales_deform, rotations_deform, opacity_deform = self.means3D_deform_T[viewpoint_camera.time], self.scales_deform_T[viewpoint_camera.time], self.rotations_deform_T[viewpoint_camera.time], self.opacity_deform_T[viewpoint_camera.time]
|
219 |
+
|
220 |
+
|
221 |
+
means3D_final = means3D + means3D_deform
|
222 |
+
rotations_final = rotations + rotations_deform
|
223 |
+
scales_final = scales + scales_deform
|
224 |
+
opacity_final = opacity + opacity_deform
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
scales_final = self.gaussians.scaling_activation(scales_final)
|
229 |
+
rotations_final = self.gaussians.rotation_activation(rotations_final)
|
230 |
+
opacity = self.gaussians.opacity_activation(opacity)
|
231 |
+
|
232 |
+
|
233 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
234 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
235 |
+
shs = None
|
236 |
+
colors_precomp = None
|
237 |
+
if colors_precomp is None:
|
238 |
+
if convert_SHs_python:
|
239 |
+
shs_view = self.gaussians.get_features.transpose(1, 2).view(
|
240 |
+
-1, 3, (self.gaussians.max_sh_degree + 1) ** 2
|
241 |
+
)
|
242 |
+
dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat(
|
243 |
+
self.gaussians.get_features.shape[0], 1
|
244 |
+
)
|
245 |
+
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
|
246 |
+
sh2rgb = eval_sh(
|
247 |
+
self.gaussians.active_sh_degree, shs_view, dir_pp_normalized
|
248 |
+
)
|
249 |
+
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
250 |
+
else:
|
251 |
+
shs = self.gaussians.get_features
|
252 |
+
else:
|
253 |
+
colors_precomp = override_color
|
254 |
+
|
255 |
+
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
|
256 |
+
means3D = means3D_final,
|
257 |
+
means2D = means2D,
|
258 |
+
shs = shs,
|
259 |
+
colors_precomp = colors_precomp,
|
260 |
+
opacities = opacity,
|
261 |
+
scales = scales_final,
|
262 |
+
rotations = rotations_final,
|
263 |
+
cov3D_precomp = cov3D_precomp)
|
264 |
+
|
265 |
+
|
266 |
+
rendered_image = rendered_image.clamp(0, 1)
|
267 |
+
|
268 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
269 |
+
# They will be excluded from value updates used in the splitting criteria.
|
270 |
+
return {
|
271 |
+
"image": rendered_image,
|
272 |
+
"depth": rendered_depth,
|
273 |
+
"alpha": rendered_alpha,
|
274 |
+
"viewspace_points": screenspace_points,
|
275 |
+
"visibility_filter": radii > 0,
|
276 |
+
"radii": radii,
|
277 |
+
}
|
guidance/imagedream_utils.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision.transforms.functional as TF
|
6 |
+
|
7 |
+
from imagedream.camera_utils import get_camera, convert_opengl_to_blender, normalize_camera
|
8 |
+
from imagedream.model_zoo import build_model
|
9 |
+
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
|
10 |
+
|
11 |
+
from diffusers import DDIMScheduler
|
12 |
+
|
13 |
+
class ImageDream(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
device,
|
17 |
+
model_name='sd-v2.1-base-4view-ipmv',
|
18 |
+
ckpt_path=None,
|
19 |
+
t_range=[0.02, 0.98],
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
self.device = device
|
24 |
+
self.model_name = model_name
|
25 |
+
self.ckpt_path = ckpt_path
|
26 |
+
|
27 |
+
self.model = build_model(self.model_name, ckpt_path=self.ckpt_path).eval().to(self.device)
|
28 |
+
self.model.device = device
|
29 |
+
for p in self.model.parameters():
|
30 |
+
p.requires_grad_(False)
|
31 |
+
|
32 |
+
self.dtype = torch.float32
|
33 |
+
|
34 |
+
self.num_train_timesteps = 1000
|
35 |
+
self.min_step = int(self.num_train_timesteps * t_range[0])
|
36 |
+
self.max_step = int(self.num_train_timesteps * t_range[1])
|
37 |
+
|
38 |
+
self.image_embeddings = {}
|
39 |
+
self.embeddings = {}
|
40 |
+
|
41 |
+
self.scheduler = DDIMScheduler.from_pretrained(
|
42 |
+
"stabilityai/stable-diffusion-2-1-base", subfolder="scheduler", torch_dtype=self.dtype
|
43 |
+
)
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def get_image_text_embeds(self, image, prompts, negative_prompts):
|
47 |
+
|
48 |
+
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
49 |
+
image_pil = TF.to_pil_image(image[0])
|
50 |
+
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1) # [5, 257, 1280]
|
51 |
+
self.image_embeddings['pos'] = image_embeddings
|
52 |
+
self.image_embeddings['neg'] = torch.zeros_like(image_embeddings)
|
53 |
+
|
54 |
+
self.image_embeddings['ip_img'] = self.encode_imgs(image)
|
55 |
+
self.image_embeddings['neg_ip_img'] = torch.zeros_like(self.image_embeddings['ip_img'])
|
56 |
+
|
57 |
+
pos_embeds = self.encode_text(prompts).repeat(5,1,1)
|
58 |
+
neg_embeds = self.encode_text(negative_prompts).repeat(5,1,1)
|
59 |
+
self.embeddings['pos'] = pos_embeds
|
60 |
+
self.embeddings['neg'] = neg_embeds
|
61 |
+
|
62 |
+
return self.image_embeddings['pos'], self.image_embeddings['neg'], self.image_embeddings['ip_img'], self.image_embeddings['neg_ip_img'], self.embeddings['pos'], self.embeddings['neg']
|
63 |
+
|
64 |
+
def encode_text(self, prompt):
|
65 |
+
# prompt: [str]
|
66 |
+
embeddings = self.model.get_learned_conditioning(prompt).to(self.device)
|
67 |
+
return embeddings
|
68 |
+
|
69 |
+
@torch.no_grad()
|
70 |
+
def refine(self, pred_rgb, camera,
|
71 |
+
guidance_scale=5, steps=50, strength=0.8,
|
72 |
+
):
|
73 |
+
|
74 |
+
batch_size = pred_rgb.shape[0]
|
75 |
+
real_batch_size = batch_size // 4
|
76 |
+
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
|
77 |
+
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
|
78 |
+
|
79 |
+
self.scheduler.set_timesteps(steps)
|
80 |
+
init_step = int(steps * strength)
|
81 |
+
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
|
82 |
+
|
83 |
+
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
|
84 |
+
camera[:, 1] *= -1
|
85 |
+
camera = normalize_camera(camera).view(batch_size, 16)
|
86 |
+
|
87 |
+
# extra view
|
88 |
+
camera = camera.view(real_batch_size, 4, 16)
|
89 |
+
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16]
|
90 |
+
camera = camera.view(real_batch_size * 5, 16)
|
91 |
+
|
92 |
+
camera = camera.repeat(2, 1)
|
93 |
+
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
|
94 |
+
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
|
95 |
+
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0)
|
96 |
+
|
97 |
+
context = {
|
98 |
+
"context": embeddings,
|
99 |
+
"ip": image_embeddings,
|
100 |
+
"ip_img": ip_img_embeddings,
|
101 |
+
"camera": camera,
|
102 |
+
"num_frames": 4 + 1
|
103 |
+
}
|
104 |
+
|
105 |
+
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
|
106 |
+
|
107 |
+
# extra view
|
108 |
+
|
109 |
+
latents = latents.view(real_batch_size, 4, 4, 32, 32)
|
110 |
+
latents = torch.cat([latents, torch.zeros_like(latents[:, :1])], dim=1).view(-1, 4, 32, 32)
|
111 |
+
latent_model_input = torch.cat([latents] * 2)
|
112 |
+
|
113 |
+
tt = torch.cat([t.unsqueeze(0).repeat(real_batch_size * 5)] * 2).to(self.device)
|
114 |
+
|
115 |
+
noise_pred = self.model.apply_model(latent_model_input, tt, context)
|
116 |
+
|
117 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
118 |
+
|
119 |
+
# remove extra view
|
120 |
+
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
|
121 |
+
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
|
122 |
+
latents = latents.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
|
123 |
+
|
124 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
125 |
+
|
126 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
127 |
+
|
128 |
+
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
129 |
+
return imgs
|
130 |
+
|
131 |
+
def train_step(
|
132 |
+
self,
|
133 |
+
pred_rgb, # [B, C, H, W]
|
134 |
+
camera, # [B, 4, 4]
|
135 |
+
step_ratio=None,
|
136 |
+
guidance_scale=5,
|
137 |
+
as_latent=False,
|
138 |
+
):
|
139 |
+
|
140 |
+
batch_size = pred_rgb.shape[0]
|
141 |
+
real_batch_size = batch_size // 4
|
142 |
+
pred_rgb = pred_rgb.to(self.dtype)
|
143 |
+
|
144 |
+
if as_latent:
|
145 |
+
latents = F.interpolate(pred_rgb, (32, 32), mode="bilinear", align_corners=False) * 2 - 1
|
146 |
+
else:
|
147 |
+
# interp to 256x256 to be fed into vae.
|
148 |
+
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode="bilinear", align_corners=False)
|
149 |
+
# encode image into latents with vae, requires grad!
|
150 |
+
latents = self.encode_imgs(pred_rgb_256)
|
151 |
+
|
152 |
+
if step_ratio is not None:
|
153 |
+
# dreamtime-like
|
154 |
+
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
|
155 |
+
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
|
156 |
+
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
|
157 |
+
else:
|
158 |
+
t = torch.randint(self.min_step, self.max_step + 1, (real_batch_size,), dtype=torch.long, device=self.device).repeat(4)
|
159 |
+
|
160 |
+
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
|
161 |
+
camera[:, 1] *= -1
|
162 |
+
camera = normalize_camera(camera).view(batch_size, 16)
|
163 |
+
|
164 |
+
# extra view
|
165 |
+
camera = camera.view(real_batch_size, 4, 16)
|
166 |
+
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16]
|
167 |
+
camera = camera.view(real_batch_size * 5, 16)
|
168 |
+
|
169 |
+
camera = camera.repeat(2, 1)
|
170 |
+
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
|
171 |
+
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0)
|
172 |
+
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0)
|
173 |
+
|
174 |
+
context = {
|
175 |
+
"context": embeddings,
|
176 |
+
"ip": image_embeddings,
|
177 |
+
"ip_img": ip_img_embeddings,
|
178 |
+
"camera": camera,
|
179 |
+
"num_frames": 4 + 1
|
180 |
+
}
|
181 |
+
|
182 |
+
# predict the noise residual with unet, NO grad!
|
183 |
+
with torch.no_grad():
|
184 |
+
# add noise
|
185 |
+
noise = torch.randn_like(latents)
|
186 |
+
latents_noisy = self.model.q_sample(latents, t, noise) # [B=4, 4, 32, 32]
|
187 |
+
# extra view
|
188 |
+
t = t.view(real_batch_size, 4)
|
189 |
+
t = torch.cat([t, t[:, :1]], dim=1).view(-1)
|
190 |
+
latents_noisy = latents_noisy.view(real_batch_size, 4, 4, 32, 32)
|
191 |
+
latents_noisy = torch.cat([latents_noisy, torch.zeros_like(latents_noisy[:, :1])], dim=1).view(-1, 4, 32, 32)
|
192 |
+
# pred noise
|
193 |
+
latent_model_input = torch.cat([latents_noisy] * 2)
|
194 |
+
tt = torch.cat([t] * 2)
|
195 |
+
|
196 |
+
# import kiui
|
197 |
+
# kiui.lo(latent_model_input, t, context['context'], context['camera'])
|
198 |
+
|
199 |
+
noise_pred = self.model.apply_model(latent_model_input, tt, context)
|
200 |
+
|
201 |
+
# perform guidance (high scale from paper!)
|
202 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
203 |
+
|
204 |
+
# remove extra view
|
205 |
+
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
|
206 |
+
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32)
|
207 |
+
|
208 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
209 |
+
|
210 |
+
grad = (noise_pred - noise)
|
211 |
+
grad = torch.nan_to_num(grad)
|
212 |
+
|
213 |
+
target = (latents - grad).detach()
|
214 |
+
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]
|
215 |
+
|
216 |
+
return loss
|
217 |
+
|
218 |
+
def decode_latents(self, latents):
|
219 |
+
imgs = self.model.decode_first_stage(latents)
|
220 |
+
imgs = ((imgs + 1) / 2).clamp(0, 1)
|
221 |
+
return imgs
|
222 |
+
|
223 |
+
def encode_imgs(self, imgs):
|
224 |
+
# imgs: [B, 3, 256, 256]
|
225 |
+
imgs = 2 * imgs - 1
|
226 |
+
latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
|
227 |
+
return latents # [B, 4, 32, 32]
|
228 |
+
|
229 |
+
@torch.no_grad()
|
230 |
+
def prompt_to_img(
|
231 |
+
self,
|
232 |
+
image,
|
233 |
+
prompts,
|
234 |
+
negative_prompts="",
|
235 |
+
height=256,
|
236 |
+
width=256,
|
237 |
+
num_inference_steps=50,
|
238 |
+
guidance_scale=5.0,
|
239 |
+
latents=None,
|
240 |
+
elevation=0,
|
241 |
+
azimuth_start=0,
|
242 |
+
):
|
243 |
+
if isinstance(prompts, str):
|
244 |
+
prompts = [prompts]
|
245 |
+
|
246 |
+
if isinstance(negative_prompts, str):
|
247 |
+
negative_prompts = [negative_prompts]
|
248 |
+
|
249 |
+
real_batch_size = len(prompts)
|
250 |
+
batch_size = len(prompts) * 5
|
251 |
+
|
252 |
+
# Text embeds -> img latents
|
253 |
+
sampler = DDIMSampler(self.model)
|
254 |
+
shape = [4, height // 8, width // 8]
|
255 |
+
|
256 |
+
c_ = {"context": self.encode_text(prompts).repeat(5,1,1)}
|
257 |
+
uc_ = {"context": self.encode_text(negative_prompts).repeat(5,1,1)}
|
258 |
+
|
259 |
+
# image embeddings
|
260 |
+
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
261 |
+
image_pil = TF.to_pil_image(image[0])
|
262 |
+
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1).to(self.device)
|
263 |
+
c_["ip"] = image_embeddings
|
264 |
+
uc_["ip"] = torch.zeros_like(image_embeddings)
|
265 |
+
|
266 |
+
ip_img = self.encode_imgs(image)
|
267 |
+
c_["ip_img"] = ip_img
|
268 |
+
uc_["ip_img"] = torch.zeros_like(ip_img)
|
269 |
+
|
270 |
+
camera = get_camera(4, elevation=elevation, azimuth_start=azimuth_start, extra_view=True)
|
271 |
+
camera = camera.repeat(real_batch_size, 1).to(self.device)
|
272 |
+
|
273 |
+
c_["camera"] = uc_["camera"] = camera
|
274 |
+
c_["num_frames"] = uc_["num_frames"] = 5
|
275 |
+
|
276 |
+
kiui.lo(image_embeddings, ip_img, camera)
|
277 |
+
|
278 |
+
latents, _ = sampler.sample(S=num_inference_steps, conditioning=c_,
|
279 |
+
batch_size=batch_size, shape=shape,
|
280 |
+
verbose=False,
|
281 |
+
unconditional_guidance_scale=guidance_scale,
|
282 |
+
unconditional_conditioning=uc_,
|
283 |
+
eta=0, x_T=None)
|
284 |
+
|
285 |
+
# Img latents -> imgs
|
286 |
+
imgs = self.decode_latents(latents) # [4, 3, 256, 256]
|
287 |
+
|
288 |
+
kiui.lo(latents, imgs)
|
289 |
+
|
290 |
+
# Img to Numpy
|
291 |
+
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
|
292 |
+
imgs = (imgs * 255).round().astype("uint8")
|
293 |
+
|
294 |
+
return imgs
|
295 |
+
|
296 |
+
|
297 |
+
if __name__ == "__main__":
|
298 |
+
import argparse
|
299 |
+
import matplotlib.pyplot as plt
|
300 |
+
import kiui
|
301 |
+
|
302 |
+
parser = argparse.ArgumentParser()
|
303 |
+
parser.add_argument("image", type=str)
|
304 |
+
parser.add_argument("prompt", type=str)
|
305 |
+
parser.add_argument("--negative", default="", type=str)
|
306 |
+
parser.add_argument("--steps", type=int, default=30)
|
307 |
+
opt = parser.parse_args()
|
308 |
+
|
309 |
+
device = torch.device("cuda")
|
310 |
+
|
311 |
+
sd = ImageDream(device)
|
312 |
+
|
313 |
+
image = kiui.read_image(opt.image, mode='tensor')
|
314 |
+
image = image.permute(2, 0, 1).unsqueeze(0).to(device)
|
315 |
+
|
316 |
+
while True:
|
317 |
+
imgs = sd.prompt_to_img(image, opt.prompt, opt.negative, num_inference_steps=opt.steps)
|
318 |
+
|
319 |
+
grid = np.concatenate([
|
320 |
+
np.concatenate([imgs[0], imgs[1]], axis=1),
|
321 |
+
np.concatenate([imgs[2], imgs[3]], axis=1),
|
322 |
+
], axis=0)
|
323 |
+
|
324 |
+
# visualize image
|
325 |
+
plt.imshow(grid)
|
326 |
+
plt.show()
|
guidance/mvdream_utils.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from mvdream.camera_utils import get_camera, convert_opengl_to_blender, normalize_camera
|
7 |
+
from mvdream.model_zoo import build_model
|
8 |
+
from mvdream.ldm.models.diffusion.ddim import DDIMSampler
|
9 |
+
|
10 |
+
from diffusers import DDIMScheduler
|
11 |
+
|
12 |
+
class MVDream(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
device,
|
16 |
+
model_name='sd-v2.1-base-4view',
|
17 |
+
ckpt_path=None,
|
18 |
+
t_range=[0.02, 0.98],
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.device = device
|
23 |
+
self.model_name = model_name
|
24 |
+
self.ckpt_path = ckpt_path
|
25 |
+
|
26 |
+
self.model = build_model(self.model_name, ckpt_path=self.ckpt_path).eval().to(self.device)
|
27 |
+
self.model.device = device
|
28 |
+
for p in self.model.parameters():
|
29 |
+
p.requires_grad_(False)
|
30 |
+
|
31 |
+
self.dtype = torch.float32
|
32 |
+
|
33 |
+
self.num_train_timesteps = 1000
|
34 |
+
self.min_step = int(self.num_train_timesteps * t_range[0])
|
35 |
+
self.max_step = int(self.num_train_timesteps * t_range[1])
|
36 |
+
|
37 |
+
self.embeddings = None
|
38 |
+
|
39 |
+
self.scheduler = DDIMScheduler.from_pretrained(
|
40 |
+
"stabilityai/stable-diffusion-2-1-base", subfolder="scheduler", torch_dtype=self.dtype
|
41 |
+
)
|
42 |
+
|
43 |
+
@torch.no_grad()
|
44 |
+
def get_text_embeds(self, prompts, negative_prompts):
|
45 |
+
pos_embeds = self.encode_text(prompts).repeat(4,1,1) # [1, 77, 768]
|
46 |
+
neg_embeds = self.encode_text(negative_prompts).repeat(4,1,1)
|
47 |
+
self.embeddings = torch.cat([neg_embeds, pos_embeds], dim=0) # [2, 77, 768]
|
48 |
+
|
49 |
+
def encode_text(self, prompt):
|
50 |
+
# prompt: [str]
|
51 |
+
embeddings = self.model.get_learned_conditioning(prompt).to(self.device)
|
52 |
+
return embeddings
|
53 |
+
|
54 |
+
@torch.no_grad()
|
55 |
+
def refine(self, pred_rgb, camera,
|
56 |
+
guidance_scale=100, steps=50, strength=0.8,
|
57 |
+
):
|
58 |
+
|
59 |
+
batch_size = pred_rgb.shape[0]
|
60 |
+
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
|
61 |
+
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
|
62 |
+
# latents = torch.randn((1, 4, 64, 64), device=self.device, dtype=self.dtype)
|
63 |
+
|
64 |
+
self.scheduler.set_timesteps(steps)
|
65 |
+
init_step = int(steps * strength)
|
66 |
+
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
|
67 |
+
|
68 |
+
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
|
69 |
+
camera[:, 1] *= -1
|
70 |
+
camera = normalize_camera(camera).view(batch_size, 16)
|
71 |
+
camera = camera.repeat(2, 1)
|
72 |
+
context = {"context": self.embeddings, "camera": camera, "num_frames": 4}
|
73 |
+
|
74 |
+
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
|
75 |
+
|
76 |
+
latent_model_input = torch.cat([latents] * 2)
|
77 |
+
|
78 |
+
tt = torch.cat([t.unsqueeze(0).repeat(batch_size)] * 2).to(self.device)
|
79 |
+
|
80 |
+
noise_pred = self.model.apply_model(latent_model_input, tt, context)
|
81 |
+
|
82 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
83 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
84 |
+
|
85 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
86 |
+
|
87 |
+
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
88 |
+
return imgs
|
89 |
+
|
90 |
+
def train_step(
|
91 |
+
self,
|
92 |
+
pred_rgb, # [B, C, H, W], B is multiples of 4
|
93 |
+
camera, # [B, 4, 4]
|
94 |
+
step_ratio=None,
|
95 |
+
guidance_scale=50,
|
96 |
+
as_latent=False,
|
97 |
+
):
|
98 |
+
|
99 |
+
batch_size = pred_rgb.shape[0]
|
100 |
+
pred_rgb = pred_rgb.to(self.dtype)
|
101 |
+
|
102 |
+
if as_latent:
|
103 |
+
latents = F.interpolate(pred_rgb, (32, 32), mode="bilinear", align_corners=False) * 2 - 1
|
104 |
+
else:
|
105 |
+
# interp to 256x256 to be fed into vae.
|
106 |
+
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode="bilinear", align_corners=False)
|
107 |
+
# encode image into latents with vae, requires grad!
|
108 |
+
latents = self.encode_imgs(pred_rgb_256)
|
109 |
+
|
110 |
+
if step_ratio is not None:
|
111 |
+
# dreamtime-like
|
112 |
+
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
|
113 |
+
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
|
114 |
+
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
|
115 |
+
else:
|
116 |
+
t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)
|
117 |
+
|
118 |
+
# camera = convert_opengl_to_blender(camera)
|
119 |
+
# flip_yz = torch.tensor([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]).unsqueeze(0)
|
120 |
+
# camera = torch.matmul(flip_yz.to(camera), camera)
|
121 |
+
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis)
|
122 |
+
camera[:, 1] *= -1
|
123 |
+
camera = normalize_camera(camera).view(batch_size, 16)
|
124 |
+
|
125 |
+
###############
|
126 |
+
# sampler = DDIMSampler(self.model)
|
127 |
+
# shape = [4, 32, 32]
|
128 |
+
# c_ = {"context": self.embeddings[4:]}
|
129 |
+
# uc_ = {"context": self.embeddings[:4]}
|
130 |
+
|
131 |
+
# # print(camera)
|
132 |
+
|
133 |
+
# # camera = get_camera(4, elevation=0, azimuth_start=0)
|
134 |
+
# # camera = camera.repeat(batch_size // 4, 1).to(self.device)
|
135 |
+
|
136 |
+
# # print(camera)
|
137 |
+
|
138 |
+
# c_["camera"] = uc_["camera"] = camera
|
139 |
+
# c_["num_frames"] = uc_["num_frames"] = 4
|
140 |
+
|
141 |
+
# latents_, _ = sampler.sample(S=30, conditioning=c_,
|
142 |
+
# batch_size=batch_size, shape=shape,
|
143 |
+
# verbose=False,
|
144 |
+
# unconditional_guidance_scale=guidance_scale,
|
145 |
+
# unconditional_conditioning=uc_,
|
146 |
+
# eta=0, x_T=None)
|
147 |
+
|
148 |
+
# # Img latents -> imgs
|
149 |
+
# imgs = self.decode_latents(latents_) # [4, 3, 256, 256]
|
150 |
+
# import kiui
|
151 |
+
# kiui.vis.plot_image(imgs)
|
152 |
+
###############
|
153 |
+
|
154 |
+
camera = camera.repeat(2, 1)
|
155 |
+
context = {"context": self.embeddings, "camera": camera, "num_frames": 4}
|
156 |
+
|
157 |
+
# predict the noise residual with unet, NO grad!
|
158 |
+
with torch.no_grad():
|
159 |
+
# add noise
|
160 |
+
noise = torch.randn_like(latents)
|
161 |
+
latents_noisy = self.model.q_sample(latents, t, noise)
|
162 |
+
# pred noise
|
163 |
+
latent_model_input = torch.cat([latents_noisy] * 2)
|
164 |
+
tt = torch.cat([t] * 2)
|
165 |
+
|
166 |
+
# import kiui
|
167 |
+
# kiui.lo(latent_model_input, t, context['context'], context['camera'])
|
168 |
+
|
169 |
+
noise_pred = self.model.apply_model(latent_model_input, tt, context)
|
170 |
+
|
171 |
+
# perform guidance (high scale from paper!)
|
172 |
+
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
|
173 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)
|
174 |
+
|
175 |
+
grad = (noise_pred - noise)
|
176 |
+
grad = torch.nan_to_num(grad)
|
177 |
+
|
178 |
+
# seems important to avoid NaN...
|
179 |
+
# grad = grad.clamp(-1, 1)
|
180 |
+
|
181 |
+
target = (latents - grad).detach()
|
182 |
+
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]
|
183 |
+
|
184 |
+
return loss
|
185 |
+
|
186 |
+
def decode_latents(self, latents):
|
187 |
+
imgs = self.model.decode_first_stage(latents)
|
188 |
+
imgs = ((imgs + 1) / 2).clamp(0, 1)
|
189 |
+
return imgs
|
190 |
+
|
191 |
+
def encode_imgs(self, imgs):
|
192 |
+
# imgs: [B, 3, 256, 256]
|
193 |
+
imgs = 2 * imgs - 1
|
194 |
+
latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
|
195 |
+
return latents # [B, 4, 32, 32]
|
196 |
+
|
197 |
+
@torch.no_grad()
|
198 |
+
def prompt_to_img(
|
199 |
+
self,
|
200 |
+
prompts,
|
201 |
+
negative_prompts="",
|
202 |
+
height=256,
|
203 |
+
width=256,
|
204 |
+
num_inference_steps=50,
|
205 |
+
guidance_scale=7.5,
|
206 |
+
latents=None,
|
207 |
+
elevation=0,
|
208 |
+
azimuth_start=0,
|
209 |
+
):
|
210 |
+
if isinstance(prompts, str):
|
211 |
+
prompts = [prompts]
|
212 |
+
|
213 |
+
if isinstance(negative_prompts, str):
|
214 |
+
negative_prompts = [negative_prompts]
|
215 |
+
|
216 |
+
batch_size = len(prompts) * 4
|
217 |
+
|
218 |
+
# Text embeds -> img latents
|
219 |
+
sampler = DDIMSampler(self.model)
|
220 |
+
shape = [4, height // 8, width // 8]
|
221 |
+
c_ = {"context": self.encode_text(prompts).repeat(4,1,1)}
|
222 |
+
uc_ = {"context": self.encode_text(negative_prompts).repeat(4,1,1)}
|
223 |
+
|
224 |
+
camera = get_camera(4, elevation=elevation, azimuth_start=azimuth_start)
|
225 |
+
camera = camera.repeat(batch_size // 4, 1).to(self.device)
|
226 |
+
|
227 |
+
c_["camera"] = uc_["camera"] = camera
|
228 |
+
c_["num_frames"] = uc_["num_frames"] = 4
|
229 |
+
|
230 |
+
latents, _ = sampler.sample(S=num_inference_steps, conditioning=c_,
|
231 |
+
batch_size=batch_size, shape=shape,
|
232 |
+
verbose=False,
|
233 |
+
unconditional_guidance_scale=guidance_scale,
|
234 |
+
unconditional_conditioning=uc_,
|
235 |
+
eta=0, x_T=None)
|
236 |
+
|
237 |
+
# Img latents -> imgs
|
238 |
+
imgs = self.decode_latents(latents) # [4, 3, 256, 256]
|
239 |
+
|
240 |
+
# Img to Numpy
|
241 |
+
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
|
242 |
+
imgs = (imgs * 255).round().astype("uint8")
|
243 |
+
|
244 |
+
return imgs
|
245 |
+
|
246 |
+
|
247 |
+
if __name__ == "__main__":
|
248 |
+
import argparse
|
249 |
+
import matplotlib.pyplot as plt
|
250 |
+
|
251 |
+
parser = argparse.ArgumentParser()
|
252 |
+
parser.add_argument("prompt", type=str)
|
253 |
+
parser.add_argument("--negative", default="", type=str)
|
254 |
+
parser.add_argument("--steps", type=int, default=30)
|
255 |
+
opt = parser.parse_args()
|
256 |
+
|
257 |
+
device = torch.device("cuda")
|
258 |
+
|
259 |
+
sd = MVDream(device)
|
260 |
+
|
261 |
+
while True:
|
262 |
+
imgs = sd.prompt_to_img(opt.prompt, opt.negative, num_inference_steps=opt.steps)
|
263 |
+
|
264 |
+
grid = np.concatenate([
|
265 |
+
np.concatenate([imgs[0], imgs[1]], axis=1),
|
266 |
+
np.concatenate([imgs[2], imgs[3]], axis=1),
|
267 |
+
], axis=0)
|
268 |
+
|
269 |
+
# visualize image
|
270 |
+
plt.imshow(grid)
|
271 |
+
plt.show()
|
guidance/sd_utils.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
2 |
+
from diffusers import (
|
3 |
+
AutoencoderKL,
|
4 |
+
UNet2DConditionModel,
|
5 |
+
PNDMScheduler,
|
6 |
+
DDIMScheduler,
|
7 |
+
StableDiffusionPipeline,
|
8 |
+
)
|
9 |
+
from diffusers.utils.import_utils import is_xformers_available
|
10 |
+
|
11 |
+
# suppress partial model loading warning
|
12 |
+
logging.set_verbosity_error()
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
|
20 |
+
def seed_everything(seed):
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
torch.cuda.manual_seed(seed)
|
23 |
+
# torch.backends.cudnn.deterministic = True
|
24 |
+
# torch.backends.cudnn.benchmark = True
|
25 |
+
|
26 |
+
|
27 |
+
class StableDiffusion(nn.Module):
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
device,
|
31 |
+
fp16=True,
|
32 |
+
vram_O=False,
|
33 |
+
sd_version="2.1",
|
34 |
+
hf_key=None,
|
35 |
+
t_range=[0.02, 0.98],
|
36 |
+
):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
self.device = device
|
40 |
+
self.sd_version = sd_version
|
41 |
+
|
42 |
+
if hf_key is not None:
|
43 |
+
print(f"[INFO] using hugging face custom model key: {hf_key}")
|
44 |
+
model_key = hf_key
|
45 |
+
elif self.sd_version == "2.1":
|
46 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
47 |
+
elif self.sd_version == "2.0":
|
48 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
49 |
+
elif self.sd_version == "1.5":
|
50 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
51 |
+
else:
|
52 |
+
raise ValueError(
|
53 |
+
f"Stable-diffusion version {self.sd_version} not supported."
|
54 |
+
)
|
55 |
+
|
56 |
+
self.dtype = torch.float16 if fp16 else torch.float32
|
57 |
+
|
58 |
+
# Create model
|
59 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
60 |
+
model_key, torch_dtype=self.dtype
|
61 |
+
)
|
62 |
+
|
63 |
+
if vram_O:
|
64 |
+
pipe.enable_sequential_cpu_offload()
|
65 |
+
pipe.enable_vae_slicing()
|
66 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
67 |
+
pipe.enable_attention_slicing(1)
|
68 |
+
# pipe.enable_model_cpu_offload()
|
69 |
+
else:
|
70 |
+
pipe.to(device)
|
71 |
+
|
72 |
+
self.vae = pipe.vae
|
73 |
+
self.tokenizer = pipe.tokenizer
|
74 |
+
self.text_encoder = pipe.text_encoder
|
75 |
+
self.unet = pipe.unet
|
76 |
+
|
77 |
+
self.scheduler = DDIMScheduler.from_pretrained(
|
78 |
+
model_key, subfolder="scheduler", torch_dtype=self.dtype
|
79 |
+
)
|
80 |
+
|
81 |
+
del pipe
|
82 |
+
|
83 |
+
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
|
84 |
+
self.min_step = int(self.num_train_timesteps * t_range[0])
|
85 |
+
self.max_step = int(self.num_train_timesteps * t_range[1])
|
86 |
+
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
|
87 |
+
|
88 |
+
self.embeddings = None
|
89 |
+
|
90 |
+
@torch.no_grad()
|
91 |
+
def get_text_embeds(self, prompts, negative_prompts):
|
92 |
+
pos_embeds = self.encode_text(prompts) # [1, 77, 768]
|
93 |
+
neg_embeds = self.encode_text(negative_prompts)
|
94 |
+
self.embeddings = torch.cat([neg_embeds, pos_embeds], dim=0) # [2, 77, 768]
|
95 |
+
|
96 |
+
def encode_text(self, prompt):
|
97 |
+
# prompt: [str]
|
98 |
+
inputs = self.tokenizer(
|
99 |
+
prompt,
|
100 |
+
padding="max_length",
|
101 |
+
max_length=self.tokenizer.model_max_length,
|
102 |
+
return_tensors="pt",
|
103 |
+
)
|
104 |
+
embeddings = self.text_encoder(inputs.input_ids.to(self.device))[0]
|
105 |
+
return embeddings
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def refine(self, pred_rgb,
|
109 |
+
guidance_scale=100, steps=50, strength=0.8,
|
110 |
+
):
|
111 |
+
|
112 |
+
batch_size = pred_rgb.shape[0]
|
113 |
+
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
|
114 |
+
latents = self.encode_imgs(pred_rgb_512.to(self.dtype))
|
115 |
+
# latents = torch.randn((1, 4, 64, 64), device=self.device, dtype=self.dtype)
|
116 |
+
|
117 |
+
self.scheduler.set_timesteps(steps)
|
118 |
+
init_step = int(steps * strength)
|
119 |
+
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
|
120 |
+
|
121 |
+
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
|
122 |
+
|
123 |
+
latent_model_input = torch.cat([latents] * 2)
|
124 |
+
|
125 |
+
noise_pred = self.unet(
|
126 |
+
latent_model_input, t, encoder_hidden_states=self.embeddings,
|
127 |
+
).sample
|
128 |
+
|
129 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
130 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
131 |
+
|
132 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
133 |
+
|
134 |
+
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
135 |
+
return imgs
|
136 |
+
|
137 |
+
def train_step(
|
138 |
+
self,
|
139 |
+
pred_rgb,
|
140 |
+
step_ratio=None,
|
141 |
+
guidance_scale=100,
|
142 |
+
as_latent=False,
|
143 |
+
):
|
144 |
+
|
145 |
+
batch_size = pred_rgb.shape[0]
|
146 |
+
pred_rgb = pred_rgb.to(self.dtype)
|
147 |
+
|
148 |
+
if as_latent:
|
149 |
+
latents = F.interpolate(pred_rgb, (64, 64), mode="bilinear", align_corners=False) * 2 - 1
|
150 |
+
else:
|
151 |
+
# interp to 512x512 to be fed into vae.
|
152 |
+
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode="bilinear", align_corners=False)
|
153 |
+
# encode image into latents with vae, requires grad!
|
154 |
+
latents = self.encode_imgs(pred_rgb_512)
|
155 |
+
|
156 |
+
if step_ratio is not None:
|
157 |
+
# dreamtime-like
|
158 |
+
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
|
159 |
+
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
|
160 |
+
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
|
161 |
+
else:
|
162 |
+
t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)
|
163 |
+
|
164 |
+
# w(t), sigma_t^2
|
165 |
+
w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)
|
166 |
+
|
167 |
+
# predict the noise residual with unet, NO grad!
|
168 |
+
with torch.no_grad():
|
169 |
+
# add noise
|
170 |
+
noise = torch.randn_like(latents)
|
171 |
+
latents_noisy = self.scheduler.add_noise(latents, noise, t)
|
172 |
+
# pred noise
|
173 |
+
latent_model_input = torch.cat([latents_noisy] * 2)
|
174 |
+
tt = torch.cat([t] * 2)
|
175 |
+
|
176 |
+
noise_pred = self.unet(
|
177 |
+
latent_model_input, tt, encoder_hidden_states=self.embeddings.repeat(batch_size, 1, 1)
|
178 |
+
).sample
|
179 |
+
|
180 |
+
# perform guidance (high scale from paper!)
|
181 |
+
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
|
182 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
183 |
+
noise_pred_pos - noise_pred_uncond
|
184 |
+
)
|
185 |
+
|
186 |
+
grad = w * (noise_pred - noise)
|
187 |
+
grad = torch.nan_to_num(grad)
|
188 |
+
|
189 |
+
# seems important to avoid NaN...
|
190 |
+
# grad = grad.clamp(-1, 1)
|
191 |
+
|
192 |
+
target = (latents - grad).detach()
|
193 |
+
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0]
|
194 |
+
|
195 |
+
return loss
|
196 |
+
|
197 |
+
@torch.no_grad()
|
198 |
+
def produce_latents(
|
199 |
+
self,
|
200 |
+
height=512,
|
201 |
+
width=512,
|
202 |
+
num_inference_steps=50,
|
203 |
+
guidance_scale=7.5,
|
204 |
+
latents=None,
|
205 |
+
):
|
206 |
+
if latents is None:
|
207 |
+
latents = torch.randn(
|
208 |
+
(
|
209 |
+
self.embeddings.shape[0] // 2,
|
210 |
+
self.unet.in_channels,
|
211 |
+
height // 8,
|
212 |
+
width // 8,
|
213 |
+
),
|
214 |
+
device=self.device,
|
215 |
+
)
|
216 |
+
|
217 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
218 |
+
|
219 |
+
for i, t in enumerate(self.scheduler.timesteps):
|
220 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
221 |
+
latent_model_input = torch.cat([latents] * 2)
|
222 |
+
# predict the noise residual
|
223 |
+
noise_pred = self.unet(
|
224 |
+
latent_model_input, t, encoder_hidden_states=self.embeddings
|
225 |
+
).sample
|
226 |
+
|
227 |
+
# perform guidance
|
228 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
229 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
230 |
+
noise_pred_cond - noise_pred_uncond
|
231 |
+
)
|
232 |
+
|
233 |
+
# compute the previous noisy sample x_t -> x_t-1
|
234 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
235 |
+
|
236 |
+
return latents
|
237 |
+
|
238 |
+
def decode_latents(self, latents):
|
239 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
240 |
+
|
241 |
+
imgs = self.vae.decode(latents).sample
|
242 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
243 |
+
|
244 |
+
return imgs
|
245 |
+
|
246 |
+
def encode_imgs(self, imgs):
|
247 |
+
# imgs: [B, 3, H, W]
|
248 |
+
|
249 |
+
imgs = 2 * imgs - 1
|
250 |
+
|
251 |
+
posterior = self.vae.encode(imgs).latent_dist
|
252 |
+
latents = posterior.sample() * self.vae.config.scaling_factor
|
253 |
+
|
254 |
+
return latents
|
255 |
+
|
256 |
+
def prompt_to_img(
|
257 |
+
self,
|
258 |
+
prompts,
|
259 |
+
negative_prompts="",
|
260 |
+
height=512,
|
261 |
+
width=512,
|
262 |
+
num_inference_steps=50,
|
263 |
+
guidance_scale=7.5,
|
264 |
+
latents=None,
|
265 |
+
):
|
266 |
+
if isinstance(prompts, str):
|
267 |
+
prompts = [prompts]
|
268 |
+
|
269 |
+
if isinstance(negative_prompts, str):
|
270 |
+
negative_prompts = [negative_prompts]
|
271 |
+
|
272 |
+
# Prompts -> text embeds
|
273 |
+
self.get_text_embeds(prompts, negative_prompts)
|
274 |
+
|
275 |
+
# Text embeds -> img latents
|
276 |
+
latents = self.produce_latents(
|
277 |
+
height=height,
|
278 |
+
width=width,
|
279 |
+
latents=latents,
|
280 |
+
num_inference_steps=num_inference_steps,
|
281 |
+
guidance_scale=guidance_scale,
|
282 |
+
) # [1, 4, 64, 64]
|
283 |
+
|
284 |
+
# Img latents -> imgs
|
285 |
+
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
|
286 |
+
|
287 |
+
# Img to Numpy
|
288 |
+
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
|
289 |
+
imgs = (imgs * 255).round().astype("uint8")
|
290 |
+
|
291 |
+
return imgs
|
292 |
+
|
293 |
+
|
294 |
+
if __name__ == "__main__":
|
295 |
+
import argparse
|
296 |
+
import matplotlib.pyplot as plt
|
297 |
+
|
298 |
+
parser = argparse.ArgumentParser()
|
299 |
+
parser.add_argument("prompt", type=str)
|
300 |
+
parser.add_argument("--negative", default="", type=str)
|
301 |
+
parser.add_argument(
|
302 |
+
"--sd_version",
|
303 |
+
type=str,
|
304 |
+
default="2.1",
|
305 |
+
choices=["1.5", "2.0", "2.1"],
|
306 |
+
help="stable diffusion version",
|
307 |
+
)
|
308 |
+
parser.add_argument(
|
309 |
+
"--hf_key",
|
310 |
+
type=str,
|
311 |
+
default=None,
|
312 |
+
help="hugging face Stable diffusion model key",
|
313 |
+
)
|
314 |
+
parser.add_argument("--fp16", action="store_true", help="use float16 for training")
|
315 |
+
parser.add_argument(
|
316 |
+
"--vram_O", action="store_true", help="optimization for low VRAM usage"
|
317 |
+
)
|
318 |
+
parser.add_argument("-H", type=int, default=512)
|
319 |
+
parser.add_argument("-W", type=int, default=512)
|
320 |
+
parser.add_argument("--seed", type=int, default=0)
|
321 |
+
parser.add_argument("--steps", type=int, default=50)
|
322 |
+
opt = parser.parse_args()
|
323 |
+
|
324 |
+
seed_everything(opt.seed)
|
325 |
+
|
326 |
+
device = torch.device("cuda")
|
327 |
+
|
328 |
+
sd = StableDiffusion(device, opt.fp16, opt.vram_O, opt.sd_version, opt.hf_key)
|
329 |
+
|
330 |
+
imgs = sd.prompt_to_img(opt.prompt, opt.negative, opt.H, opt.W, opt.steps)
|
331 |
+
|
332 |
+
# visualize image
|
333 |
+
plt.imshow(imgs[0])
|
334 |
+
plt.show()
|
guidance/svd_utils.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from svd import StableVideoDiffusionPipeline
|
4 |
+
from diffusers import DDIMScheduler
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class StableVideoDiffusion:
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
device,
|
17 |
+
fp16=True,
|
18 |
+
t_range=[0.02, 0.98],
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.guidance_type = [
|
23 |
+
'sds',
|
24 |
+
'pixel reconstruction',
|
25 |
+
'latent reconstruction'
|
26 |
+
][1]
|
27 |
+
|
28 |
+
self.device = device
|
29 |
+
self.dtype = torch.float16 if fp16 else torch.float32
|
30 |
+
|
31 |
+
# Create model
|
32 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
33 |
+
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
|
34 |
+
)
|
35 |
+
pipe.to(device)
|
36 |
+
|
37 |
+
self.pipe = pipe
|
38 |
+
|
39 |
+
self.num_train_timesteps = self.pipe.scheduler.config.num_train_timesteps if self.guidance_type == 'sds' else 25
|
40 |
+
self.pipe.scheduler.set_timesteps(self.num_train_timesteps, device=device) # set sigma for euler discrete scheduling
|
41 |
+
|
42 |
+
self.min_step = int(self.num_train_timesteps * t_range[0])
|
43 |
+
self.max_step = int(self.num_train_timesteps * t_range[1])
|
44 |
+
self.alphas = self.pipe.scheduler.alphas_cumprod.to(self.device) # for convenience
|
45 |
+
|
46 |
+
self.embeddings = None
|
47 |
+
self.image = None
|
48 |
+
self.target_cache = None
|
49 |
+
|
50 |
+
@torch.no_grad()
|
51 |
+
def get_img_embeds(self, image):
|
52 |
+
self.image = Image.fromarray(np.uint8(image*255))
|
53 |
+
|
54 |
+
def encode_image(self, image):
|
55 |
+
image = image * 2 -1
|
56 |
+
latents = self.pipe._encode_vae_image(image, self.device, num_videos_per_prompt=1, do_classifier_free_guidance=False)
|
57 |
+
latents = self.pipe.vae.config.scaling_factor * latents
|
58 |
+
return latents
|
59 |
+
|
60 |
+
def refine(self,
|
61 |
+
pred_rgb,
|
62 |
+
steps=25, strength=0.8,
|
63 |
+
min_guidance_scale: float = 1.0,
|
64 |
+
max_guidance_scale: float = 3.0,
|
65 |
+
):
|
66 |
+
# strength = 0.8
|
67 |
+
batch_size = pred_rgb.shape[0]
|
68 |
+
pred_rgb = pred_rgb.to(self.dtype)
|
69 |
+
|
70 |
+
# interp to 512x512 to be fed into vae.
|
71 |
+
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode="bilinear", align_corners=False)
|
72 |
+
# encode image into latents with vae, requires grad!
|
73 |
+
|
74 |
+
# latents = []
|
75 |
+
# for i in range(batch_size):
|
76 |
+
# latent = self.encode_image(pred_rgb_512[i:i+1])
|
77 |
+
# latents.append(latent)
|
78 |
+
# latents = torch.cat(latents, 0)
|
79 |
+
|
80 |
+
latents = self.encode_image(pred_rgb_512)
|
81 |
+
latents = latents.unsqueeze(0)
|
82 |
+
|
83 |
+
if strength == 0:
|
84 |
+
init_step = 0
|
85 |
+
latents = torch.randn_like(latents)
|
86 |
+
else:
|
87 |
+
init_step = int(steps * strength)
|
88 |
+
latents = self.pipe.scheduler.add_noise(latents, torch.randn_like(latents), self.pipe.scheduler.timesteps[init_step:init_step+1])
|
89 |
+
|
90 |
+
target = self.pipe(
|
91 |
+
image=self.image,
|
92 |
+
height=512,
|
93 |
+
width=512,
|
94 |
+
latents=latents,
|
95 |
+
denoise_beg=init_step,
|
96 |
+
denoise_end=steps,
|
97 |
+
output_type='frame',
|
98 |
+
num_frames=batch_size,
|
99 |
+
min_guidance_scale=min_guidance_scale,
|
100 |
+
max_guidance_scale=max_guidance_scale,
|
101 |
+
num_inference_steps=steps,
|
102 |
+
decode_chunk_size=1
|
103 |
+
).frames[0]
|
104 |
+
target = (target + 1) * 0.5
|
105 |
+
target = target.permute(1,0,2,3)
|
106 |
+
return target
|
107 |
+
|
108 |
+
# frames = self.pipe(
|
109 |
+
# image=self.image,
|
110 |
+
# height=512,
|
111 |
+
# width=512,
|
112 |
+
# latents=latents,
|
113 |
+
# denoise_beg=init_step,
|
114 |
+
# denoise_end=steps,
|
115 |
+
# num_frames=batch_size,
|
116 |
+
# min_guidance_scale=min_guidance_scale,
|
117 |
+
# max_guidance_scale=max_guidance_scale,
|
118 |
+
# num_inference_steps=steps,
|
119 |
+
# decode_chunk_size=1
|
120 |
+
# ).frames[0]
|
121 |
+
# export_to_gif(frames, f"tmp.gif")
|
122 |
+
# raise
|
123 |
+
|
124 |
+
def train_step(
|
125 |
+
self,
|
126 |
+
pred_rgb,
|
127 |
+
step_ratio=None,
|
128 |
+
min_guidance_scale: float = 1.0,
|
129 |
+
max_guidance_scale: float = 3.0,
|
130 |
+
):
|
131 |
+
|
132 |
+
batch_size = pred_rgb.shape[0]
|
133 |
+
pred_rgb = pred_rgb.to(self.dtype)
|
134 |
+
|
135 |
+
# interp to 512x512 to be fed into vae.
|
136 |
+
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode="bilinear", align_corners=False)
|
137 |
+
# encode image into latents with vae, requires grad!
|
138 |
+
# latents = self.pipe._encode_image(pred_rgb_512, self.device, num_videos_per_prompt=1, do_classifier_free_guidance=True)
|
139 |
+
latents = self.encode_image(pred_rgb_512)
|
140 |
+
latents = latents.unsqueeze(0)
|
141 |
+
|
142 |
+
if step_ratio is not None:
|
143 |
+
# dreamtime-like
|
144 |
+
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
|
145 |
+
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
|
146 |
+
t = torch.full((1,), t, dtype=torch.long, device=self.device)
|
147 |
+
else:
|
148 |
+
t = torch.randint(self.min_step, self.max_step + 1, (1,), dtype=torch.long, device=self.device)
|
149 |
+
# print(t)
|
150 |
+
|
151 |
+
w = (1 - self.alphas[t]).view(1, 1, 1, 1)
|
152 |
+
|
153 |
+
|
154 |
+
if self.guidance_type == 'sds':
|
155 |
+
# predict the noise residual with unet, NO grad!
|
156 |
+
with torch.no_grad():
|
157 |
+
t = self.num_train_timesteps - t.item()
|
158 |
+
# add noise
|
159 |
+
noise = torch.randn_like(latents)
|
160 |
+
latents_noisy = self.pipe.scheduler.add_noise(latents, noise, self.pipe.scheduler.timesteps[t:t+1]) # t=0 noise;t=999 clean
|
161 |
+
noise_pred = self.pipe(
|
162 |
+
image=self.image,
|
163 |
+
# image_embeddings=self.embeddings,
|
164 |
+
height=512,
|
165 |
+
width=512,
|
166 |
+
latents=latents_noisy,
|
167 |
+
output_type='noise',
|
168 |
+
denoise_beg=t,
|
169 |
+
denoise_end=t + 1,
|
170 |
+
min_guidance_scale=min_guidance_scale,
|
171 |
+
max_guidance_scale=max_guidance_scale,
|
172 |
+
num_frames=batch_size,
|
173 |
+
num_inference_steps=self.num_train_timesteps
|
174 |
+
).frames[0]
|
175 |
+
|
176 |
+
grad = w * (noise_pred - noise)
|
177 |
+
grad = torch.nan_to_num(grad)
|
178 |
+
|
179 |
+
target = (latents - grad).detach()
|
180 |
+
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[1]
|
181 |
+
print(loss.item())
|
182 |
+
return loss
|
183 |
+
|
184 |
+
elif self.guidance_type == 'pixel reconstruction':
|
185 |
+
# pixel space reconstruction
|
186 |
+
if self.target_cache is None:
|
187 |
+
with torch.no_grad():
|
188 |
+
self.target_cache = self.pipe(
|
189 |
+
image=self.image,
|
190 |
+
height=512,
|
191 |
+
width=512,
|
192 |
+
output_type='frame',
|
193 |
+
num_frames=batch_size,
|
194 |
+
num_inference_steps=self.num_train_timesteps,
|
195 |
+
decode_chunk_size=1
|
196 |
+
).frames[0]
|
197 |
+
self.target_cache = (self.target_cache + 1) * 0.5
|
198 |
+
self.target_cache = self.target_cache.permute(1,0,2,3)
|
199 |
+
|
200 |
+
loss = 0.5 * F.mse_loss(pred_rgb_512.float(), self.target_cache.detach().float(), reduction='sum') / latents.shape[1]
|
201 |
+
print(loss.item())
|
202 |
+
|
203 |
+
return loss
|
204 |
+
|
205 |
+
elif self.guidance_type == 'latent reconstruction':
|
206 |
+
# latent space reconstruction
|
207 |
+
if self.target_cache is None:
|
208 |
+
with torch.no_grad():
|
209 |
+
self.target_cache = self.pipe(
|
210 |
+
image=self.image,
|
211 |
+
height=512,
|
212 |
+
width=512,
|
213 |
+
output_type='latent',
|
214 |
+
num_frames=batch_size,
|
215 |
+
num_inference_steps=self.num_train_timesteps,
|
216 |
+
).frames[0]
|
217 |
+
|
218 |
+
loss = 0.5 * F.mse_loss(latents.float(), self.target_cache.detach().float(), reduction='sum') / latents.shape[1]
|
219 |
+
print(loss.item())
|
220 |
+
|
221 |
+
return loss
|
guidance/zero123_utils.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DDIMScheduler
|
2 |
+
import torchvision.transforms.functional as TF
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
import sys
|
10 |
+
sys.path.append('./')
|
11 |
+
|
12 |
+
from zero123 import Zero123Pipeline
|
13 |
+
|
14 |
+
|
15 |
+
class Zero123(nn.Module):
|
16 |
+
def __init__(self, device, fp16=True, t_range=[0.02, 0.98], model_key="ashawkey/zero123-xl-diffusers"):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
self.device = device
|
20 |
+
self.fp16 = fp16
|
21 |
+
self.dtype = torch.float16 if fp16 else torch.float32
|
22 |
+
|
23 |
+
assert self.fp16, 'Only zero123 fp16 is supported for now.'
|
24 |
+
|
25 |
+
# model_key = "ashawkey/zero123-xl-diffusers"
|
26 |
+
# model_key = './model_cache/stable_zero123_diffusers'
|
27 |
+
|
28 |
+
self.pipe = Zero123Pipeline.from_pretrained(
|
29 |
+
model_key,
|
30 |
+
torch_dtype=self.dtype,
|
31 |
+
trust_remote_code=True,
|
32 |
+
).to(self.device)
|
33 |
+
|
34 |
+
# stable-zero123 has a different camera embedding
|
35 |
+
self.use_stable_zero123 = 'stable' in model_key
|
36 |
+
|
37 |
+
self.pipe.image_encoder.eval()
|
38 |
+
self.pipe.vae.eval()
|
39 |
+
self.pipe.unet.eval()
|
40 |
+
self.pipe.clip_camera_projection.eval()
|
41 |
+
|
42 |
+
self.vae = self.pipe.vae
|
43 |
+
self.unet = self.pipe.unet
|
44 |
+
|
45 |
+
self.pipe.set_progress_bar_config(disable=True)
|
46 |
+
|
47 |
+
self.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
|
48 |
+
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
|
49 |
+
|
50 |
+
self.min_step = int(self.num_train_timesteps * t_range[0])
|
51 |
+
self.max_step = int(self.num_train_timesteps * t_range[1])
|
52 |
+
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
|
53 |
+
|
54 |
+
self.embeddings = None
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def get_img_embeds(self, x):
|
58 |
+
# x: image tensor in [0, 1]
|
59 |
+
x = F.interpolate(x, (256, 256), mode='bilinear', align_corners=False)
|
60 |
+
x_pil = [TF.to_pil_image(image) for image in x]
|
61 |
+
x_clip = self.pipe.feature_extractor(images=x_pil, return_tensors="pt").pixel_values.to(device=self.device, dtype=self.dtype)
|
62 |
+
c = self.pipe.image_encoder(x_clip).image_embeds
|
63 |
+
v = self.encode_imgs(x.to(self.dtype)) / self.vae.config.scaling_factor
|
64 |
+
self.embeddings = [c, v]
|
65 |
+
return c, v
|
66 |
+
|
67 |
+
def get_cam_embeddings(self, elevation, azimuth, radius, default_elevation=0):
|
68 |
+
if self.use_stable_zero123:
|
69 |
+
T = np.stack([np.deg2rad(elevation), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), np.deg2rad([90 + default_elevation] * len(elevation))], axis=-1)
|
70 |
+
else:
|
71 |
+
# original zero123 camera embedding
|
72 |
+
T = np.stack([np.deg2rad(elevation), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
|
73 |
+
T = torch.from_numpy(T).unsqueeze(1).to(dtype=self.dtype, device=self.device) # [8, 1, 4]
|
74 |
+
return T
|
75 |
+
|
76 |
+
@torch.no_grad()
|
77 |
+
def refine(self, pred_rgb, elevation, azimuth, radius,
|
78 |
+
guidance_scale=5, steps=50, strength=0.8, default_elevation=0,
|
79 |
+
):
|
80 |
+
|
81 |
+
batch_size = pred_rgb.shape[0]
|
82 |
+
|
83 |
+
self.scheduler.set_timesteps(steps)
|
84 |
+
|
85 |
+
if strength == 0:
|
86 |
+
init_step = 0
|
87 |
+
latents = torch.randn((1, 4, 32, 32), device=self.device, dtype=self.dtype)
|
88 |
+
else:
|
89 |
+
init_step = int(steps * strength)
|
90 |
+
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
|
91 |
+
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
|
92 |
+
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
|
93 |
+
|
94 |
+
T = self.get_cam_embeddings(elevation, azimuth, radius, default_elevation)
|
95 |
+
cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
|
96 |
+
cc_emb = self.pipe.clip_camera_projection(cc_emb)
|
97 |
+
cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)
|
98 |
+
|
99 |
+
vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
|
100 |
+
vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)
|
101 |
+
|
102 |
+
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
|
103 |
+
|
104 |
+
x_in = torch.cat([latents] * 2)
|
105 |
+
t_in = t.view(1).to(self.device)
|
106 |
+
|
107 |
+
noise_pred = self.unet(
|
108 |
+
torch.cat([x_in, vae_emb], dim=1),
|
109 |
+
t_in.to(self.unet.dtype),
|
110 |
+
encoder_hidden_states=cc_emb,
|
111 |
+
).sample
|
112 |
+
|
113 |
+
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
|
114 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
115 |
+
|
116 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
117 |
+
|
118 |
+
imgs = self.decode_latents(latents) # [1, 3, 256, 256]
|
119 |
+
return imgs
|
120 |
+
|
121 |
+
def train_step(self, pred_rgb, elevation, azimuth, radius, step_ratio=None, guidance_scale=5, as_latent=False, default_elevation=0):
|
122 |
+
# pred_rgb: tensor [1, 3, H, W] in [0, 1]
|
123 |
+
|
124 |
+
batch_size = pred_rgb.shape[0]
|
125 |
+
|
126 |
+
if as_latent:
|
127 |
+
latents = F.interpolate(pred_rgb, (32, 32), mode='bilinear', align_corners=False) * 2 - 1
|
128 |
+
else:
|
129 |
+
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
|
130 |
+
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
|
131 |
+
|
132 |
+
if step_ratio is not None:
|
133 |
+
# dreamtime-like
|
134 |
+
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
|
135 |
+
# t = self.max_step - (self.max_step - self.min_step) * (step_ratio ** 2)
|
136 |
+
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
|
137 |
+
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
|
138 |
+
else:
|
139 |
+
t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)
|
140 |
+
|
141 |
+
w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
noise = torch.randn_like(latents)
|
145 |
+
latents_noisy = self.scheduler.add_noise(latents, noise, t)
|
146 |
+
|
147 |
+
x_in = torch.cat([latents_noisy] * 2)
|
148 |
+
t_in = torch.cat([t] * 2)
|
149 |
+
|
150 |
+
T = self.get_cam_embeddings(elevation, azimuth, radius, default_elevation)
|
151 |
+
cc_emb = torch.cat([self.embeddings[0].unsqueeze(1), T], dim=-1)
|
152 |
+
cc_emb = self.pipe.clip_camera_projection(cc_emb)
|
153 |
+
cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)
|
154 |
+
|
155 |
+
vae_emb = self.embeddings[1]
|
156 |
+
vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)
|
157 |
+
|
158 |
+
noise_pred = self.unet(
|
159 |
+
torch.cat([x_in, vae_emb], dim=1),
|
160 |
+
t_in.to(self.unet.dtype),
|
161 |
+
encoder_hidden_states=cc_emb,
|
162 |
+
).sample
|
163 |
+
|
164 |
+
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
|
165 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
166 |
+
|
167 |
+
grad = w * (noise_pred - noise)
|
168 |
+
grad = torch.nan_to_num(grad)
|
169 |
+
|
170 |
+
target = (latents - grad).detach()
|
171 |
+
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum')
|
172 |
+
|
173 |
+
return loss
|
174 |
+
|
175 |
+
def decode_latents(self, latents):
|
176 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
177 |
+
|
178 |
+
imgs = self.vae.decode(latents).sample
|
179 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
180 |
+
|
181 |
+
return imgs
|
182 |
+
|
183 |
+
def encode_imgs(self, imgs, mode=False):
|
184 |
+
# imgs: [B, 3, H, W]
|
185 |
+
|
186 |
+
imgs = 2 * imgs - 1
|
187 |
+
|
188 |
+
posterior = self.vae.encode(imgs).latent_dist
|
189 |
+
if mode:
|
190 |
+
latents = posterior.mode()
|
191 |
+
else:
|
192 |
+
latents = posterior.sample()
|
193 |
+
latents = latents * self.vae.config.scaling_factor
|
194 |
+
|
195 |
+
return latents
|
196 |
+
|
197 |
+
|
198 |
+
if __name__ == '__main__':
|
199 |
+
import cv2
|
200 |
+
import argparse
|
201 |
+
import numpy as np
|
202 |
+
import matplotlib.pyplot as plt
|
203 |
+
import kiui
|
204 |
+
|
205 |
+
parser = argparse.ArgumentParser()
|
206 |
+
|
207 |
+
parser.add_argument('input', type=str)
|
208 |
+
parser.add_argument('--elevation', type=float, default=0, help='delta elevation angle in [-90, 90]')
|
209 |
+
parser.add_argument('--azimuth', type=float, default=0, help='delta azimuth angle in [-180, 180]')
|
210 |
+
parser.add_argument('--radius', type=float, default=0, help='delta camera radius multiplier in [-0.5, 0.5]')
|
211 |
+
parser.add_argument('--stable', action='store_true')
|
212 |
+
|
213 |
+
opt = parser.parse_args()
|
214 |
+
|
215 |
+
device = torch.device('cuda')
|
216 |
+
|
217 |
+
print(f'[INFO] loading image from {opt.input} ...')
|
218 |
+
image = kiui.read_image(opt.input, mode='tensor')
|
219 |
+
image = image.permute(2, 0, 1).unsqueeze(0).contiguous().to(device)
|
220 |
+
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
221 |
+
|
222 |
+
print(f'[INFO] loading model ...')
|
223 |
+
|
224 |
+
if opt.stable:
|
225 |
+
zero123 = Zero123(device, model_key='ashawkey/stable-zero123-diffusers')
|
226 |
+
else:
|
227 |
+
zero123 = Zero123(device, model_key='ashawkey/zero123-xl-diffusers')
|
228 |
+
|
229 |
+
print(f'[INFO] running model ...')
|
230 |
+
zero123.get_img_embeds(image)
|
231 |
+
|
232 |
+
azimuth = opt.azimuth
|
233 |
+
while True:
|
234 |
+
outputs = zero123.refine(image, elevation=[opt.elevation], azimuth=[azimuth], radius=[opt.radius], strength=0)
|
235 |
+
plt.imshow(outputs.float().cpu().numpy().transpose(0, 2, 3, 1)[0])
|
236 |
+
plt.show()
|
237 |
+
azimuth = (azimuth + 10) % 360
|
lgm/core/attention.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
9 |
+
|
10 |
+
import os
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
from torch import Tensor
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
17 |
+
try:
|
18 |
+
if XFORMERS_ENABLED:
|
19 |
+
from xformers.ops import memory_efficient_attention, unbind
|
20 |
+
|
21 |
+
XFORMERS_AVAILABLE = True
|
22 |
+
warnings.warn("xFormers is available (Attention)")
|
23 |
+
else:
|
24 |
+
warnings.warn("xFormers is disabled (Attention)")
|
25 |
+
raise ImportError
|
26 |
+
except ImportError:
|
27 |
+
XFORMERS_AVAILABLE = False
|
28 |
+
warnings.warn("xFormers is not available (Attention)")
|
29 |
+
|
30 |
+
|
31 |
+
class Attention(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
dim: int,
|
35 |
+
num_heads: int = 8,
|
36 |
+
qkv_bias: bool = False,
|
37 |
+
proj_bias: bool = True,
|
38 |
+
attn_drop: float = 0.0,
|
39 |
+
proj_drop: float = 0.0,
|
40 |
+
) -> None:
|
41 |
+
super().__init__()
|
42 |
+
self.num_heads = num_heads
|
43 |
+
head_dim = dim // num_heads
|
44 |
+
self.scale = head_dim**-0.5
|
45 |
+
|
46 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
47 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
48 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
49 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
50 |
+
|
51 |
+
def forward(self, x: Tensor) -> Tensor:
|
52 |
+
B, N, C = x.shape
|
53 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
54 |
+
|
55 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
56 |
+
attn = q @ k.transpose(-2, -1)
|
57 |
+
|
58 |
+
attn = attn.softmax(dim=-1)
|
59 |
+
attn = self.attn_drop(attn)
|
60 |
+
|
61 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
62 |
+
x = self.proj(x)
|
63 |
+
x = self.proj_drop(x)
|
64 |
+
return x
|
65 |
+
|
66 |
+
|
67 |
+
class MemEffAttention(Attention):
|
68 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
69 |
+
if not XFORMERS_AVAILABLE:
|
70 |
+
if attn_bias is not None:
|
71 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
72 |
+
return super().forward(x)
|
73 |
+
|
74 |
+
B, N, C = x.shape
|
75 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
76 |
+
|
77 |
+
q, k, v = unbind(qkv, 2)
|
78 |
+
|
79 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
80 |
+
x = x.reshape([B, N, C])
|
81 |
+
|
82 |
+
x = self.proj(x)
|
83 |
+
x = self.proj_drop(x)
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
class CrossAttention(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
dim: int,
|
91 |
+
dim_q: int,
|
92 |
+
dim_k: int,
|
93 |
+
dim_v: int,
|
94 |
+
num_heads: int = 8,
|
95 |
+
qkv_bias: bool = False,
|
96 |
+
proj_bias: bool = True,
|
97 |
+
attn_drop: float = 0.0,
|
98 |
+
proj_drop: float = 0.0,
|
99 |
+
) -> None:
|
100 |
+
super().__init__()
|
101 |
+
self.dim = dim
|
102 |
+
self.num_heads = num_heads
|
103 |
+
head_dim = dim // num_heads
|
104 |
+
self.scale = head_dim**-0.5
|
105 |
+
|
106 |
+
self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias)
|
107 |
+
self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias)
|
108 |
+
self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias)
|
109 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
110 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
111 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
112 |
+
|
113 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
114 |
+
# q: [B, N, Cq]
|
115 |
+
# k: [B, M, Ck]
|
116 |
+
# v: [B, M, Cv]
|
117 |
+
# return: [B, N, C]
|
118 |
+
|
119 |
+
B, N, _ = q.shape
|
120 |
+
M = k.shape[1]
|
121 |
+
|
122 |
+
q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, N, C/nh]
|
123 |
+
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh]
|
124 |
+
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh]
|
125 |
+
|
126 |
+
attn = q @ k.transpose(-2, -1) # [B, nh, N, M]
|
127 |
+
|
128 |
+
attn = attn.softmax(dim=-1) # [B, nh, N, M]
|
129 |
+
attn = self.attn_drop(attn)
|
130 |
+
|
131 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) # [B, nh, N, M] @ [B, nh, M, C/nh] --> [B, nh, N, C/nh] --> [B, N, nh, C/nh] --> [B, N, C]
|
132 |
+
x = self.proj(x)
|
133 |
+
x = self.proj_drop(x)
|
134 |
+
return x
|
135 |
+
|
136 |
+
|
137 |
+
class MemEffCrossAttention(CrossAttention):
|
138 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor:
|
139 |
+
if not XFORMERS_AVAILABLE:
|
140 |
+
if attn_bias is not None:
|
141 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
142 |
+
return super().forward(x)
|
143 |
+
|
144 |
+
B, N, _ = q.shape
|
145 |
+
M = k.shape[1]
|
146 |
+
|
147 |
+
q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads) # [B, N, nh, C/nh]
|
148 |
+
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh]
|
149 |
+
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh]
|
150 |
+
|
151 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
152 |
+
x = x.reshape(B, N, -1)
|
153 |
+
|
154 |
+
x = self.proj(x)
|
155 |
+
x = self.proj_drop(x)
|
156 |
+
return x
|
lgm/core/gs.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from diff_gaussian_rasterization import (
|
8 |
+
GaussianRasterizationSettings,
|
9 |
+
GaussianRasterizer,
|
10 |
+
)
|
11 |
+
|
12 |
+
from core.options import Options
|
13 |
+
|
14 |
+
import kiui
|
15 |
+
|
16 |
+
class GaussianRenderer:
|
17 |
+
def __init__(self, opt: Options):
|
18 |
+
|
19 |
+
self.opt = opt
|
20 |
+
self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
|
21 |
+
|
22 |
+
# intrinsics
|
23 |
+
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
|
24 |
+
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
|
25 |
+
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
|
26 |
+
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
|
27 |
+
self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
|
28 |
+
self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
|
29 |
+
self.proj_matrix[2, 3] = 1
|
30 |
+
|
31 |
+
def render(self, gaussians, cam_view, cam_view_proj, cam_pos, bg_color=None, scale_modifier=1):
|
32 |
+
# gaussians: [B, N, 14]
|
33 |
+
# cam_view, cam_view_proj: [B, V, 4, 4]
|
34 |
+
# cam_pos: [B, V, 3]
|
35 |
+
|
36 |
+
device = gaussians.device
|
37 |
+
B, V = cam_view.shape[:2]
|
38 |
+
|
39 |
+
# loop of loop...
|
40 |
+
images = []
|
41 |
+
alphas = []
|
42 |
+
for b in range(B):
|
43 |
+
|
44 |
+
# pos, opacity, scale, rotation, shs
|
45 |
+
means3D = gaussians[b, :, 0:3].contiguous().float()
|
46 |
+
opacity = gaussians[b, :, 3:4].contiguous().float()
|
47 |
+
scales = gaussians[b, :, 4:7].contiguous().float()
|
48 |
+
rotations = gaussians[b, :, 7:11].contiguous().float()
|
49 |
+
rgbs = gaussians[b, :, 11:].contiguous().float() # [N, 3]
|
50 |
+
|
51 |
+
for v in range(V):
|
52 |
+
|
53 |
+
# render novel views
|
54 |
+
view_matrix = cam_view[b, v].float()
|
55 |
+
view_proj_matrix = cam_view_proj[b, v].float()
|
56 |
+
campos = cam_pos[b, v].float()
|
57 |
+
|
58 |
+
raster_settings = GaussianRasterizationSettings(
|
59 |
+
image_height=self.opt.output_size,
|
60 |
+
image_width=self.opt.output_size,
|
61 |
+
tanfovx=self.tan_half_fov,
|
62 |
+
tanfovy=self.tan_half_fov,
|
63 |
+
bg=self.bg_color if bg_color is None else bg_color,
|
64 |
+
scale_modifier=scale_modifier,
|
65 |
+
viewmatrix=view_matrix,
|
66 |
+
projmatrix=view_proj_matrix,
|
67 |
+
sh_degree=0,
|
68 |
+
campos=campos,
|
69 |
+
prefiltered=False,
|
70 |
+
debug=False,
|
71 |
+
)
|
72 |
+
|
73 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
74 |
+
|
75 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
76 |
+
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
|
77 |
+
means3D=means3D,
|
78 |
+
means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device),
|
79 |
+
shs=None,
|
80 |
+
colors_precomp=rgbs,
|
81 |
+
opacities=opacity,
|
82 |
+
scales=scales,
|
83 |
+
rotations=rotations,
|
84 |
+
cov3D_precomp=None,
|
85 |
+
)
|
86 |
+
|
87 |
+
rendered_image = rendered_image.clamp(0, 1)
|
88 |
+
|
89 |
+
images.append(rendered_image)
|
90 |
+
alphas.append(rendered_alpha)
|
91 |
+
|
92 |
+
images = torch.stack(images, dim=0).view(B, V, 3, self.opt.output_size, self.opt.output_size)
|
93 |
+
alphas = torch.stack(alphas, dim=0).view(B, V, 1, self.opt.output_size, self.opt.output_size)
|
94 |
+
|
95 |
+
return {
|
96 |
+
"image": images, # [B, V, 3, H, W]
|
97 |
+
"alpha": alphas, # [B, V, 1, H, W]
|
98 |
+
}
|
99 |
+
|
100 |
+
|
101 |
+
def save_ply(self, gaussians, path, compatible=True):
|
102 |
+
# gaussians: [B, N, 14]
|
103 |
+
# compatible: save pre-activated gaussians as in the original paper
|
104 |
+
|
105 |
+
assert gaussians.shape[0] == 1, 'only support batch size 1'
|
106 |
+
|
107 |
+
from plyfile import PlyData, PlyElement
|
108 |
+
|
109 |
+
means3D = gaussians[0, :, 0:3].contiguous().float()
|
110 |
+
opacity = gaussians[0, :, 3:4].contiguous().float()
|
111 |
+
scales = gaussians[0, :, 4:7].contiguous().float()
|
112 |
+
rotations = gaussians[0, :, 7:11].contiguous().float()
|
113 |
+
shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3]
|
114 |
+
|
115 |
+
# prune by opacity
|
116 |
+
mask = opacity.squeeze(-1) >= 0.005
|
117 |
+
means3D = means3D[mask]
|
118 |
+
opacity = opacity[mask]
|
119 |
+
scales = scales[mask]
|
120 |
+
rotations = rotations[mask]
|
121 |
+
shs = shs[mask]
|
122 |
+
|
123 |
+
# invert activation to make it compatible with the original ply format
|
124 |
+
if compatible:
|
125 |
+
opacity = kiui.op.inverse_sigmoid(opacity)
|
126 |
+
scales = torch.log(scales + 1e-8)
|
127 |
+
shs = (shs - 0.5) / 0.28209479177387814
|
128 |
+
|
129 |
+
xyzs = means3D.detach().cpu().numpy()
|
130 |
+
f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
131 |
+
opacities = opacity.detach().cpu().numpy()
|
132 |
+
scales = scales.detach().cpu().numpy()
|
133 |
+
rotations = rotations.detach().cpu().numpy()
|
134 |
+
|
135 |
+
l = ['x', 'y', 'z']
|
136 |
+
# All channels except the 3 DC
|
137 |
+
for i in range(f_dc.shape[1]):
|
138 |
+
l.append('f_dc_{}'.format(i))
|
139 |
+
l.append('opacity')
|
140 |
+
for i in range(scales.shape[1]):
|
141 |
+
l.append('scale_{}'.format(i))
|
142 |
+
for i in range(rotations.shape[1]):
|
143 |
+
l.append('rot_{}'.format(i))
|
144 |
+
|
145 |
+
dtype_full = [(attribute, 'f4') for attribute in l]
|
146 |
+
|
147 |
+
elements = np.empty(xyzs.shape[0], dtype=dtype_full)
|
148 |
+
attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
|
149 |
+
elements[:] = list(map(tuple, attributes))
|
150 |
+
el = PlyElement.describe(elements, 'vertex')
|
151 |
+
|
152 |
+
PlyData([el]).write(path)
|
153 |
+
|
154 |
+
def load_ply(self, path, compatible=True):
|
155 |
+
|
156 |
+
from plyfile import PlyData, PlyElement
|
157 |
+
|
158 |
+
plydata = PlyData.read(path)
|
159 |
+
|
160 |
+
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
|
161 |
+
np.asarray(plydata.elements[0]["y"]),
|
162 |
+
np.asarray(plydata.elements[0]["z"])), axis=1)
|
163 |
+
print("Number of points at loading : ", xyz.shape[0])
|
164 |
+
|
165 |
+
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
|
166 |
+
|
167 |
+
shs = np.zeros((xyz.shape[0], 3))
|
168 |
+
shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
|
169 |
+
shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"])
|
170 |
+
shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"])
|
171 |
+
|
172 |
+
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
|
173 |
+
scales = np.zeros((xyz.shape[0], len(scale_names)))
|
174 |
+
for idx, attr_name in enumerate(scale_names):
|
175 |
+
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
176 |
+
|
177 |
+
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
|
178 |
+
rots = np.zeros((xyz.shape[0], len(rot_names)))
|
179 |
+
for idx, attr_name in enumerate(rot_names):
|
180 |
+
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
181 |
+
|
182 |
+
gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1)
|
183 |
+
gaussians = torch.from_numpy(gaussians).float() # cpu
|
184 |
+
|
185 |
+
if compatible:
|
186 |
+
gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4])
|
187 |
+
gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7])
|
188 |
+
gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5
|
189 |
+
|
190 |
+
return gaussians
|
lgm/core/models.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import kiui
|
7 |
+
from kiui.lpips import LPIPS
|
8 |
+
|
9 |
+
from core.unet import UNet
|
10 |
+
from core.options import Options
|
11 |
+
from core.gs import GaussianRenderer
|
12 |
+
|
13 |
+
|
14 |
+
class LGM(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
opt: Options,
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
self.opt = opt
|
22 |
+
|
23 |
+
# unet
|
24 |
+
self.unet = UNet(
|
25 |
+
9, 14,
|
26 |
+
down_channels=self.opt.down_channels,
|
27 |
+
down_attention=self.opt.down_attention,
|
28 |
+
mid_attention=self.opt.mid_attention,
|
29 |
+
up_channels=self.opt.up_channels,
|
30 |
+
up_attention=self.opt.up_attention,
|
31 |
+
)
|
32 |
+
|
33 |
+
# last conv
|
34 |
+
self.conv = nn.Conv2d(14, 14, kernel_size=1) # NOTE: maybe remove it if train again
|
35 |
+
|
36 |
+
# Gaussian Renderer
|
37 |
+
self.gs = GaussianRenderer(opt)
|
38 |
+
|
39 |
+
# activations...
|
40 |
+
self.pos_act = lambda x: x.clamp(-1, 1)
|
41 |
+
self.scale_act = lambda x: 0.1 * F.softplus(x)
|
42 |
+
self.opacity_act = lambda x: torch.sigmoid(x)
|
43 |
+
self.rot_act = lambda x: F.normalize(x, dim=-1)
|
44 |
+
self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5 # NOTE: may use sigmoid if train again
|
45 |
+
|
46 |
+
# LPIPS loss
|
47 |
+
if self.opt.lambda_lpips > 0:
|
48 |
+
self.lpips_loss = LPIPS(net='vgg')
|
49 |
+
self.lpips_loss.requires_grad_(False)
|
50 |
+
|
51 |
+
|
52 |
+
def state_dict(self, **kwargs):
|
53 |
+
# remove lpips_loss
|
54 |
+
state_dict = super().state_dict(**kwargs)
|
55 |
+
for k in list(state_dict.keys()):
|
56 |
+
if 'lpips_loss' in k:
|
57 |
+
del state_dict[k]
|
58 |
+
return state_dict
|
59 |
+
|
60 |
+
|
61 |
+
def prepare_default_rays(self, device, elevation=0):
|
62 |
+
|
63 |
+
from kiui.cam import orbit_camera
|
64 |
+
from core.utils import get_rays
|
65 |
+
|
66 |
+
cam_poses = np.stack([
|
67 |
+
orbit_camera(elevation, 0, radius=self.opt.cam_radius),
|
68 |
+
orbit_camera(elevation, 90, radius=self.opt.cam_radius),
|
69 |
+
orbit_camera(elevation, 180, radius=self.opt.cam_radius),
|
70 |
+
orbit_camera(elevation, 270, radius=self.opt.cam_radius),
|
71 |
+
], axis=0) # [4, 4, 4]
|
72 |
+
cam_poses = torch.from_numpy(cam_poses)
|
73 |
+
|
74 |
+
rays_embeddings = []
|
75 |
+
for i in range(cam_poses.shape[0]):
|
76 |
+
rays_o, rays_d = get_rays(cam_poses[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
|
77 |
+
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
|
78 |
+
rays_embeddings.append(rays_plucker)
|
79 |
+
|
80 |
+
## visualize rays for plotting figure
|
81 |
+
# kiui.vis.plot_image(rays_d * 0.5 + 0.5, save=True)
|
82 |
+
|
83 |
+
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous().to(device) # [V, 6, h, w]
|
84 |
+
|
85 |
+
return rays_embeddings
|
86 |
+
|
87 |
+
|
88 |
+
def forward_gaussians(self, images):
|
89 |
+
# images: [B, 4, 9, H, W]
|
90 |
+
# return: Gaussians: [B, dim_t]
|
91 |
+
|
92 |
+
B, V, C, H, W = images.shape
|
93 |
+
images = images.view(B*V, C, H, W)
|
94 |
+
|
95 |
+
x = self.unet(images) # [B*4, 14, h, w]
|
96 |
+
x = self.conv(x) # [B*4, 14, h, w]
|
97 |
+
|
98 |
+
x = x.reshape(B, 4, 14, self.opt.splat_size, self.opt.splat_size)
|
99 |
+
|
100 |
+
## visualize multi-view gaussian features for plotting figure
|
101 |
+
# tmp_alpha = self.opacity_act(x[0, :, 3:4])
|
102 |
+
# tmp_img_rgb = self.rgb_act(x[0, :, 11:]) * tmp_alpha + (1 - tmp_alpha)
|
103 |
+
# tmp_img_pos = self.pos_act(x[0, :, 0:3]) * 0.5 + 0.5
|
104 |
+
# kiui.vis.plot_image(tmp_img_rgb, save=True)
|
105 |
+
# kiui.vis.plot_image(tmp_img_pos, save=True)
|
106 |
+
|
107 |
+
x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
|
108 |
+
|
109 |
+
pos = self.pos_act(x[..., 0:3]) # [B, N, 3]
|
110 |
+
opacity = self.opacity_act(x[..., 3:4])
|
111 |
+
scale = self.scale_act(x[..., 4:7])
|
112 |
+
rotation = self.rot_act(x[..., 7:11])
|
113 |
+
rgbs = self.rgb_act(x[..., 11:])
|
114 |
+
|
115 |
+
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14]
|
116 |
+
|
117 |
+
return gaussians
|
118 |
+
|
119 |
+
|
120 |
+
def forward(self, data, step_ratio=1):
|
121 |
+
# data: output of the dataloader
|
122 |
+
# return: loss
|
123 |
+
|
124 |
+
results = {}
|
125 |
+
loss = 0
|
126 |
+
|
127 |
+
images = data['input'] # [B, 4, 9, h, W], input features
|
128 |
+
|
129 |
+
# use the first view to predict gaussians
|
130 |
+
gaussians = self.forward_gaussians(images) # [B, N, 14]
|
131 |
+
|
132 |
+
results['gaussians'] = gaussians
|
133 |
+
|
134 |
+
# always use white bg
|
135 |
+
bg_color = torch.ones(3, dtype=torch.float32, device=gaussians.device)
|
136 |
+
|
137 |
+
# use the other views for rendering and supervision
|
138 |
+
results = self.gs.render(gaussians, data['cam_view'], data['cam_view_proj'], data['cam_pos'], bg_color=bg_color)
|
139 |
+
pred_images = results['image'] # [B, V, C, output_size, output_size]
|
140 |
+
pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size]
|
141 |
+
|
142 |
+
results['images_pred'] = pred_images
|
143 |
+
results['alphas_pred'] = pred_alphas
|
144 |
+
|
145 |
+
gt_images = data['images_output'] # [B, V, 3, output_size, output_size], ground-truth novel views
|
146 |
+
gt_masks = data['masks_output'] # [B, V, 1, output_size, output_size], ground-truth masks
|
147 |
+
|
148 |
+
gt_images = gt_images * gt_masks + bg_color.view(1, 1, 3, 1, 1) * (1 - gt_masks)
|
149 |
+
|
150 |
+
loss_mse = F.mse_loss(pred_images, gt_images) + F.mse_loss(pred_alphas, gt_masks)
|
151 |
+
loss = loss + loss_mse
|
152 |
+
|
153 |
+
if self.opt.lambda_lpips > 0:
|
154 |
+
loss_lpips = self.lpips_loss(
|
155 |
+
# gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
|
156 |
+
# pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
|
157 |
+
# downsampled to at most 256 to reduce memory cost
|
158 |
+
F.interpolate(gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
|
159 |
+
F.interpolate(pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
|
160 |
+
).mean()
|
161 |
+
results['loss_lpips'] = loss_lpips
|
162 |
+
loss = loss + self.opt.lambda_lpips * loss_lpips
|
163 |
+
|
164 |
+
results['loss'] = loss
|
165 |
+
|
166 |
+
# metric
|
167 |
+
with torch.no_grad():
|
168 |
+
psnr = -10 * torch.log10(torch.mean((pred_images.detach() - gt_images) ** 2))
|
169 |
+
results['psnr'] = psnr
|
170 |
+
|
171 |
+
return results
|
lgm/core/options.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tyro
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Tuple, Literal, Dict, Optional
|
4 |
+
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class Options:
|
8 |
+
### model
|
9 |
+
# Unet image input size
|
10 |
+
input_size: int = 256
|
11 |
+
# Unet definition
|
12 |
+
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024)
|
13 |
+
down_attention: Tuple[bool, ...] = (False, False, False, True, True, True)
|
14 |
+
mid_attention: bool = True
|
15 |
+
up_channels: Tuple[int, ...] = (1024, 1024, 512, 256)
|
16 |
+
up_attention: Tuple[bool, ...] = (True, True, True, False)
|
17 |
+
# Unet output size, dependent on the input_size and U-Net structure!
|
18 |
+
splat_size: int = 64
|
19 |
+
# gaussian render size
|
20 |
+
output_size: int = 256
|
21 |
+
|
22 |
+
### dataset
|
23 |
+
# data mode (only support s3 now)
|
24 |
+
data_mode: Literal['s3'] = 's3'
|
25 |
+
# fovy of the dataset
|
26 |
+
fovy: float = 49.1
|
27 |
+
# camera near plane
|
28 |
+
znear: float = 0.5
|
29 |
+
# camera far plane
|
30 |
+
zfar: float = 2.5
|
31 |
+
# number of all views (input + output)
|
32 |
+
num_views: int = 12
|
33 |
+
# number of views
|
34 |
+
num_input_views: int = 4
|
35 |
+
# camera radius
|
36 |
+
cam_radius: float = 1.5 # to better use [-1, 1]^3 space
|
37 |
+
# num workers
|
38 |
+
num_workers: int = 8
|
39 |
+
|
40 |
+
### training
|
41 |
+
# workspace
|
42 |
+
workspace: str = './workspace'
|
43 |
+
# resume
|
44 |
+
resume: Optional[str] = 'pretrained/model_fp16_fixrot.safetensors'
|
45 |
+
# batch size (per-GPU)
|
46 |
+
batch_size: int = 8
|
47 |
+
# gradient accumulation
|
48 |
+
gradient_accumulation_steps: int = 1
|
49 |
+
# training epochs
|
50 |
+
num_epochs: int = 30
|
51 |
+
# lpips loss weight
|
52 |
+
lambda_lpips: float = 1.0
|
53 |
+
# gradient clip
|
54 |
+
gradient_clip: float = 1.0
|
55 |
+
# mixed precision
|
56 |
+
mixed_precision: str = 'bf16'
|
57 |
+
# learning rate
|
58 |
+
lr: float = 4e-4
|
59 |
+
# augmentation prob for grid distortion
|
60 |
+
prob_grid_distortion: float = 0.5
|
61 |
+
# augmentation prob for camera jitter
|
62 |
+
prob_cam_jitter: float = 0.5
|
63 |
+
|
64 |
+
### testing
|
65 |
+
# test image path
|
66 |
+
test_path: Optional[str] = None
|
67 |
+
|
68 |
+
### misc
|
69 |
+
# nvdiffrast backend setting
|
70 |
+
force_cuda_rast: bool = False
|
71 |
+
# render fancy video with gaussian scaling effect
|
72 |
+
fancy_video: bool = False
|
73 |
+
|
74 |
+
|
75 |
+
# all the default settings
|
76 |
+
config_defaults: Dict[str, Options] = {}
|
77 |
+
config_doc: Dict[str, str] = {}
|
78 |
+
|
79 |
+
config_doc['lrm'] = 'the default settings for LGM'
|
80 |
+
config_defaults['lrm'] = Options()
|
81 |
+
|
82 |
+
config_doc['small'] = 'small model with lower resolution Gaussians'
|
83 |
+
config_defaults['small'] = Options(
|
84 |
+
input_size=256,
|
85 |
+
splat_size=64,
|
86 |
+
output_size=256,
|
87 |
+
batch_size=8,
|
88 |
+
gradient_accumulation_steps=1,
|
89 |
+
mixed_precision='bf16',
|
90 |
+
)
|
91 |
+
|
92 |
+
config_doc['big'] = 'big model with higher resolution Gaussians'
|
93 |
+
config_defaults['big'] = Options(
|
94 |
+
input_size=256,
|
95 |
+
up_channels=(1024, 1024, 512, 256, 128), # one more decoder
|
96 |
+
up_attention=(True, True, True, False, False),
|
97 |
+
splat_size=128,
|
98 |
+
output_size=512, # render & supervise Gaussians at a higher resolution.
|
99 |
+
batch_size=8,
|
100 |
+
num_views=8,
|
101 |
+
gradient_accumulation_steps=1,
|
102 |
+
mixed_precision='bf16',
|
103 |
+
)
|
104 |
+
|
105 |
+
config_doc['tiny'] = 'tiny model for ablation'
|
106 |
+
config_defaults['tiny'] = Options(
|
107 |
+
input_size=256,
|
108 |
+
down_channels=(32, 64, 128, 256, 512),
|
109 |
+
down_attention=(False, False, False, False, True),
|
110 |
+
up_channels=(512, 256, 128),
|
111 |
+
up_attention=(True, False, False, False),
|
112 |
+
splat_size=64,
|
113 |
+
output_size=256,
|
114 |
+
batch_size=16,
|
115 |
+
num_views=8,
|
116 |
+
gradient_accumulation_steps=1,
|
117 |
+
mixed_precision='bf16',
|
118 |
+
)
|
119 |
+
|
120 |
+
AllConfigs = tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc)
|
lgm/core/unet.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from typing import Tuple, Literal
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
from core.attention import MemEffAttention
|
10 |
+
|
11 |
+
class MVAttention(nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
dim: int,
|
15 |
+
num_heads: int = 8,
|
16 |
+
qkv_bias: bool = False,
|
17 |
+
proj_bias: bool = True,
|
18 |
+
attn_drop: float = 0.0,
|
19 |
+
proj_drop: float = 0.0,
|
20 |
+
groups: int = 32,
|
21 |
+
eps: float = 1e-5,
|
22 |
+
residual: bool = True,
|
23 |
+
skip_scale: float = 1,
|
24 |
+
num_frames: int = 4, # WARN: hardcoded!
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
self.residual = residual
|
29 |
+
self.skip_scale = skip_scale
|
30 |
+
self.num_frames = num_frames
|
31 |
+
|
32 |
+
self.norm = nn.GroupNorm(num_groups=groups, num_channels=dim, eps=eps, affine=True)
|
33 |
+
self.attn = MemEffAttention(dim, num_heads, qkv_bias, proj_bias, attn_drop, proj_drop)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
# x: [B*V, C, H, W]
|
37 |
+
BV, C, H, W = x.shape
|
38 |
+
B = BV // self.num_frames # assert BV % self.num_frames == 0
|
39 |
+
|
40 |
+
res = x
|
41 |
+
x = self.norm(x)
|
42 |
+
|
43 |
+
x = x.reshape(B, self.num_frames, C, H, W).permute(0, 1, 3, 4, 2).reshape(B, -1, C)
|
44 |
+
x = self.attn(x)
|
45 |
+
x = x.reshape(B, self.num_frames, H, W, C).permute(0, 1, 4, 2, 3).reshape(BV, C, H, W)
|
46 |
+
|
47 |
+
if self.residual:
|
48 |
+
x = (x + res) * self.skip_scale
|
49 |
+
return x
|
50 |
+
|
51 |
+
class ResnetBlock(nn.Module):
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
in_channels: int,
|
55 |
+
out_channels: int,
|
56 |
+
resample: Literal['default', 'up', 'down'] = 'default',
|
57 |
+
groups: int = 32,
|
58 |
+
eps: float = 1e-5,
|
59 |
+
skip_scale: float = 1, # multiplied to output
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
self.in_channels = in_channels
|
64 |
+
self.out_channels = out_channels
|
65 |
+
self.skip_scale = skip_scale
|
66 |
+
|
67 |
+
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
68 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
69 |
+
|
70 |
+
self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
|
71 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
72 |
+
|
73 |
+
self.act = F.silu
|
74 |
+
|
75 |
+
self.resample = None
|
76 |
+
if resample == 'up':
|
77 |
+
self.resample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
78 |
+
elif resample == 'down':
|
79 |
+
self.resample = nn.AvgPool2d(kernel_size=2, stride=2)
|
80 |
+
|
81 |
+
self.shortcut = nn.Identity()
|
82 |
+
if self.in_channels != self.out_channels:
|
83 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True)
|
84 |
+
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
res = x
|
88 |
+
|
89 |
+
x = self.norm1(x)
|
90 |
+
x = self.act(x)
|
91 |
+
|
92 |
+
if self.resample:
|
93 |
+
res = self.resample(res)
|
94 |
+
x = self.resample(x)
|
95 |
+
|
96 |
+
x = self.conv1(x)
|
97 |
+
x = self.norm2(x)
|
98 |
+
x = self.act(x)
|
99 |
+
x = self.conv2(x)
|
100 |
+
|
101 |
+
x = (x + self.shortcut(res)) * self.skip_scale
|
102 |
+
|
103 |
+
return x
|
104 |
+
|
105 |
+
class DownBlock(nn.Module):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
in_channels: int,
|
109 |
+
out_channels: int,
|
110 |
+
num_layers: int = 1,
|
111 |
+
downsample: bool = True,
|
112 |
+
attention: bool = True,
|
113 |
+
attention_heads: int = 16,
|
114 |
+
skip_scale: float = 1,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
nets = []
|
119 |
+
attns = []
|
120 |
+
for i in range(num_layers):
|
121 |
+
in_channels = in_channels if i == 0 else out_channels
|
122 |
+
nets.append(ResnetBlock(in_channels, out_channels, skip_scale=skip_scale))
|
123 |
+
if attention:
|
124 |
+
attns.append(MVAttention(out_channels, attention_heads, skip_scale=skip_scale))
|
125 |
+
else:
|
126 |
+
attns.append(None)
|
127 |
+
self.nets = nn.ModuleList(nets)
|
128 |
+
self.attns = nn.ModuleList(attns)
|
129 |
+
|
130 |
+
self.downsample = None
|
131 |
+
if downsample:
|
132 |
+
self.downsample = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
xs = []
|
136 |
+
|
137 |
+
for attn, net in zip(self.attns, self.nets):
|
138 |
+
x = net(x)
|
139 |
+
if attn:
|
140 |
+
x = attn(x)
|
141 |
+
xs.append(x)
|
142 |
+
|
143 |
+
if self.downsample:
|
144 |
+
x = self.downsample(x)
|
145 |
+
xs.append(x)
|
146 |
+
|
147 |
+
return x, xs
|
148 |
+
|
149 |
+
|
150 |
+
class MidBlock(nn.Module):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
in_channels: int,
|
154 |
+
num_layers: int = 1,
|
155 |
+
attention: bool = True,
|
156 |
+
attention_heads: int = 16,
|
157 |
+
skip_scale: float = 1,
|
158 |
+
):
|
159 |
+
super().__init__()
|
160 |
+
|
161 |
+
nets = []
|
162 |
+
attns = []
|
163 |
+
# first layer
|
164 |
+
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
|
165 |
+
# more layers
|
166 |
+
for i in range(num_layers):
|
167 |
+
nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale))
|
168 |
+
if attention:
|
169 |
+
attns.append(MVAttention(in_channels, attention_heads, skip_scale=skip_scale))
|
170 |
+
else:
|
171 |
+
attns.append(None)
|
172 |
+
self.nets = nn.ModuleList(nets)
|
173 |
+
self.attns = nn.ModuleList(attns)
|
174 |
+
|
175 |
+
def forward(self, x):
|
176 |
+
x = self.nets[0](x)
|
177 |
+
for attn, net in zip(self.attns, self.nets[1:]):
|
178 |
+
if attn:
|
179 |
+
x = attn(x)
|
180 |
+
x = net(x)
|
181 |
+
return x
|
182 |
+
|
183 |
+
|
184 |
+
class UpBlock(nn.Module):
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
in_channels: int,
|
188 |
+
prev_out_channels: int,
|
189 |
+
out_channels: int,
|
190 |
+
num_layers: int = 1,
|
191 |
+
upsample: bool = True,
|
192 |
+
attention: bool = True,
|
193 |
+
attention_heads: int = 16,
|
194 |
+
skip_scale: float = 1,
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
nets = []
|
199 |
+
attns = []
|
200 |
+
for i in range(num_layers):
|
201 |
+
cin = in_channels if i == 0 else out_channels
|
202 |
+
cskip = prev_out_channels if (i == num_layers - 1) else out_channels
|
203 |
+
|
204 |
+
nets.append(ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale))
|
205 |
+
if attention:
|
206 |
+
attns.append(MVAttention(out_channels, attention_heads, skip_scale=skip_scale))
|
207 |
+
else:
|
208 |
+
attns.append(None)
|
209 |
+
self.nets = nn.ModuleList(nets)
|
210 |
+
self.attns = nn.ModuleList(attns)
|
211 |
+
|
212 |
+
self.upsample = None
|
213 |
+
if upsample:
|
214 |
+
self.upsample = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
215 |
+
|
216 |
+
def forward(self, x, xs):
|
217 |
+
|
218 |
+
for attn, net in zip(self.attns, self.nets):
|
219 |
+
res_x = xs[-1]
|
220 |
+
xs = xs[:-1]
|
221 |
+
x = torch.cat([x, res_x], dim=1)
|
222 |
+
x = net(x)
|
223 |
+
if attn:
|
224 |
+
x = attn(x)
|
225 |
+
|
226 |
+
if self.upsample:
|
227 |
+
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
228 |
+
x = self.upsample(x)
|
229 |
+
|
230 |
+
return x
|
231 |
+
|
232 |
+
|
233 |
+
# it could be asymmetric!
|
234 |
+
class UNet(nn.Module):
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
in_channels: int = 3,
|
238 |
+
out_channels: int = 3,
|
239 |
+
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024),
|
240 |
+
down_attention: Tuple[bool, ...] = (False, False, False, True, True),
|
241 |
+
mid_attention: bool = True,
|
242 |
+
up_channels: Tuple[int, ...] = (1024, 512, 256),
|
243 |
+
up_attention: Tuple[bool, ...] = (True, True, False),
|
244 |
+
layers_per_block: int = 2,
|
245 |
+
skip_scale: float = np.sqrt(0.5),
|
246 |
+
):
|
247 |
+
super().__init__()
|
248 |
+
|
249 |
+
# first
|
250 |
+
self.conv_in = nn.Conv2d(in_channels, down_channels[0], kernel_size=3, stride=1, padding=1)
|
251 |
+
|
252 |
+
# down
|
253 |
+
down_blocks = []
|
254 |
+
cout = down_channels[0]
|
255 |
+
for i in range(len(down_channels)):
|
256 |
+
cin = cout
|
257 |
+
cout = down_channels[i]
|
258 |
+
|
259 |
+
down_blocks.append(DownBlock(
|
260 |
+
cin, cout,
|
261 |
+
num_layers=layers_per_block,
|
262 |
+
downsample=(i != len(down_channels) - 1), # not final layer
|
263 |
+
attention=down_attention[i],
|
264 |
+
skip_scale=skip_scale,
|
265 |
+
))
|
266 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
267 |
+
|
268 |
+
# mid
|
269 |
+
self.mid_block = MidBlock(down_channels[-1], attention=mid_attention, skip_scale=skip_scale)
|
270 |
+
|
271 |
+
# up
|
272 |
+
up_blocks = []
|
273 |
+
cout = up_channels[0]
|
274 |
+
for i in range(len(up_channels)):
|
275 |
+
cin = cout
|
276 |
+
cout = up_channels[i]
|
277 |
+
cskip = down_channels[max(-2 - i, -len(down_channels))] # for assymetric
|
278 |
+
|
279 |
+
up_blocks.append(UpBlock(
|
280 |
+
cin, cskip, cout,
|
281 |
+
num_layers=layers_per_block + 1, # one more layer for up
|
282 |
+
upsample=(i != len(up_channels) - 1), # not final layer
|
283 |
+
attention=up_attention[i],
|
284 |
+
skip_scale=skip_scale,
|
285 |
+
))
|
286 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
287 |
+
|
288 |
+
# last
|
289 |
+
self.norm_out = nn.GroupNorm(num_channels=up_channels[-1], num_groups=32, eps=1e-5)
|
290 |
+
self.conv_out = nn.Conv2d(up_channels[-1], out_channels, kernel_size=3, stride=1, padding=1)
|
291 |
+
|
292 |
+
|
293 |
+
def forward(self, x):
|
294 |
+
# x: [B, Cin, H, W]
|
295 |
+
|
296 |
+
# first
|
297 |
+
x = self.conv_in(x)
|
298 |
+
|
299 |
+
# down
|
300 |
+
xss = [x]
|
301 |
+
for block in self.down_blocks:
|
302 |
+
x, xs = block(x)
|
303 |
+
xss.extend(xs)
|
304 |
+
|
305 |
+
# mid
|
306 |
+
x = self.mid_block(x)
|
307 |
+
|
308 |
+
# up
|
309 |
+
for block in self.up_blocks:
|
310 |
+
xs = xss[-len(block.nets):]
|
311 |
+
xss = xss[:-len(block.nets)]
|
312 |
+
x = block(x, xs)
|
313 |
+
|
314 |
+
# last
|
315 |
+
x = self.norm_out(x)
|
316 |
+
x = F.silu(x)
|
317 |
+
x = self.conv_out(x) # [B, Cout, H', W']
|
318 |
+
|
319 |
+
return x
|
lgm/core/utils.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
import roma
|
8 |
+
from kiui.op import safe_normalize
|
9 |
+
|
10 |
+
def get_rays(pose, h, w, fovy, opengl=True):
|
11 |
+
|
12 |
+
x, y = torch.meshgrid(
|
13 |
+
torch.arange(w, device=pose.device),
|
14 |
+
torch.arange(h, device=pose.device),
|
15 |
+
indexing="xy",
|
16 |
+
)
|
17 |
+
x = x.flatten()
|
18 |
+
y = y.flatten()
|
19 |
+
|
20 |
+
cx = w * 0.5
|
21 |
+
cy = h * 0.5
|
22 |
+
|
23 |
+
focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))
|
24 |
+
|
25 |
+
camera_dirs = F.pad(
|
26 |
+
torch.stack(
|
27 |
+
[
|
28 |
+
(x - cx + 0.5) / focal,
|
29 |
+
(y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
|
30 |
+
],
|
31 |
+
dim=-1,
|
32 |
+
),
|
33 |
+
(0, 1),
|
34 |
+
value=(-1.0 if opengl else 1.0),
|
35 |
+
) # [hw, 3]
|
36 |
+
|
37 |
+
rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1) # [hw, 3]
|
38 |
+
rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) # [hw, 3]
|
39 |
+
|
40 |
+
rays_o = rays_o.view(h, w, 3)
|
41 |
+
rays_d = safe_normalize(rays_d).view(h, w, 3)
|
42 |
+
|
43 |
+
return rays_o, rays_d
|
44 |
+
|
45 |
+
def orbit_camera_jitter(poses, strength=0.1):
|
46 |
+
# poses: [B, 4, 4], assume orbit camera in opengl format
|
47 |
+
# random orbital rotate
|
48 |
+
|
49 |
+
B = poses.shape[0]
|
50 |
+
rotvec_x = poses[:, :3, 1] * strength * np.pi * (torch.rand(B, 1, device=poses.device) * 2 - 1)
|
51 |
+
rotvec_y = poses[:, :3, 0] * strength * np.pi / 2 * (torch.rand(B, 1, device=poses.device) * 2 - 1)
|
52 |
+
|
53 |
+
rot = roma.rotvec_to_rotmat(rotvec_x) @ roma.rotvec_to_rotmat(rotvec_y)
|
54 |
+
R = rot @ poses[:, :3, :3]
|
55 |
+
T = rot @ poses[:, :3, 3:]
|
56 |
+
|
57 |
+
new_poses = poses.clone()
|
58 |
+
new_poses[:, :3, :3] = R
|
59 |
+
new_poses[:, :3, 3:] = T
|
60 |
+
|
61 |
+
return new_poses
|
62 |
+
|
63 |
+
def grid_distortion(images, strength=0.5):
|
64 |
+
# images: [B, C, H, W]
|
65 |
+
# num_steps: int, grid resolution for distortion
|
66 |
+
# strength: float in [0, 1], strength of distortion
|
67 |
+
|
68 |
+
B, C, H, W = images.shape
|
69 |
+
|
70 |
+
num_steps = np.random.randint(8, 17)
|
71 |
+
grid_steps = torch.linspace(-1, 1, num_steps)
|
72 |
+
|
73 |
+
# have to loop batch...
|
74 |
+
grids = []
|
75 |
+
for b in range(B):
|
76 |
+
# construct displacement
|
77 |
+
x_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive
|
78 |
+
x_steps = (x_steps + strength * (torch.rand_like(x_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb
|
79 |
+
x_steps = (x_steps * W).long() # [num_steps]
|
80 |
+
x_steps[0] = 0
|
81 |
+
x_steps[-1] = W
|
82 |
+
xs = []
|
83 |
+
for i in range(num_steps - 1):
|
84 |
+
xs.append(torch.linspace(grid_steps[i], grid_steps[i + 1], x_steps[i + 1] - x_steps[i]))
|
85 |
+
xs = torch.cat(xs, dim=0) # [W]
|
86 |
+
|
87 |
+
y_steps = torch.linspace(0, 1, num_steps) # [num_steps], inclusive
|
88 |
+
y_steps = (y_steps + strength * (torch.rand_like(y_steps) - 0.5) / (num_steps - 1)).clamp(0, 1) # perturb
|
89 |
+
y_steps = (y_steps * H).long() # [num_steps]
|
90 |
+
y_steps[0] = 0
|
91 |
+
y_steps[-1] = H
|
92 |
+
ys = []
|
93 |
+
for i in range(num_steps - 1):
|
94 |
+
ys.append(torch.linspace(grid_steps[i], grid_steps[i + 1], y_steps[i + 1] - y_steps[i]))
|
95 |
+
ys = torch.cat(ys, dim=0) # [H]
|
96 |
+
|
97 |
+
# construct grid
|
98 |
+
grid_x, grid_y = torch.meshgrid(xs, ys, indexing='xy') # [H, W]
|
99 |
+
grid = torch.stack([grid_x, grid_y], dim=-1) # [H, W, 2]
|
100 |
+
|
101 |
+
grids.append(grid)
|
102 |
+
|
103 |
+
grids = torch.stack(grids, dim=0).to(images.device) # [B, H, W, 2]
|
104 |
+
|
105 |
+
# grid sample
|
106 |
+
images = F.grid_sample(images, grids, align_corners=False)
|
107 |
+
|
108 |
+
return images
|
lgm/infer.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import tyro
|
4 |
+
import glob
|
5 |
+
import imageio
|
6 |
+
import numpy as np
|
7 |
+
import tqdm
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torchvision.transforms.functional as TF
|
12 |
+
from safetensors.torch import load_file
|
13 |
+
import rembg
|
14 |
+
|
15 |
+
import kiui
|
16 |
+
from kiui.op import recenter
|
17 |
+
from kiui.cam import orbit_camera
|
18 |
+
|
19 |
+
from core.options import AllConfigs, Options
|
20 |
+
from core.models import LGM
|
21 |
+
from mvdream.pipeline_mvdream import MVDreamPipeline
|
22 |
+
import cv2
|
23 |
+
|
24 |
+
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
25 |
+
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
26 |
+
|
27 |
+
opt = tyro.cli(AllConfigs)
|
28 |
+
|
29 |
+
# model
|
30 |
+
model = LGM(opt)
|
31 |
+
|
32 |
+
# resume pretrained checkpoint
|
33 |
+
if opt.resume is not None:
|
34 |
+
if opt.resume.endswith('safetensors'):
|
35 |
+
ckpt = load_file(opt.resume, device='cpu')
|
36 |
+
else:
|
37 |
+
ckpt = torch.load(opt.resume, map_location='cpu')
|
38 |
+
model.load_state_dict(ckpt, strict=False)
|
39 |
+
print(f'[INFO] Loaded checkpoint from {opt.resume}')
|
40 |
+
else:
|
41 |
+
print(f'[WARN] model randomly initialized, are you sure?')
|
42 |
+
|
43 |
+
# device
|
44 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
45 |
+
model = model.half().to(device)
|
46 |
+
model.eval()
|
47 |
+
|
48 |
+
rays_embeddings = model.prepare_default_rays(device)
|
49 |
+
|
50 |
+
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
|
51 |
+
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
|
52 |
+
proj_matrix[0, 0] = 1 / tan_half_fov
|
53 |
+
proj_matrix[1, 1] = 1 / tan_half_fov
|
54 |
+
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
|
55 |
+
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
|
56 |
+
proj_matrix[2, 3] = 1
|
57 |
+
|
58 |
+
# load image dream
|
59 |
+
pipe = MVDreamPipeline.from_pretrained(
|
60 |
+
"ashawkey/imagedream-ipmv-diffusers", # remote weights
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
trust_remote_code=True,
|
63 |
+
# local_files_only=True,
|
64 |
+
)
|
65 |
+
pipe = pipe.to(device)
|
66 |
+
|
67 |
+
# load rembg
|
68 |
+
bg_remover = rembg.new_session()
|
69 |
+
|
70 |
+
# process function
|
71 |
+
def process(opt: Options, path):
|
72 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
73 |
+
if 'CONSISTENT4D' in path:
|
74 |
+
name = path.split('/')[-2]
|
75 |
+
print(f'[INFO] Processing {path} --> {name}')
|
76 |
+
os.makedirs('vis_data', exist_ok=True)
|
77 |
+
os.makedirs('logs', exist_ok=True)
|
78 |
+
|
79 |
+
input_image = kiui.read_image(path, mode='uint8')
|
80 |
+
|
81 |
+
# bg removal
|
82 |
+
carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
|
83 |
+
mask = carved_image[..., -1] > 0
|
84 |
+
|
85 |
+
# recenter
|
86 |
+
image = recenter(carved_image, mask, border_ratio=0.2)
|
87 |
+
|
88 |
+
# generate mv
|
89 |
+
image = image.astype(np.float32) / 255.0
|
90 |
+
|
91 |
+
# rgba to rgb white bg
|
92 |
+
if image.shape[-1] == 4:
|
93 |
+
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
|
94 |
+
|
95 |
+
mv_image = pipe('', image, guidance_scale=5.0, num_inference_steps=30, elevation=0)
|
96 |
+
mv_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
|
97 |
+
|
98 |
+
# generate gaussians
|
99 |
+
input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
|
100 |
+
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
|
101 |
+
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
102 |
+
|
103 |
+
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
############## align azimuth #####################
|
107 |
+
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
108 |
+
# generate gaussians
|
109 |
+
gaussians = model.forward_gaussians(input_image)
|
110 |
+
|
111 |
+
best_azi = 0
|
112 |
+
best_diff = 1e8
|
113 |
+
for v, azi in enumerate(np.arange(-180, 180, 1)):
|
114 |
+
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
115 |
+
|
116 |
+
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
117 |
+
|
118 |
+
# cameras needed by gaussian rasterizer
|
119 |
+
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
120 |
+
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
121 |
+
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
122 |
+
|
123 |
+
# scale = min(azi / 360, 1)
|
124 |
+
scale = 1
|
125 |
+
|
126 |
+
|
127 |
+
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)
|
128 |
+
rendered_image = result['image']
|
129 |
+
|
130 |
+
rendered_image = rendered_image.squeeze(1).permute(0,2,3,1).squeeze(0).contiguous().float().cpu().numpy()
|
131 |
+
rendered_image = cv2.resize(rendered_image, (image.shape[0], image.shape[1]), interpolation=cv2.INTER_AREA)
|
132 |
+
|
133 |
+
diff = np.mean((rendered_image- image) ** 2)
|
134 |
+
|
135 |
+
if diff < best_diff:
|
136 |
+
best_diff = diff
|
137 |
+
best_azi = azi
|
138 |
+
print("Best aligned azimuth: ", best_azi)
|
139 |
+
|
140 |
+
mv_image = []
|
141 |
+
for v, azi in enumerate([0, 90, 180, 270]):
|
142 |
+
cam_poses = torch.from_numpy(orbit_camera(0, azi + best_azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
143 |
+
|
144 |
+
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
145 |
+
|
146 |
+
# cameras needed by gaussian rasterizer
|
147 |
+
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
148 |
+
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
149 |
+
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
150 |
+
|
151 |
+
# scale = min(azi / 360, 1)
|
152 |
+
scale = 1
|
153 |
+
|
154 |
+
|
155 |
+
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)
|
156 |
+
rendered_image = result['image']
|
157 |
+
rendered_image = rendered_image.squeeze(1)
|
158 |
+
rendered_image = F.interpolate(rendered_image, (256, 256))
|
159 |
+
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy()
|
160 |
+
mv_image.append(rendered_image)
|
161 |
+
mv_image = np.concatenate(mv_image, axis=0)
|
162 |
+
|
163 |
+
input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
|
164 |
+
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
|
165 |
+
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
166 |
+
|
167 |
+
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
|
168 |
+
|
169 |
+
################################
|
170 |
+
|
171 |
+
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
172 |
+
# generate gaussians
|
173 |
+
gaussians = model.forward_gaussians(input_image)
|
174 |
+
|
175 |
+
# save gaussians
|
176 |
+
model.gs.save_ply(gaussians, os.path.join('logs', name + '_model.ply'))
|
177 |
+
|
178 |
+
# render 360 video
|
179 |
+
images = []
|
180 |
+
elevation = 0
|
181 |
+
|
182 |
+
if opt.fancy_video:
|
183 |
+
|
184 |
+
azimuth = np.arange(0, 720, 4, dtype=np.int32)
|
185 |
+
for azi in tqdm.tqdm(azimuth):
|
186 |
+
|
187 |
+
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
188 |
+
|
189 |
+
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
190 |
+
|
191 |
+
# cameras needed by gaussian rasterizer
|
192 |
+
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
193 |
+
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
194 |
+
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
195 |
+
|
196 |
+
scale = min(azi / 360, 1)
|
197 |
+
|
198 |
+
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
|
199 |
+
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
|
200 |
+
else:
|
201 |
+
azimuth = np.arange(0, 360, 2, dtype=np.int32)
|
202 |
+
for azi in tqdm.tqdm(azimuth):
|
203 |
+
|
204 |
+
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
|
205 |
+
|
206 |
+
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
|
207 |
+
|
208 |
+
# cameras needed by gaussian rasterizer
|
209 |
+
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
|
210 |
+
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
|
211 |
+
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
|
212 |
+
|
213 |
+
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
|
214 |
+
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
|
215 |
+
|
216 |
+
images = np.concatenate(images, axis=0)
|
217 |
+
imageio.mimwrite(os.path.join('vis_data', name + '_static.mp4'), images, fps=30)
|
218 |
+
|
219 |
+
|
220 |
+
assert opt.test_path is not None
|
221 |
+
if os.path.isdir(opt.test_path):
|
222 |
+
file_paths = glob.glob(os.path.join(opt.test_path, "*"))
|
223 |
+
else:
|
224 |
+
file_paths = [opt.test_path]
|
225 |
+
for path in file_paths:
|
226 |
+
process(opt, path)
|
lgm/mvdream/mv_unet.py
ADDED
@@ -0,0 +1,1005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
from inspect import isfunction
|
4 |
+
from typing import Optional, Any, List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin
|
12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
13 |
+
|
14 |
+
# require xformers!
|
15 |
+
import xformers
|
16 |
+
import xformers.ops
|
17 |
+
|
18 |
+
from kiui.cam import orbit_camera
|
19 |
+
|
20 |
+
def get_camera(
|
21 |
+
num_frames, elevation=0, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
|
22 |
+
):
|
23 |
+
angle_gap = azimuth_span / num_frames
|
24 |
+
cameras = []
|
25 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
26 |
+
|
27 |
+
pose = orbit_camera(elevation, azimuth, radius=1) # [4, 4]
|
28 |
+
|
29 |
+
# opengl to blender
|
30 |
+
if blender_coord:
|
31 |
+
pose[2] *= -1
|
32 |
+
pose[[1, 2]] = pose[[2, 1]]
|
33 |
+
|
34 |
+
cameras.append(pose.flatten())
|
35 |
+
|
36 |
+
if extra_view:
|
37 |
+
cameras.append(np.zeros_like(cameras[0]))
|
38 |
+
|
39 |
+
return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
|
40 |
+
|
41 |
+
|
42 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
43 |
+
"""
|
44 |
+
Create sinusoidal timestep embeddings.
|
45 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
46 |
+
These may be fractional.
|
47 |
+
:param dim: the dimension of the output.
|
48 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
49 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
50 |
+
"""
|
51 |
+
if not repeat_only:
|
52 |
+
half = dim // 2
|
53 |
+
freqs = torch.exp(
|
54 |
+
-math.log(max_period)
|
55 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
56 |
+
/ half
|
57 |
+
).to(device=timesteps.device)
|
58 |
+
args = timesteps[:, None] * freqs[None]
|
59 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
60 |
+
if dim % 2:
|
61 |
+
embedding = torch.cat(
|
62 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
66 |
+
# import pdb; pdb.set_trace()
|
67 |
+
return embedding
|
68 |
+
|
69 |
+
|
70 |
+
def zero_module(module):
|
71 |
+
"""
|
72 |
+
Zero out the parameters of a module and return it.
|
73 |
+
"""
|
74 |
+
for p in module.parameters():
|
75 |
+
p.detach().zero_()
|
76 |
+
return module
|
77 |
+
|
78 |
+
|
79 |
+
def conv_nd(dims, *args, **kwargs):
|
80 |
+
"""
|
81 |
+
Create a 1D, 2D, or 3D convolution module.
|
82 |
+
"""
|
83 |
+
if dims == 1:
|
84 |
+
return nn.Conv1d(*args, **kwargs)
|
85 |
+
elif dims == 2:
|
86 |
+
return nn.Conv2d(*args, **kwargs)
|
87 |
+
elif dims == 3:
|
88 |
+
return nn.Conv3d(*args, **kwargs)
|
89 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
90 |
+
|
91 |
+
|
92 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
93 |
+
"""
|
94 |
+
Create a 1D, 2D, or 3D average pooling module.
|
95 |
+
"""
|
96 |
+
if dims == 1:
|
97 |
+
return nn.AvgPool1d(*args, **kwargs)
|
98 |
+
elif dims == 2:
|
99 |
+
return nn.AvgPool2d(*args, **kwargs)
|
100 |
+
elif dims == 3:
|
101 |
+
return nn.AvgPool3d(*args, **kwargs)
|
102 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
103 |
+
|
104 |
+
|
105 |
+
def default(val, d):
|
106 |
+
if val is not None:
|
107 |
+
return val
|
108 |
+
return d() if isfunction(d) else d
|
109 |
+
|
110 |
+
|
111 |
+
class GEGLU(nn.Module):
|
112 |
+
def __init__(self, dim_in, dim_out):
|
113 |
+
super().__init__()
|
114 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
118 |
+
return x * F.gelu(gate)
|
119 |
+
|
120 |
+
|
121 |
+
class FeedForward(nn.Module):
|
122 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
123 |
+
super().__init__()
|
124 |
+
inner_dim = int(dim * mult)
|
125 |
+
dim_out = default(dim_out, dim)
|
126 |
+
project_in = (
|
127 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
128 |
+
if not glu
|
129 |
+
else GEGLU(dim, inner_dim)
|
130 |
+
)
|
131 |
+
|
132 |
+
self.net = nn.Sequential(
|
133 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
134 |
+
)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return self.net(x)
|
138 |
+
|
139 |
+
|
140 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
141 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
query_dim,
|
145 |
+
context_dim=None,
|
146 |
+
heads=8,
|
147 |
+
dim_head=64,
|
148 |
+
dropout=0.0,
|
149 |
+
ip_dim=0,
|
150 |
+
ip_weight=1,
|
151 |
+
):
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
inner_dim = dim_head * heads
|
155 |
+
context_dim = default(context_dim, query_dim)
|
156 |
+
|
157 |
+
self.heads = heads
|
158 |
+
self.dim_head = dim_head
|
159 |
+
|
160 |
+
self.ip_dim = ip_dim
|
161 |
+
self.ip_weight = ip_weight
|
162 |
+
|
163 |
+
if self.ip_dim > 0:
|
164 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
165 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
166 |
+
|
167 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
168 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
169 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
170 |
+
|
171 |
+
self.to_out = nn.Sequential(
|
172 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
173 |
+
)
|
174 |
+
self.attention_op: Optional[Any] = None
|
175 |
+
|
176 |
+
def forward(self, x, context=None):
|
177 |
+
q = self.to_q(x)
|
178 |
+
context = default(context, x)
|
179 |
+
|
180 |
+
if self.ip_dim > 0:
|
181 |
+
# contextοΌ [B, 77 + 16(ip), 1024]
|
182 |
+
token_len = context.shape[1]
|
183 |
+
context_ip = context[:, -self.ip_dim :, :]
|
184 |
+
k_ip = self.to_k_ip(context_ip)
|
185 |
+
v_ip = self.to_v_ip(context_ip)
|
186 |
+
context = context[:, : (token_len - self.ip_dim), :]
|
187 |
+
|
188 |
+
k = self.to_k(context)
|
189 |
+
v = self.to_v(context)
|
190 |
+
|
191 |
+
b, _, _ = q.shape
|
192 |
+
q, k, v = map(
|
193 |
+
lambda t: t.unsqueeze(3)
|
194 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
195 |
+
.permute(0, 2, 1, 3)
|
196 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
197 |
+
.contiguous(),
|
198 |
+
(q, k, v),
|
199 |
+
)
|
200 |
+
|
201 |
+
# actually compute the attention, what we cannot get enough of
|
202 |
+
out = xformers.ops.memory_efficient_attention(
|
203 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
204 |
+
)
|
205 |
+
|
206 |
+
if self.ip_dim > 0:
|
207 |
+
k_ip, v_ip = map(
|
208 |
+
lambda t: t.unsqueeze(3)
|
209 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
210 |
+
.permute(0, 2, 1, 3)
|
211 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
212 |
+
.contiguous(),
|
213 |
+
(k_ip, v_ip),
|
214 |
+
)
|
215 |
+
# actually compute the attention, what we cannot get enough of
|
216 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
217 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
218 |
+
)
|
219 |
+
out = out + self.ip_weight * out_ip
|
220 |
+
|
221 |
+
out = (
|
222 |
+
out.unsqueeze(0)
|
223 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
224 |
+
.permute(0, 2, 1, 3)
|
225 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
226 |
+
)
|
227 |
+
return self.to_out(out)
|
228 |
+
|
229 |
+
|
230 |
+
class BasicTransformerBlock3D(nn.Module):
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
dim,
|
235 |
+
n_heads,
|
236 |
+
d_head,
|
237 |
+
context_dim,
|
238 |
+
dropout=0.0,
|
239 |
+
gated_ff=True,
|
240 |
+
ip_dim=0,
|
241 |
+
ip_weight=1,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
|
245 |
+
self.attn1 = MemoryEfficientCrossAttention(
|
246 |
+
query_dim=dim,
|
247 |
+
context_dim=None, # self-attention
|
248 |
+
heads=n_heads,
|
249 |
+
dim_head=d_head,
|
250 |
+
dropout=dropout,
|
251 |
+
)
|
252 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
253 |
+
self.attn2 = MemoryEfficientCrossAttention(
|
254 |
+
query_dim=dim,
|
255 |
+
context_dim=context_dim,
|
256 |
+
heads=n_heads,
|
257 |
+
dim_head=d_head,
|
258 |
+
dropout=dropout,
|
259 |
+
# ip only applies to cross-attention
|
260 |
+
ip_dim=ip_dim,
|
261 |
+
ip_weight=ip_weight,
|
262 |
+
)
|
263 |
+
self.norm1 = nn.LayerNorm(dim)
|
264 |
+
self.norm2 = nn.LayerNorm(dim)
|
265 |
+
self.norm3 = nn.LayerNorm(dim)
|
266 |
+
|
267 |
+
def forward(self, x, context=None, num_frames=1):
|
268 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
269 |
+
x = self.attn1(self.norm1(x), context=None) + x
|
270 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
271 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
272 |
+
x = self.ff(self.norm3(x)) + x
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class SpatialTransformer3D(nn.Module):
|
277 |
+
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
in_channels,
|
281 |
+
n_heads,
|
282 |
+
d_head,
|
283 |
+
context_dim, # cross attention input dim
|
284 |
+
depth=1,
|
285 |
+
dropout=0.0,
|
286 |
+
ip_dim=0,
|
287 |
+
ip_weight=1,
|
288 |
+
):
|
289 |
+
super().__init__()
|
290 |
+
|
291 |
+
if not isinstance(context_dim, list):
|
292 |
+
context_dim = [context_dim]
|
293 |
+
|
294 |
+
self.in_channels = in_channels
|
295 |
+
|
296 |
+
inner_dim = n_heads * d_head
|
297 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
298 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
299 |
+
|
300 |
+
self.transformer_blocks = nn.ModuleList(
|
301 |
+
[
|
302 |
+
BasicTransformerBlock3D(
|
303 |
+
inner_dim,
|
304 |
+
n_heads,
|
305 |
+
d_head,
|
306 |
+
context_dim=context_dim[d],
|
307 |
+
dropout=dropout,
|
308 |
+
ip_dim=ip_dim,
|
309 |
+
ip_weight=ip_weight,
|
310 |
+
)
|
311 |
+
for d in range(depth)
|
312 |
+
]
|
313 |
+
)
|
314 |
+
|
315 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
316 |
+
|
317 |
+
|
318 |
+
def forward(self, x, context=None, num_frames=1):
|
319 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
320 |
+
if not isinstance(context, list):
|
321 |
+
context = [context]
|
322 |
+
b, c, h, w = x.shape
|
323 |
+
x_in = x
|
324 |
+
x = self.norm(x)
|
325 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
326 |
+
x = self.proj_in(x)
|
327 |
+
for i, block in enumerate(self.transformer_blocks):
|
328 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
329 |
+
x = self.proj_out(x)
|
330 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
331 |
+
|
332 |
+
return x + x_in
|
333 |
+
|
334 |
+
|
335 |
+
class PerceiverAttention(nn.Module):
|
336 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
337 |
+
super().__init__()
|
338 |
+
self.scale = dim_head ** -0.5
|
339 |
+
self.dim_head = dim_head
|
340 |
+
self.heads = heads
|
341 |
+
inner_dim = dim_head * heads
|
342 |
+
|
343 |
+
self.norm1 = nn.LayerNorm(dim)
|
344 |
+
self.norm2 = nn.LayerNorm(dim)
|
345 |
+
|
346 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
347 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
348 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
349 |
+
|
350 |
+
def forward(self, x, latents):
|
351 |
+
"""
|
352 |
+
Args:
|
353 |
+
x (torch.Tensor): image features
|
354 |
+
shape (b, n1, D)
|
355 |
+
latent (torch.Tensor): latent features
|
356 |
+
shape (b, n2, D)
|
357 |
+
"""
|
358 |
+
x = self.norm1(x)
|
359 |
+
latents = self.norm2(latents)
|
360 |
+
|
361 |
+
b, l, _ = latents.shape
|
362 |
+
|
363 |
+
q = self.to_q(latents)
|
364 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
365 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
366 |
+
|
367 |
+
q, k, v = map(
|
368 |
+
lambda t: t.reshape(b, t.shape[1], self.heads, -1)
|
369 |
+
.transpose(1, 2)
|
370 |
+
.reshape(b, self.heads, t.shape[1], -1)
|
371 |
+
.contiguous(),
|
372 |
+
(q, k, v),
|
373 |
+
)
|
374 |
+
|
375 |
+
# attention
|
376 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
377 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
378 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
379 |
+
out = weight @ v
|
380 |
+
|
381 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
382 |
+
|
383 |
+
return self.to_out(out)
|
384 |
+
|
385 |
+
|
386 |
+
class Resampler(nn.Module):
|
387 |
+
def __init__(
|
388 |
+
self,
|
389 |
+
dim=1024,
|
390 |
+
depth=8,
|
391 |
+
dim_head=64,
|
392 |
+
heads=16,
|
393 |
+
num_queries=8,
|
394 |
+
embedding_dim=768,
|
395 |
+
output_dim=1024,
|
396 |
+
ff_mult=4,
|
397 |
+
):
|
398 |
+
super().__init__()
|
399 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
400 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
401 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
402 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
403 |
+
|
404 |
+
self.layers = nn.ModuleList([])
|
405 |
+
for _ in range(depth):
|
406 |
+
self.layers.append(
|
407 |
+
nn.ModuleList(
|
408 |
+
[
|
409 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
410 |
+
nn.Sequential(
|
411 |
+
nn.LayerNorm(dim),
|
412 |
+
nn.Linear(dim, dim * ff_mult, bias=False),
|
413 |
+
nn.GELU(),
|
414 |
+
nn.Linear(dim * ff_mult, dim, bias=False),
|
415 |
+
)
|
416 |
+
]
|
417 |
+
)
|
418 |
+
)
|
419 |
+
|
420 |
+
def forward(self, x):
|
421 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
422 |
+
x = self.proj_in(x)
|
423 |
+
for attn, ff in self.layers:
|
424 |
+
latents = attn(x, latents) + latents
|
425 |
+
latents = ff(latents) + latents
|
426 |
+
|
427 |
+
latents = self.proj_out(latents)
|
428 |
+
return self.norm_out(latents)
|
429 |
+
|
430 |
+
|
431 |
+
class CondSequential(nn.Sequential):
|
432 |
+
"""
|
433 |
+
A sequential module that passes timestep embeddings to the children that
|
434 |
+
support it as an extra input.
|
435 |
+
"""
|
436 |
+
|
437 |
+
def forward(self, x, emb, context=None, num_frames=1):
|
438 |
+
for layer in self:
|
439 |
+
if isinstance(layer, ResBlock):
|
440 |
+
x = layer(x, emb)
|
441 |
+
elif isinstance(layer, SpatialTransformer3D):
|
442 |
+
x = layer(x, context, num_frames=num_frames)
|
443 |
+
else:
|
444 |
+
x = layer(x)
|
445 |
+
return x
|
446 |
+
|
447 |
+
|
448 |
+
class Upsample(nn.Module):
|
449 |
+
"""
|
450 |
+
An upsampling layer with an optional convolution.
|
451 |
+
:param channels: channels in the inputs and outputs.
|
452 |
+
:param use_conv: a bool determining if a convolution is applied.
|
453 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
454 |
+
upsampling occurs in the inner-two dimensions.
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
458 |
+
super().__init__()
|
459 |
+
self.channels = channels
|
460 |
+
self.out_channels = out_channels or channels
|
461 |
+
self.use_conv = use_conv
|
462 |
+
self.dims = dims
|
463 |
+
if use_conv:
|
464 |
+
self.conv = conv_nd(
|
465 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
466 |
+
)
|
467 |
+
|
468 |
+
def forward(self, x):
|
469 |
+
assert x.shape[1] == self.channels
|
470 |
+
if self.dims == 3:
|
471 |
+
x = F.interpolate(
|
472 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
473 |
+
)
|
474 |
+
else:
|
475 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
476 |
+
if self.use_conv:
|
477 |
+
x = self.conv(x)
|
478 |
+
return x
|
479 |
+
|
480 |
+
|
481 |
+
class Downsample(nn.Module):
|
482 |
+
"""
|
483 |
+
A downsampling layer with an optional convolution.
|
484 |
+
:param channels: channels in the inputs and outputs.
|
485 |
+
:param use_conv: a bool determining if a convolution is applied.
|
486 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
487 |
+
downsampling occurs in the inner-two dimensions.
|
488 |
+
"""
|
489 |
+
|
490 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
491 |
+
super().__init__()
|
492 |
+
self.channels = channels
|
493 |
+
self.out_channels = out_channels or channels
|
494 |
+
self.use_conv = use_conv
|
495 |
+
self.dims = dims
|
496 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
497 |
+
if use_conv:
|
498 |
+
self.op = conv_nd(
|
499 |
+
dims,
|
500 |
+
self.channels,
|
501 |
+
self.out_channels,
|
502 |
+
3,
|
503 |
+
stride=stride,
|
504 |
+
padding=padding,
|
505 |
+
)
|
506 |
+
else:
|
507 |
+
assert self.channels == self.out_channels
|
508 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
509 |
+
|
510 |
+
def forward(self, x):
|
511 |
+
assert x.shape[1] == self.channels
|
512 |
+
return self.op(x)
|
513 |
+
|
514 |
+
|
515 |
+
class ResBlock(nn.Module):
|
516 |
+
"""
|
517 |
+
A residual block that can optionally change the number of channels.
|
518 |
+
:param channels: the number of input channels.
|
519 |
+
:param emb_channels: the number of timestep embedding channels.
|
520 |
+
:param dropout: the rate of dropout.
|
521 |
+
:param out_channels: if specified, the number of out channels.
|
522 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
523 |
+
convolution instead of a smaller 1x1 convolution to change the
|
524 |
+
channels in the skip connection.
|
525 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
526 |
+
:param up: if True, use this block for upsampling.
|
527 |
+
:param down: if True, use this block for downsampling.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(
|
531 |
+
self,
|
532 |
+
channels,
|
533 |
+
emb_channels,
|
534 |
+
dropout,
|
535 |
+
out_channels=None,
|
536 |
+
use_conv=False,
|
537 |
+
use_scale_shift_norm=False,
|
538 |
+
dims=2,
|
539 |
+
up=False,
|
540 |
+
down=False,
|
541 |
+
):
|
542 |
+
super().__init__()
|
543 |
+
self.channels = channels
|
544 |
+
self.emb_channels = emb_channels
|
545 |
+
self.dropout = dropout
|
546 |
+
self.out_channels = out_channels or channels
|
547 |
+
self.use_conv = use_conv
|
548 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
549 |
+
|
550 |
+
self.in_layers = nn.Sequential(
|
551 |
+
nn.GroupNorm(32, channels),
|
552 |
+
nn.SiLU(),
|
553 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
554 |
+
)
|
555 |
+
|
556 |
+
self.updown = up or down
|
557 |
+
|
558 |
+
if up:
|
559 |
+
self.h_upd = Upsample(channels, False, dims)
|
560 |
+
self.x_upd = Upsample(channels, False, dims)
|
561 |
+
elif down:
|
562 |
+
self.h_upd = Downsample(channels, False, dims)
|
563 |
+
self.x_upd = Downsample(channels, False, dims)
|
564 |
+
else:
|
565 |
+
self.h_upd = self.x_upd = nn.Identity()
|
566 |
+
|
567 |
+
self.emb_layers = nn.Sequential(
|
568 |
+
nn.SiLU(),
|
569 |
+
nn.Linear(
|
570 |
+
emb_channels,
|
571 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
572 |
+
),
|
573 |
+
)
|
574 |
+
self.out_layers = nn.Sequential(
|
575 |
+
nn.GroupNorm(32, self.out_channels),
|
576 |
+
nn.SiLU(),
|
577 |
+
nn.Dropout(p=dropout),
|
578 |
+
zero_module(
|
579 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
580 |
+
),
|
581 |
+
)
|
582 |
+
|
583 |
+
if self.out_channels == channels:
|
584 |
+
self.skip_connection = nn.Identity()
|
585 |
+
elif use_conv:
|
586 |
+
self.skip_connection = conv_nd(
|
587 |
+
dims, channels, self.out_channels, 3, padding=1
|
588 |
+
)
|
589 |
+
else:
|
590 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
591 |
+
|
592 |
+
def forward(self, x, emb):
|
593 |
+
if self.updown:
|
594 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
595 |
+
h = in_rest(x)
|
596 |
+
h = self.h_upd(h)
|
597 |
+
x = self.x_upd(x)
|
598 |
+
h = in_conv(h)
|
599 |
+
else:
|
600 |
+
h = self.in_layers(x)
|
601 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
602 |
+
while len(emb_out.shape) < len(h.shape):
|
603 |
+
emb_out = emb_out[..., None]
|
604 |
+
if self.use_scale_shift_norm:
|
605 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
606 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
607 |
+
h = out_norm(h) * (1 + scale) + shift
|
608 |
+
h = out_rest(h)
|
609 |
+
else:
|
610 |
+
h = h + emb_out
|
611 |
+
h = self.out_layers(h)
|
612 |
+
return self.skip_connection(x) + h
|
613 |
+
|
614 |
+
|
615 |
+
class MultiViewUNetModel(ModelMixin, ConfigMixin):
|
616 |
+
"""
|
617 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
618 |
+
:param in_channels: channels in the input Tensor.
|
619 |
+
:param model_channels: base channel count for the model.
|
620 |
+
:param out_channels: channels in the output Tensor.
|
621 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
622 |
+
:param attention_resolutions: a collection of downsample rates at which
|
623 |
+
attention will take place. May be a set, list, or tuple.
|
624 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
625 |
+
will be used.
|
626 |
+
:param dropout: the dropout probability.
|
627 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
628 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
629 |
+
downsampling.
|
630 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
631 |
+
:param num_classes: if specified (as an int), then this model will be
|
632 |
+
class-conditional with `num_classes` classes.
|
633 |
+
:param num_heads: the number of attention heads in each attention layer.
|
634 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
635 |
+
a fixed channel width per attention head.
|
636 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
637 |
+
of heads for upsampling. Deprecated.
|
638 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
639 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
640 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
641 |
+
increased efficiency.
|
642 |
+
:param camera_dim: dimensionality of camera input.
|
643 |
+
"""
|
644 |
+
|
645 |
+
def __init__(
|
646 |
+
self,
|
647 |
+
image_size,
|
648 |
+
in_channels,
|
649 |
+
model_channels,
|
650 |
+
out_channels,
|
651 |
+
num_res_blocks,
|
652 |
+
attention_resolutions,
|
653 |
+
dropout=0,
|
654 |
+
channel_mult=(1, 2, 4, 8),
|
655 |
+
conv_resample=True,
|
656 |
+
dims=2,
|
657 |
+
num_classes=None,
|
658 |
+
num_heads=-1,
|
659 |
+
num_head_channels=-1,
|
660 |
+
num_heads_upsample=-1,
|
661 |
+
use_scale_shift_norm=False,
|
662 |
+
resblock_updown=False,
|
663 |
+
transformer_depth=1,
|
664 |
+
context_dim=None,
|
665 |
+
n_embed=None,
|
666 |
+
num_attention_blocks=None,
|
667 |
+
adm_in_channels=None,
|
668 |
+
camera_dim=None,
|
669 |
+
ip_dim=0, # imagedream uses ip_dim > 0
|
670 |
+
ip_weight=1.0,
|
671 |
+
**kwargs,
|
672 |
+
):
|
673 |
+
super().__init__()
|
674 |
+
assert context_dim is not None
|
675 |
+
|
676 |
+
if num_heads_upsample == -1:
|
677 |
+
num_heads_upsample = num_heads
|
678 |
+
|
679 |
+
if num_heads == -1:
|
680 |
+
assert (
|
681 |
+
num_head_channels != -1
|
682 |
+
), "Either num_heads or num_head_channels has to be set"
|
683 |
+
|
684 |
+
if num_head_channels == -1:
|
685 |
+
assert (
|
686 |
+
num_heads != -1
|
687 |
+
), "Either num_heads or num_head_channels has to be set"
|
688 |
+
|
689 |
+
self.image_size = image_size
|
690 |
+
self.in_channels = in_channels
|
691 |
+
self.model_channels = model_channels
|
692 |
+
self.out_channels = out_channels
|
693 |
+
if isinstance(num_res_blocks, int):
|
694 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
695 |
+
else:
|
696 |
+
if len(num_res_blocks) != len(channel_mult):
|
697 |
+
raise ValueError(
|
698 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
699 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
700 |
+
)
|
701 |
+
self.num_res_blocks = num_res_blocks
|
702 |
+
|
703 |
+
if num_attention_blocks is not None:
|
704 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
705 |
+
assert all(
|
706 |
+
map(
|
707 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
708 |
+
range(len(num_attention_blocks)),
|
709 |
+
)
|
710 |
+
)
|
711 |
+
print(
|
712 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
713 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
714 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
715 |
+
f"attention will still not be set."
|
716 |
+
)
|
717 |
+
|
718 |
+
self.attention_resolutions = attention_resolutions
|
719 |
+
self.dropout = dropout
|
720 |
+
self.channel_mult = channel_mult
|
721 |
+
self.conv_resample = conv_resample
|
722 |
+
self.num_classes = num_classes
|
723 |
+
self.num_heads = num_heads
|
724 |
+
self.num_head_channels = num_head_channels
|
725 |
+
self.num_heads_upsample = num_heads_upsample
|
726 |
+
self.predict_codebook_ids = n_embed is not None
|
727 |
+
|
728 |
+
self.ip_dim = ip_dim
|
729 |
+
self.ip_weight = ip_weight
|
730 |
+
|
731 |
+
if self.ip_dim > 0:
|
732 |
+
self.image_embed = Resampler(
|
733 |
+
dim=context_dim,
|
734 |
+
depth=4,
|
735 |
+
dim_head=64,
|
736 |
+
heads=12,
|
737 |
+
num_queries=ip_dim, # num token
|
738 |
+
embedding_dim=1280,
|
739 |
+
output_dim=context_dim,
|
740 |
+
ff_mult=4,
|
741 |
+
)
|
742 |
+
|
743 |
+
time_embed_dim = model_channels * 4
|
744 |
+
self.time_embed = nn.Sequential(
|
745 |
+
nn.Linear(model_channels, time_embed_dim),
|
746 |
+
nn.SiLU(),
|
747 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
748 |
+
)
|
749 |
+
|
750 |
+
if camera_dim is not None:
|
751 |
+
time_embed_dim = model_channels * 4
|
752 |
+
self.camera_embed = nn.Sequential(
|
753 |
+
nn.Linear(camera_dim, time_embed_dim),
|
754 |
+
nn.SiLU(),
|
755 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
756 |
+
)
|
757 |
+
|
758 |
+
if self.num_classes is not None:
|
759 |
+
if isinstance(self.num_classes, int):
|
760 |
+
self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
|
761 |
+
elif self.num_classes == "continuous":
|
762 |
+
# print("setting up linear c_adm embedding layer")
|
763 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
764 |
+
elif self.num_classes == "sequential":
|
765 |
+
assert adm_in_channels is not None
|
766 |
+
self.label_emb = nn.Sequential(
|
767 |
+
nn.Sequential(
|
768 |
+
nn.Linear(adm_in_channels, time_embed_dim),
|
769 |
+
nn.SiLU(),
|
770 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
771 |
+
)
|
772 |
+
)
|
773 |
+
else:
|
774 |
+
raise ValueError()
|
775 |
+
|
776 |
+
self.input_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
CondSequential(
|
779 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
780 |
+
)
|
781 |
+
]
|
782 |
+
)
|
783 |
+
self._feature_size = model_channels
|
784 |
+
input_block_chans = [model_channels]
|
785 |
+
ch = model_channels
|
786 |
+
ds = 1
|
787 |
+
for level, mult in enumerate(channel_mult):
|
788 |
+
for nr in range(self.num_res_blocks[level]):
|
789 |
+
layers: List[Any] = [
|
790 |
+
ResBlock(
|
791 |
+
ch,
|
792 |
+
time_embed_dim,
|
793 |
+
dropout,
|
794 |
+
out_channels=mult * model_channels,
|
795 |
+
dims=dims,
|
796 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
797 |
+
)
|
798 |
+
]
|
799 |
+
ch = mult * model_channels
|
800 |
+
if ds in attention_resolutions:
|
801 |
+
if num_head_channels == -1:
|
802 |
+
dim_head = ch // num_heads
|
803 |
+
else:
|
804 |
+
num_heads = ch // num_head_channels
|
805 |
+
dim_head = num_head_channels
|
806 |
+
|
807 |
+
if num_attention_blocks is None or nr < num_attention_blocks[level]:
|
808 |
+
layers.append(
|
809 |
+
SpatialTransformer3D(
|
810 |
+
ch,
|
811 |
+
num_heads,
|
812 |
+
dim_head,
|
813 |
+
context_dim=context_dim,
|
814 |
+
depth=transformer_depth,
|
815 |
+
ip_dim=self.ip_dim,
|
816 |
+
ip_weight=self.ip_weight,
|
817 |
+
)
|
818 |
+
)
|
819 |
+
self.input_blocks.append(CondSequential(*layers))
|
820 |
+
self._feature_size += ch
|
821 |
+
input_block_chans.append(ch)
|
822 |
+
if level != len(channel_mult) - 1:
|
823 |
+
out_ch = ch
|
824 |
+
self.input_blocks.append(
|
825 |
+
CondSequential(
|
826 |
+
ResBlock(
|
827 |
+
ch,
|
828 |
+
time_embed_dim,
|
829 |
+
dropout,
|
830 |
+
out_channels=out_ch,
|
831 |
+
dims=dims,
|
832 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
833 |
+
down=True,
|
834 |
+
)
|
835 |
+
if resblock_updown
|
836 |
+
else Downsample(
|
837 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
838 |
+
)
|
839 |
+
)
|
840 |
+
)
|
841 |
+
ch = out_ch
|
842 |
+
input_block_chans.append(ch)
|
843 |
+
ds *= 2
|
844 |
+
self._feature_size += ch
|
845 |
+
|
846 |
+
if num_head_channels == -1:
|
847 |
+
dim_head = ch // num_heads
|
848 |
+
else:
|
849 |
+
num_heads = ch // num_head_channels
|
850 |
+
dim_head = num_head_channels
|
851 |
+
|
852 |
+
self.middle_block = CondSequential(
|
853 |
+
ResBlock(
|
854 |
+
ch,
|
855 |
+
time_embed_dim,
|
856 |
+
dropout,
|
857 |
+
dims=dims,
|
858 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
859 |
+
),
|
860 |
+
SpatialTransformer3D(
|
861 |
+
ch,
|
862 |
+
num_heads,
|
863 |
+
dim_head,
|
864 |
+
context_dim=context_dim,
|
865 |
+
depth=transformer_depth,
|
866 |
+
ip_dim=self.ip_dim,
|
867 |
+
ip_weight=self.ip_weight,
|
868 |
+
),
|
869 |
+
ResBlock(
|
870 |
+
ch,
|
871 |
+
time_embed_dim,
|
872 |
+
dropout,
|
873 |
+
dims=dims,
|
874 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
875 |
+
),
|
876 |
+
)
|
877 |
+
self._feature_size += ch
|
878 |
+
|
879 |
+
self.output_blocks = nn.ModuleList([])
|
880 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
881 |
+
for i in range(self.num_res_blocks[level] + 1):
|
882 |
+
ich = input_block_chans.pop()
|
883 |
+
layers = [
|
884 |
+
ResBlock(
|
885 |
+
ch + ich,
|
886 |
+
time_embed_dim,
|
887 |
+
dropout,
|
888 |
+
out_channels=model_channels * mult,
|
889 |
+
dims=dims,
|
890 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
891 |
+
)
|
892 |
+
]
|
893 |
+
ch = model_channels * mult
|
894 |
+
if ds in attention_resolutions:
|
895 |
+
if num_head_channels == -1:
|
896 |
+
dim_head = ch // num_heads
|
897 |
+
else:
|
898 |
+
num_heads = ch // num_head_channels
|
899 |
+
dim_head = num_head_channels
|
900 |
+
|
901 |
+
if num_attention_blocks is None or i < num_attention_blocks[level]:
|
902 |
+
layers.append(
|
903 |
+
SpatialTransformer3D(
|
904 |
+
ch,
|
905 |
+
num_heads,
|
906 |
+
dim_head,
|
907 |
+
context_dim=context_dim,
|
908 |
+
depth=transformer_depth,
|
909 |
+
ip_dim=self.ip_dim,
|
910 |
+
ip_weight=self.ip_weight,
|
911 |
+
)
|
912 |
+
)
|
913 |
+
if level and i == self.num_res_blocks[level]:
|
914 |
+
out_ch = ch
|
915 |
+
layers.append(
|
916 |
+
ResBlock(
|
917 |
+
ch,
|
918 |
+
time_embed_dim,
|
919 |
+
dropout,
|
920 |
+
out_channels=out_ch,
|
921 |
+
dims=dims,
|
922 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
923 |
+
up=True,
|
924 |
+
)
|
925 |
+
if resblock_updown
|
926 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
927 |
+
)
|
928 |
+
ds //= 2
|
929 |
+
self.output_blocks.append(CondSequential(*layers))
|
930 |
+
self._feature_size += ch
|
931 |
+
|
932 |
+
self.out = nn.Sequential(
|
933 |
+
nn.GroupNorm(32, ch),
|
934 |
+
nn.SiLU(),
|
935 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
936 |
+
)
|
937 |
+
if self.predict_codebook_ids:
|
938 |
+
self.id_predictor = nn.Sequential(
|
939 |
+
nn.GroupNorm(32, ch),
|
940 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
941 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
942 |
+
)
|
943 |
+
|
944 |
+
def forward(
|
945 |
+
self,
|
946 |
+
x,
|
947 |
+
timesteps=None,
|
948 |
+
context=None,
|
949 |
+
y=None,
|
950 |
+
camera=None,
|
951 |
+
num_frames=1,
|
952 |
+
ip=None,
|
953 |
+
ip_img=None,
|
954 |
+
**kwargs,
|
955 |
+
):
|
956 |
+
"""
|
957 |
+
Apply the model to an input batch.
|
958 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
959 |
+
:param timesteps: a 1-D batch of timesteps.
|
960 |
+
:param context: conditioning plugged in via crossattn
|
961 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
962 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
963 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
964 |
+
"""
|
965 |
+
assert (
|
966 |
+
x.shape[0] % num_frames == 0
|
967 |
+
), "input batch size must be dividable by num_frames!"
|
968 |
+
assert (y is not None) == (
|
969 |
+
self.num_classes is not None
|
970 |
+
), "must specify y if and only if the model is class-conditional"
|
971 |
+
|
972 |
+
hs = []
|
973 |
+
|
974 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
975 |
+
|
976 |
+
emb = self.time_embed(t_emb)
|
977 |
+
|
978 |
+
if self.num_classes is not None:
|
979 |
+
assert y is not None
|
980 |
+
assert y.shape[0] == x.shape[0]
|
981 |
+
emb = emb + self.label_emb(y)
|
982 |
+
|
983 |
+
# Add camera embeddings
|
984 |
+
if camera is not None:
|
985 |
+
emb = emb + self.camera_embed(camera)
|
986 |
+
|
987 |
+
# imagedream variant
|
988 |
+
if self.ip_dim > 0:
|
989 |
+
x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
|
990 |
+
ip_emb = self.image_embed(ip)
|
991 |
+
context = torch.cat((context, ip_emb), 1)
|
992 |
+
|
993 |
+
h = x
|
994 |
+
for module in self.input_blocks:
|
995 |
+
h = module(h, emb, context, num_frames=num_frames)
|
996 |
+
hs.append(h)
|
997 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
998 |
+
for module in self.output_blocks:
|
999 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
1000 |
+
h = module(h, emb, context, num_frames=num_frames)
|
1001 |
+
h = h.type(x.dtype)
|
1002 |
+
if self.predict_codebook_ids:
|
1003 |
+
return self.id_predictor(h)
|
1004 |
+
else:
|
1005 |
+
return self.out(h)
|
lgm/mvdream/pipeline_mvdream.py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import inspect
|
4 |
+
import numpy as np
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
7 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
8 |
+
from diffusers.utils import (
|
9 |
+
deprecate,
|
10 |
+
is_accelerate_available,
|
11 |
+
is_accelerate_version,
|
12 |
+
logging,
|
13 |
+
)
|
14 |
+
from diffusers.configuration_utils import FrozenDict
|
15 |
+
from diffusers.schedulers import DDIMScheduler
|
16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
17 |
+
|
18 |
+
from mvdream.mv_unet import MultiViewUNetModel, get_camera
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21 |
+
|
22 |
+
|
23 |
+
class MVDreamPipeline(DiffusionPipeline):
|
24 |
+
|
25 |
+
_optional_components = ["feature_extractor", "image_encoder"]
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
vae: AutoencoderKL,
|
30 |
+
unet: MultiViewUNetModel,
|
31 |
+
tokenizer: CLIPTokenizer,
|
32 |
+
text_encoder: CLIPTextModel,
|
33 |
+
scheduler: DDIMScheduler,
|
34 |
+
# imagedream variant
|
35 |
+
feature_extractor: CLIPImageProcessor,
|
36 |
+
image_encoder: CLIPVisionModel,
|
37 |
+
requires_safety_checker: bool = False,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore
|
42 |
+
deprecation_message = (
|
43 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
44 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore
|
45 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
46 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
47 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
48 |
+
" file"
|
49 |
+
)
|
50 |
+
deprecate(
|
51 |
+
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
52 |
+
)
|
53 |
+
new_config = dict(scheduler.config)
|
54 |
+
new_config["steps_offset"] = 1
|
55 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
56 |
+
|
57 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore
|
58 |
+
deprecation_message = (
|
59 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
60 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
61 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
62 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
63 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
64 |
+
)
|
65 |
+
deprecate(
|
66 |
+
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
|
67 |
+
)
|
68 |
+
new_config = dict(scheduler.config)
|
69 |
+
new_config["clip_sample"] = False
|
70 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
71 |
+
|
72 |
+
self.register_modules(
|
73 |
+
vae=vae,
|
74 |
+
unet=unet,
|
75 |
+
scheduler=scheduler,
|
76 |
+
tokenizer=tokenizer,
|
77 |
+
text_encoder=text_encoder,
|
78 |
+
feature_extractor=feature_extractor,
|
79 |
+
image_encoder=image_encoder,
|
80 |
+
)
|
81 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
82 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
83 |
+
|
84 |
+
def enable_vae_slicing(self):
|
85 |
+
r"""
|
86 |
+
Enable sliced VAE decoding.
|
87 |
+
|
88 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
89 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
90 |
+
"""
|
91 |
+
self.vae.enable_slicing()
|
92 |
+
|
93 |
+
def disable_vae_slicing(self):
|
94 |
+
r"""
|
95 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
96 |
+
computing decoding in one step.
|
97 |
+
"""
|
98 |
+
self.vae.disable_slicing()
|
99 |
+
|
100 |
+
def enable_vae_tiling(self):
|
101 |
+
r"""
|
102 |
+
Enable tiled VAE decoding.
|
103 |
+
|
104 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
105 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
106 |
+
"""
|
107 |
+
self.vae.enable_tiling()
|
108 |
+
|
109 |
+
def disable_vae_tiling(self):
|
110 |
+
r"""
|
111 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
112 |
+
computing decoding in one step.
|
113 |
+
"""
|
114 |
+
self.vae.disable_tiling()
|
115 |
+
|
116 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
117 |
+
r"""
|
118 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
119 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
120 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
121 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
122 |
+
`enable_model_cpu_offload`, but performance is lower.
|
123 |
+
"""
|
124 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
125 |
+
from accelerate import cpu_offload
|
126 |
+
else:
|
127 |
+
raise ImportError(
|
128 |
+
"`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
|
129 |
+
)
|
130 |
+
|
131 |
+
device = torch.device(f"cuda:{gpu_id}")
|
132 |
+
|
133 |
+
if self.device.type != "cpu":
|
134 |
+
self.to("cpu", silence_dtype_warnings=True)
|
135 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
136 |
+
|
137 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
138 |
+
cpu_offload(cpu_offloaded_model, device)
|
139 |
+
|
140 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
141 |
+
r"""
|
142 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
143 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
144 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
145 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
146 |
+
"""
|
147 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
148 |
+
from accelerate import cpu_offload_with_hook
|
149 |
+
else:
|
150 |
+
raise ImportError(
|
151 |
+
"`enable_model_offload` requires `accelerate v0.17.0` or higher."
|
152 |
+
)
|
153 |
+
|
154 |
+
device = torch.device(f"cuda:{gpu_id}")
|
155 |
+
|
156 |
+
if self.device.type != "cpu":
|
157 |
+
self.to("cpu", silence_dtype_warnings=True)
|
158 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
159 |
+
|
160 |
+
hook = None
|
161 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
162 |
+
_, hook = cpu_offload_with_hook(
|
163 |
+
cpu_offloaded_model, device, prev_module_hook=hook
|
164 |
+
)
|
165 |
+
|
166 |
+
# We'll offload the last model manually.
|
167 |
+
self.final_offload_hook = hook
|
168 |
+
|
169 |
+
@property
|
170 |
+
def _execution_device(self):
|
171 |
+
r"""
|
172 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
173 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
174 |
+
hooks.
|
175 |
+
"""
|
176 |
+
if not hasattr(self.unet, "_hf_hook"):
|
177 |
+
return self.device
|
178 |
+
for module in self.unet.modules():
|
179 |
+
if (
|
180 |
+
hasattr(module, "_hf_hook")
|
181 |
+
and hasattr(module._hf_hook, "execution_device")
|
182 |
+
and module._hf_hook.execution_device is not None
|
183 |
+
):
|
184 |
+
return torch.device(module._hf_hook.execution_device)
|
185 |
+
return self.device
|
186 |
+
|
187 |
+
def _encode_prompt(
|
188 |
+
self,
|
189 |
+
prompt,
|
190 |
+
device,
|
191 |
+
num_images_per_prompt,
|
192 |
+
do_classifier_free_guidance: bool,
|
193 |
+
negative_prompt=None,
|
194 |
+
):
|
195 |
+
r"""
|
196 |
+
Encodes the prompt into text encoder hidden states.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
prompt (`str` or `List[str]`, *optional*):
|
200 |
+
prompt to be encoded
|
201 |
+
device: (`torch.device`):
|
202 |
+
torch device
|
203 |
+
num_images_per_prompt (`int`):
|
204 |
+
number of images that should be generated per prompt
|
205 |
+
do_classifier_free_guidance (`bool`):
|
206 |
+
whether to use classifier free guidance or not
|
207 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
208 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
209 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
210 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
211 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
212 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
213 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
214 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
215 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
216 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
217 |
+
argument.
|
218 |
+
"""
|
219 |
+
if prompt is not None and isinstance(prompt, str):
|
220 |
+
batch_size = 1
|
221 |
+
elif prompt is not None and isinstance(prompt, list):
|
222 |
+
batch_size = len(prompt)
|
223 |
+
else:
|
224 |
+
raise ValueError(
|
225 |
+
f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
|
226 |
+
)
|
227 |
+
|
228 |
+
text_inputs = self.tokenizer(
|
229 |
+
prompt,
|
230 |
+
padding="max_length",
|
231 |
+
max_length=self.tokenizer.model_max_length,
|
232 |
+
truncation=True,
|
233 |
+
return_tensors="pt",
|
234 |
+
)
|
235 |
+
text_input_ids = text_inputs.input_ids
|
236 |
+
untruncated_ids = self.tokenizer(
|
237 |
+
prompt, padding="longest", return_tensors="pt"
|
238 |
+
).input_ids
|
239 |
+
|
240 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
241 |
+
text_input_ids, untruncated_ids
|
242 |
+
):
|
243 |
+
removed_text = self.tokenizer.batch_decode(
|
244 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
245 |
+
)
|
246 |
+
logger.warning(
|
247 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
248 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
249 |
+
)
|
250 |
+
|
251 |
+
if (
|
252 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
253 |
+
and self.text_encoder.config.use_attention_mask
|
254 |
+
):
|
255 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
256 |
+
else:
|
257 |
+
attention_mask = None
|
258 |
+
|
259 |
+
prompt_embeds = self.text_encoder(
|
260 |
+
text_input_ids.to(device),
|
261 |
+
attention_mask=attention_mask,
|
262 |
+
)
|
263 |
+
prompt_embeds = prompt_embeds[0]
|
264 |
+
|
265 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
266 |
+
|
267 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
268 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
269 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
270 |
+
prompt_embeds = prompt_embeds.view(
|
271 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
272 |
+
)
|
273 |
+
|
274 |
+
# get unconditional embeddings for classifier free guidance
|
275 |
+
if do_classifier_free_guidance:
|
276 |
+
uncond_tokens: List[str]
|
277 |
+
if negative_prompt is None:
|
278 |
+
uncond_tokens = [""] * batch_size
|
279 |
+
elif type(prompt) is not type(negative_prompt):
|
280 |
+
raise TypeError(
|
281 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
282 |
+
f" {type(prompt)}."
|
283 |
+
)
|
284 |
+
elif isinstance(negative_prompt, str):
|
285 |
+
uncond_tokens = [negative_prompt]
|
286 |
+
elif batch_size != len(negative_prompt):
|
287 |
+
raise ValueError(
|
288 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
289 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
290 |
+
" the batch size of `prompt`."
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
uncond_tokens = negative_prompt
|
294 |
+
|
295 |
+
max_length = prompt_embeds.shape[1]
|
296 |
+
uncond_input = self.tokenizer(
|
297 |
+
uncond_tokens,
|
298 |
+
padding="max_length",
|
299 |
+
max_length=max_length,
|
300 |
+
truncation=True,
|
301 |
+
return_tensors="pt",
|
302 |
+
)
|
303 |
+
|
304 |
+
if (
|
305 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
306 |
+
and self.text_encoder.config.use_attention_mask
|
307 |
+
):
|
308 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
309 |
+
else:
|
310 |
+
attention_mask = None
|
311 |
+
|
312 |
+
negative_prompt_embeds = self.text_encoder(
|
313 |
+
uncond_input.input_ids.to(device),
|
314 |
+
attention_mask=attention_mask,
|
315 |
+
)
|
316 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
317 |
+
|
318 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
319 |
+
seq_len = negative_prompt_embeds.shape[1]
|
320 |
+
|
321 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
322 |
+
dtype=self.text_encoder.dtype, device=device
|
323 |
+
)
|
324 |
+
|
325 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
326 |
+
1, num_images_per_prompt, 1
|
327 |
+
)
|
328 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
329 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
330 |
+
)
|
331 |
+
|
332 |
+
# For classifier free guidance, we need to do two forward passes.
|
333 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
334 |
+
# to avoid doing two forward passes
|
335 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
336 |
+
|
337 |
+
return prompt_embeds
|
338 |
+
|
339 |
+
def decode_latents(self, latents):
|
340 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
341 |
+
image = self.vae.decode(latents).sample
|
342 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
343 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
344 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
345 |
+
return image
|
346 |
+
|
347 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
349 |
+
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
350 |
+
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
|
351 |
+
# and should be between [0, 1]
|
352 |
+
|
353 |
+
accepts_eta = "eta" in set(
|
354 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
355 |
+
)
|
356 |
+
extra_step_kwargs = {}
|
357 |
+
if accepts_eta:
|
358 |
+
extra_step_kwargs["eta"] = eta
|
359 |
+
|
360 |
+
# check if the scheduler accepts generator
|
361 |
+
accepts_generator = "generator" in set(
|
362 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
363 |
+
)
|
364 |
+
if accepts_generator:
|
365 |
+
extra_step_kwargs["generator"] = generator
|
366 |
+
return extra_step_kwargs
|
367 |
+
|
368 |
+
def prepare_latents(
|
369 |
+
self,
|
370 |
+
batch_size,
|
371 |
+
num_channels_latents,
|
372 |
+
height,
|
373 |
+
width,
|
374 |
+
dtype,
|
375 |
+
device,
|
376 |
+
generator,
|
377 |
+
latents=None,
|
378 |
+
):
|
379 |
+
shape = (
|
380 |
+
batch_size,
|
381 |
+
num_channels_latents,
|
382 |
+
height // self.vae_scale_factor,
|
383 |
+
width // self.vae_scale_factor,
|
384 |
+
)
|
385 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
386 |
+
raise ValueError(
|
387 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
388 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
389 |
+
)
|
390 |
+
|
391 |
+
if latents is None:
|
392 |
+
latents = randn_tensor(
|
393 |
+
shape, generator=generator, device=device, dtype=dtype
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
latents = latents.to(device)
|
397 |
+
|
398 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
399 |
+
latents = latents * self.scheduler.init_noise_sigma
|
400 |
+
return latents
|
401 |
+
|
402 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
403 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
404 |
+
|
405 |
+
if image.dtype == np.float32:
|
406 |
+
image = (image * 255).astype(np.uint8)
|
407 |
+
|
408 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
409 |
+
image = image.to(device=device, dtype=dtype)
|
410 |
+
|
411 |
+
image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
412 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
413 |
+
|
414 |
+
return torch.zeros_like(image_embeds), image_embeds
|
415 |
+
|
416 |
+
def encode_image_latents(self, image, device, num_images_per_prompt):
|
417 |
+
|
418 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
419 |
+
|
420 |
+
image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W]
|
421 |
+
image = 2 * image - 1
|
422 |
+
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
423 |
+
image = image.to(dtype=dtype)
|
424 |
+
|
425 |
+
posterior = self.vae.encode(image).latent_dist
|
426 |
+
latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
|
427 |
+
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
428 |
+
|
429 |
+
return torch.zeros_like(latents), latents
|
430 |
+
|
431 |
+
@torch.no_grad()
|
432 |
+
def __call__(
|
433 |
+
self,
|
434 |
+
prompt: str = "",
|
435 |
+
image: Optional[np.ndarray] = None,
|
436 |
+
height: int = 256,
|
437 |
+
width: int = 256,
|
438 |
+
elevation: float = 0,
|
439 |
+
num_inference_steps: int = 50,
|
440 |
+
guidance_scale: float = 7.0,
|
441 |
+
negative_prompt: str = "",
|
442 |
+
num_images_per_prompt: int = 1,
|
443 |
+
eta: float = 0.0,
|
444 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
445 |
+
output_type: Optional[str] = "numpy", # pil, numpy, latents
|
446 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
447 |
+
callback_steps: int = 1,
|
448 |
+
num_frames: int = 4,
|
449 |
+
device=torch.device("cuda:0"),
|
450 |
+
):
|
451 |
+
self.unet = self.unet.to(device=device)
|
452 |
+
self.vae = self.vae.to(device=device)
|
453 |
+
self.text_encoder = self.text_encoder.to(device=device)
|
454 |
+
|
455 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
456 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
457 |
+
# corresponds to doing no classifier free guidance.
|
458 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
459 |
+
|
460 |
+
# Prepare timesteps
|
461 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
462 |
+
timesteps = self.scheduler.timesteps
|
463 |
+
|
464 |
+
# imagedream variant
|
465 |
+
if image is not None:
|
466 |
+
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
467 |
+
self.image_encoder = self.image_encoder.to(device=device)
|
468 |
+
image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
|
469 |
+
image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
|
470 |
+
|
471 |
+
_prompt_embeds = self._encode_prompt(
|
472 |
+
prompt=prompt,
|
473 |
+
device=device,
|
474 |
+
num_images_per_prompt=num_images_per_prompt,
|
475 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
476 |
+
negative_prompt=negative_prompt,
|
477 |
+
) # type: ignore
|
478 |
+
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
|
479 |
+
|
480 |
+
# Prepare latent variables
|
481 |
+
actual_num_frames = num_frames if image is None else num_frames + 1
|
482 |
+
latents: torch.Tensor = self.prepare_latents(
|
483 |
+
actual_num_frames * num_images_per_prompt,
|
484 |
+
4,
|
485 |
+
height,
|
486 |
+
width,
|
487 |
+
prompt_embeds_pos.dtype,
|
488 |
+
device,
|
489 |
+
generator,
|
490 |
+
None,
|
491 |
+
)
|
492 |
+
|
493 |
+
if image is not None:
|
494 |
+
camera = get_camera(num_frames, elevation=elevation, extra_view=True).to(dtype=latents.dtype, device=device)
|
495 |
+
else:
|
496 |
+
camera = get_camera(num_frames, elevation=elevation, extra_view=False).to(dtype=latents.dtype, device=device)
|
497 |
+
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
|
498 |
+
|
499 |
+
# Prepare extra step kwargs.
|
500 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
501 |
+
|
502 |
+
# Denoising loop
|
503 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
504 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
505 |
+
for i, t in enumerate(timesteps):
|
506 |
+
# expand the latents if we are doing classifier free guidance
|
507 |
+
multiplier = 2 if do_classifier_free_guidance else 1
|
508 |
+
latent_model_input = torch.cat([latents] * multiplier)
|
509 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
510 |
+
|
511 |
+
unet_inputs = {
|
512 |
+
'x': latent_model_input,
|
513 |
+
'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
|
514 |
+
'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
|
515 |
+
'num_frames': actual_num_frames,
|
516 |
+
'camera': torch.cat([camera] * multiplier),
|
517 |
+
}
|
518 |
+
|
519 |
+
if image is not None:
|
520 |
+
unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
|
521 |
+
unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat
|
522 |
+
|
523 |
+
# predict the noise residual
|
524 |
+
noise_pred = self.unet.forward(**unet_inputs)
|
525 |
+
|
526 |
+
# perform guidance
|
527 |
+
if do_classifier_free_guidance:
|
528 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
529 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
530 |
+
noise_pred_text - noise_pred_uncond
|
531 |
+
)
|
532 |
+
|
533 |
+
# compute the previous noisy sample x_t -> x_t-1
|
534 |
+
latents: torch.Tensor = self.scheduler.step(
|
535 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
536 |
+
)[0]
|
537 |
+
|
538 |
+
# call the callback, if provided
|
539 |
+
if i == len(timesteps) - 1 or (
|
540 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
541 |
+
):
|
542 |
+
progress_bar.update()
|
543 |
+
if callback is not None and i % callback_steps == 0:
|
544 |
+
callback(i, t, latents) # type: ignore
|
545 |
+
|
546 |
+
# Post-processing
|
547 |
+
if output_type == "latent":
|
548 |
+
image = latents
|
549 |
+
elif output_type == "pil":
|
550 |
+
image = self.decode_latents(latents)
|
551 |
+
image = self.numpy_to_pil(image)
|
552 |
+
else: # numpy
|
553 |
+
image = self.decode_latents(latents)
|
554 |
+
|
555 |
+
# Offload last model to CPU
|
556 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
557 |
+
self.final_offload_hook.offload()
|
558 |
+
|
559 |
+
return image
|
main_4d.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import tqdm
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
import rembg
|
11 |
+
|
12 |
+
from cam_utils import orbit_camera, OrbitCamera
|
13 |
+
from gs_renderer_4d import Renderer, MiniCam
|
14 |
+
|
15 |
+
from grid_put import mipmap_linear_grid_put_2d
|
16 |
+
import imageio
|
17 |
+
|
18 |
+
import copy
|
19 |
+
|
20 |
+
|
21 |
+
class GUI:
|
22 |
+
def __init__(self, opt):
|
23 |
+
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
|
24 |
+
self.gui = opt.gui # enable gui
|
25 |
+
self.W = opt.W
|
26 |
+
self.H = opt.H
|
27 |
+
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
|
28 |
+
|
29 |
+
self.mode = "image"
|
30 |
+
# self.seed = "random"
|
31 |
+
self.seed = 888
|
32 |
+
|
33 |
+
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
|
34 |
+
self.need_update = True # update buffer_image
|
35 |
+
|
36 |
+
# models
|
37 |
+
self.device = torch.device("cuda")
|
38 |
+
self.bg_remover = None
|
39 |
+
|
40 |
+
self.guidance_sd = None
|
41 |
+
self.guidance_zero123 = None
|
42 |
+
self.guidance_svd = None
|
43 |
+
|
44 |
+
|
45 |
+
self.enable_sd = False
|
46 |
+
self.enable_zero123 = False
|
47 |
+
self.enable_svd = False
|
48 |
+
|
49 |
+
|
50 |
+
# renderer
|
51 |
+
self.renderer = Renderer(self.opt, sh_degree=self.opt.sh_degree)
|
52 |
+
self.gaussain_scale_factor = 1
|
53 |
+
|
54 |
+
# input image
|
55 |
+
self.input_img = None
|
56 |
+
self.input_mask = None
|
57 |
+
self.input_img_torch = None
|
58 |
+
self.input_mask_torch = None
|
59 |
+
self.overlay_input_img = False
|
60 |
+
self.overlay_input_img_ratio = 0.5
|
61 |
+
|
62 |
+
self.input_img_list = None
|
63 |
+
self.input_mask_list = None
|
64 |
+
self.input_img_torch_list = None
|
65 |
+
self.input_mask_torch_list = None
|
66 |
+
|
67 |
+
# input text
|
68 |
+
self.prompt = ""
|
69 |
+
self.negative_prompt = ""
|
70 |
+
|
71 |
+
# training stuff
|
72 |
+
self.training = False
|
73 |
+
self.optimizer = None
|
74 |
+
self.step = 0
|
75 |
+
self.train_steps = 1 # steps per rendering loop
|
76 |
+
|
77 |
+
# load input data from cmdline
|
78 |
+
if self.opt.input is not None: # True
|
79 |
+
self.load_input(self.opt.input) # load imgs, if has bg, then rm bg; or just load imgs
|
80 |
+
|
81 |
+
# override prompt from cmdline
|
82 |
+
if self.opt.prompt is not None: # None
|
83 |
+
self.prompt = self.opt.prompt
|
84 |
+
|
85 |
+
# override if provide a checkpoint
|
86 |
+
if self.opt.load is not None: # not None
|
87 |
+
self.renderer.initialize(self.opt.load)
|
88 |
+
# self.renderer.gaussians.load_model(opt.outdir, opt.save_path)
|
89 |
+
else:
|
90 |
+
# initialize gaussians to a blob
|
91 |
+
self.renderer.initialize(num_pts=self.opt.num_pts)
|
92 |
+
|
93 |
+
self.seed_everything()
|
94 |
+
|
95 |
+
def seed_everything(self):
|
96 |
+
try:
|
97 |
+
seed = int(self.seed)
|
98 |
+
except:
|
99 |
+
seed = np.random.randint(0, 1000000)
|
100 |
+
|
101 |
+
print(f'Seed: {seed:d}')
|
102 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
103 |
+
np.random.seed(seed)
|
104 |
+
torch.manual_seed(seed)
|
105 |
+
torch.cuda.manual_seed(seed)
|
106 |
+
torch.backends.cudnn.deterministic = True
|
107 |
+
torch.backends.cudnn.benchmark = True
|
108 |
+
|
109 |
+
self.last_seed = seed
|
110 |
+
|
111 |
+
def prepare_train(self):
|
112 |
+
|
113 |
+
self.step = 0
|
114 |
+
|
115 |
+
# setup training
|
116 |
+
self.renderer.gaussians.training_setup(self.opt)
|
117 |
+
|
118 |
+
# # do not do progressive sh-level
|
119 |
+
self.renderer.gaussians.active_sh_degree = self.renderer.gaussians.max_sh_degree
|
120 |
+
self.optimizer = self.renderer.gaussians.optimizer
|
121 |
+
|
122 |
+
# default camera
|
123 |
+
if self.opt.mvdream or self.opt.imagedream:
|
124 |
+
# the second view is the front view for mvdream/imagedream.
|
125 |
+
pose = orbit_camera(self.opt.elevation, 90, self.opt.radius)
|
126 |
+
else:
|
127 |
+
pose = orbit_camera(self.opt.elevation, 0, self.opt.radius)
|
128 |
+
self.fixed_cam = MiniCam(
|
129 |
+
pose,
|
130 |
+
self.opt.ref_size,
|
131 |
+
self.opt.ref_size,
|
132 |
+
self.cam.fovy,
|
133 |
+
self.cam.fovx,
|
134 |
+
self.cam.near,
|
135 |
+
self.cam.far,
|
136 |
+
)
|
137 |
+
|
138 |
+
self.enable_sd = self.opt.lambda_sd > 0
|
139 |
+
self.enable_zero123 = self.opt.lambda_zero123 > 0
|
140 |
+
self.enable_svd = self.opt.lambda_svd > 0 and self.input_img is not None
|
141 |
+
|
142 |
+
# lazy load guidance model
|
143 |
+
if self.guidance_sd is None and self.enable_sd:
|
144 |
+
if self.opt.mvdream:
|
145 |
+
print(f"[INFO] loading MVDream...")
|
146 |
+
from guidance.mvdream_utils import MVDream
|
147 |
+
self.guidance_sd = MVDream(self.device)
|
148 |
+
print(f"[INFO] loaded MVDream!")
|
149 |
+
elif self.opt.imagedream:
|
150 |
+
print(f"[INFO] loading ImageDream...")
|
151 |
+
from guidance.imagedream_utils import ImageDream
|
152 |
+
self.guidance_sd = ImageDream(self.device)
|
153 |
+
print(f"[INFO] loaded ImageDream!")
|
154 |
+
else:
|
155 |
+
print(f"[INFO] loading SD...")
|
156 |
+
from guidance.sd_utils import StableDiffusion
|
157 |
+
self.guidance_sd = StableDiffusion(self.device)
|
158 |
+
print(f"[INFO] loaded SD!")
|
159 |
+
|
160 |
+
if self.guidance_zero123 is None and self.enable_zero123:
|
161 |
+
print(f"[INFO] loading zero123...")
|
162 |
+
from guidance.zero123_utils import Zero123
|
163 |
+
if self.opt.stable_zero123:
|
164 |
+
self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/stable-zero123-diffusers')
|
165 |
+
else:
|
166 |
+
self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers')
|
167 |
+
print(f"[INFO] loaded zero123!")
|
168 |
+
|
169 |
+
if self.guidance_svd is None and self.enable_svd: # False
|
170 |
+
print(f"[INFO] loading SVD...")
|
171 |
+
from guidance.svd_utils import StableVideoDiffusion
|
172 |
+
self.guidance_svd = StableVideoDiffusion(self.device)
|
173 |
+
print(f"[INFO] loaded SVD!")
|
174 |
+
|
175 |
+
# input image
|
176 |
+
if self.input_img is not None:
|
177 |
+
self.input_img_torch = torch.from_numpy(self.input_img).permute(2, 0, 1).unsqueeze(0).to(self.device)
|
178 |
+
self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
|
179 |
+
|
180 |
+
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device)
|
181 |
+
self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
|
182 |
+
|
183 |
+
if self.input_img_list is not None:
|
184 |
+
self.input_img_torch_list = [torch.from_numpy(input_img).permute(2, 0, 1).unsqueeze(0).to(self.device) for input_img in self.input_img_list]
|
185 |
+
self.input_img_torch_list = [F.interpolate(input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False) for input_img_torch in self.input_img_torch_list]
|
186 |
+
|
187 |
+
self.input_mask_torch_list = [torch.from_numpy(input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device) for input_mask in self.input_mask_list]
|
188 |
+
self.input_mask_torch_list = [F.interpolate(input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False) for input_mask_torch in self.input_mask_torch_list]
|
189 |
+
# prepare embeddings
|
190 |
+
with torch.no_grad():
|
191 |
+
|
192 |
+
if self.enable_sd:
|
193 |
+
if self.opt.imagedream:
|
194 |
+
img_pos_list, img_neg_list, ip_pos_list, ip_neg_list, emb_pos_list, emb_neg_list = [], [], [], [], [], []
|
195 |
+
for _ in range(self.opt.n_views):
|
196 |
+
for input_img_torch in self.input_img_torch_list:
|
197 |
+
img_pos, img_neg, ip_pos, ip_neg, emb_pos, emb_neg = self.guidance_sd.get_image_text_embeds(input_img_torch, [self.prompt], [self.negative_prompt])
|
198 |
+
img_pos_list.append(img_pos)
|
199 |
+
img_neg_list.append(img_neg)
|
200 |
+
ip_pos_list.append(ip_pos)
|
201 |
+
ip_neg_list.append(ip_neg)
|
202 |
+
emb_pos_list.append(emb_pos)
|
203 |
+
emb_neg_list.append(emb_neg)
|
204 |
+
self.guidance_sd.image_embeddings['pos'] = torch.cat(img_pos_list, 0)
|
205 |
+
self.guidance_sd.image_embeddings['neg'] = torch.cat(img_pos_list, 0)
|
206 |
+
self.guidance_sd.image_embeddings['ip_img'] = torch.cat(ip_pos_list, 0)
|
207 |
+
self.guidance_sd.image_embeddings['neg_ip_img'] = torch.cat(ip_neg_list, 0)
|
208 |
+
self.guidance_sd.embeddings['pos'] = torch.cat(emb_pos_list, 0)
|
209 |
+
self.guidance_sd.embeddings['neg'] = torch.cat(emb_neg_list, 0)
|
210 |
+
else:
|
211 |
+
self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])
|
212 |
+
|
213 |
+
if self.enable_zero123:
|
214 |
+
c_list, v_list = [], []
|
215 |
+
for _ in range(self.opt.n_views):
|
216 |
+
for input_img_torch in self.input_img_torch_list:
|
217 |
+
c, v = self.guidance_zero123.get_img_embeds(input_img_torch)
|
218 |
+
c_list.append(c)
|
219 |
+
v_list.append(v)
|
220 |
+
self.guidance_zero123.embeddings = [torch.cat(c_list, 0), torch.cat(v_list, 0)]
|
221 |
+
|
222 |
+
if self.enable_svd:
|
223 |
+
self.guidance_svd.get_img_embeds(self.input_img)
|
224 |
+
|
225 |
+
def train_step(self):
|
226 |
+
starter = torch.cuda.Event(enable_timing=True)
|
227 |
+
ender = torch.cuda.Event(enable_timing=True)
|
228 |
+
starter.record()
|
229 |
+
|
230 |
+
for _ in range(self.train_steps): # 1
|
231 |
+
|
232 |
+
self.step += 1 # self.step starts from 0
|
233 |
+
step_ratio = min(1, self.step / self.opt.iters) # 1, step / 500
|
234 |
+
|
235 |
+
# update lr
|
236 |
+
self.renderer.gaussians.update_learning_rate(self.step)
|
237 |
+
|
238 |
+
loss = 0
|
239 |
+
|
240 |
+
self.renderer.prepare_render()
|
241 |
+
|
242 |
+
### known view
|
243 |
+
if not self.opt.imagedream:
|
244 |
+
for b_idx in range(self.opt.batch_size):
|
245 |
+
cur_cam = copy.deepcopy(self.fixed_cam)
|
246 |
+
cur_cam.time = b_idx
|
247 |
+
out = self.renderer.render(cur_cam)
|
248 |
+
|
249 |
+
# rgb loss
|
250 |
+
image = out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
|
251 |
+
loss = loss + 10000 * step_ratio * F.mse_loss(image, self.input_img_torch_list[b_idx]) / self.opt.batch_size
|
252 |
+
|
253 |
+
# mask loss
|
254 |
+
mask = out["alpha"].unsqueeze(0) # [1, 1, H, W] in [0, 1]
|
255 |
+
loss = loss + 1000 * step_ratio * F.mse_loss(mask, self.input_mask_torch_list[b_idx]) / self.opt.batch_size
|
256 |
+
|
257 |
+
### novel view (manual batch)
|
258 |
+
render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512)
|
259 |
+
# render_resolution = 512
|
260 |
+
images = []
|
261 |
+
poses = []
|
262 |
+
vers, hors, radii = [], [], []
|
263 |
+
# avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
|
264 |
+
min_ver = max(min(self.opt.min_ver, self.opt.min_ver - self.opt.elevation), -80 - self.opt.elevation)
|
265 |
+
max_ver = min(max(self.opt.max_ver, self.opt.max_ver - self.opt.elevation), 80 - self.opt.elevation)
|
266 |
+
|
267 |
+
for _ in range(self.opt.n_views):
|
268 |
+
for b_idx in range(self.opt.batch_size):
|
269 |
+
|
270 |
+
# render random view
|
271 |
+
ver = np.random.randint(min_ver, max_ver)
|
272 |
+
hor = np.random.randint(-180, 180)
|
273 |
+
radius = 0
|
274 |
+
|
275 |
+
vers.append(ver)
|
276 |
+
hors.append(hor)
|
277 |
+
radii.append(radius)
|
278 |
+
|
279 |
+
pose = orbit_camera(self.opt.elevation + ver, hor, self.opt.radius + radius)
|
280 |
+
poses.append(pose)
|
281 |
+
|
282 |
+
cur_cam = MiniCam(pose, render_resolution, render_resolution, self.cam.fovy, self.cam.fovx, self.cam.near, self.cam.far, time=b_idx)
|
283 |
+
|
284 |
+
bg_color = torch.tensor([1, 1, 1] if np.random.rand() > self.opt.invert_bg_prob else [0, 0, 0], dtype=torch.float32, device="cuda")
|
285 |
+
out = self.renderer.render(cur_cam, bg_color=bg_color)
|
286 |
+
|
287 |
+
image = out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
|
288 |
+
images.append(image)
|
289 |
+
|
290 |
+
# enable mvdream training
|
291 |
+
if self.opt.mvdream or self.opt.imagedream: # False
|
292 |
+
for view_i in range(1, 4):
|
293 |
+
pose_i = orbit_camera(self.opt.elevation + ver, hor + 90 * view_i, self.opt.radius + radius)
|
294 |
+
poses.append(pose_i)
|
295 |
+
|
296 |
+
cur_cam_i = MiniCam(pose_i, render_resolution, render_resolution, self.cam.fovy, self.cam.fovx, self.cam.near, self.cam.far)
|
297 |
+
|
298 |
+
# bg_color = torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32, device="cuda")
|
299 |
+
out_i = self.renderer.render(cur_cam_i, bg_color=bg_color)
|
300 |
+
|
301 |
+
image = out_i["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
|
302 |
+
images.append(image)
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
images = torch.cat(images, dim=0)
|
307 |
+
poses = torch.from_numpy(np.stack(poses, axis=0)).to(self.device)
|
308 |
+
|
309 |
+
# guidance loss
|
310 |
+
if self.enable_sd:
|
311 |
+
if self.opt.mvdream or self.opt.imagedream:
|
312 |
+
loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, poses, step_ratio)
|
313 |
+
else:
|
314 |
+
loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, step_ratio)
|
315 |
+
|
316 |
+
if self.enable_zero123:
|
317 |
+
loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.train_step(images, vers, hors, radii, step_ratio) / (self.opt.batch_size * self.opt.n_views)
|
318 |
+
|
319 |
+
if self.enable_svd:
|
320 |
+
loss = loss + self.opt.lambda_svd * self.guidance_svd.train_step(images, step_ratio)
|
321 |
+
|
322 |
+
# optimize step
|
323 |
+
loss.backward()
|
324 |
+
self.optimizer.step()
|
325 |
+
self.optimizer.zero_grad()
|
326 |
+
|
327 |
+
# densify and prune
|
328 |
+
if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter:
|
329 |
+
viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"]
|
330 |
+
self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
|
331 |
+
self.renderer.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
|
332 |
+
|
333 |
+
if self.step % self.opt.densification_interval == 0:
|
334 |
+
# size_threshold = 20 if self.step > self.opt.opacity_reset_interval else None
|
335 |
+
self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold, min_opacity=0.01, extent=0.5, max_screen_size=1)
|
336 |
+
|
337 |
+
if self.step % self.opt.opacity_reset_interval == 0:
|
338 |
+
self.renderer.gaussians.reset_opacity()
|
339 |
+
|
340 |
+
ender.record()
|
341 |
+
torch.cuda.synchronize()
|
342 |
+
t = starter.elapsed_time(ender)
|
343 |
+
|
344 |
+
self.need_update = True
|
345 |
+
|
346 |
+
|
347 |
+
def load_input(self, file):
|
348 |
+
if self.opt.data_mode == 'c4d':
|
349 |
+
file_list = [os.path.join(file, f'{x * self.opt.downsample_rate}.png') for x in range(self.opt.batch_size)]
|
350 |
+
elif self.opt.data_mode == 'svd':
|
351 |
+
# file_list = [file.replace('.png', f'_frames/{x* self.opt.downsample_rate:03d}_rgba.png') for x in range(self.opt.batch_size)]
|
352 |
+
# file_list = [x if os.path.exists(x) else (x.replace('_rgba.png', '.png')) for x in file_list]
|
353 |
+
file_list = [file.replace('.png', f'_frames/{x* self.opt.downsample_rate:03d}.png') for x in range(self.opt.batch_size)]
|
354 |
+
else:
|
355 |
+
raise NotImplementedError
|
356 |
+
self.input_img_list, self.input_mask_list = [], []
|
357 |
+
for file in file_list:
|
358 |
+
# load image
|
359 |
+
print(f'[INFO] load image from {file}...')
|
360 |
+
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
361 |
+
if img.shape[-1] == 3:
|
362 |
+
if self.bg_remover is None:
|
363 |
+
self.bg_remover = rembg.new_session()
|
364 |
+
img = rembg.remove(img, session=self.bg_remover)
|
365 |
+
# cv2.imwrite(file.replace('.png', '_rgba.png'), img)
|
366 |
+
img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
|
367 |
+
img = img.astype(np.float32) / 255.0
|
368 |
+
input_mask = img[..., 3:]
|
369 |
+
# white bg
|
370 |
+
input_img = img[..., :3] * input_mask + (1 - input_mask)
|
371 |
+
# bgr to rgb
|
372 |
+
input_img = input_img[..., ::-1].copy()
|
373 |
+
self.input_img_list.append(input_img)
|
374 |
+
self.input_mask_list.append(input_mask)
|
375 |
+
|
376 |
+
@torch.no_grad()
|
377 |
+
def save_model(self, mode='geo', texture_size=1024, interp=1):
|
378 |
+
os.makedirs(self.opt.outdir, exist_ok=True)
|
379 |
+
if mode == 'geo':
|
380 |
+
path = f'logs/{opt.save_path}_mesh_{t:03d}.ply'
|
381 |
+
mesh = self.renderer.gaussians.extract_mesh_t(path, self.opt.density_thresh, t=t)
|
382 |
+
mesh.write_ply(path)
|
383 |
+
|
384 |
+
elif mode == 'geo+tex':
|
385 |
+
from mesh import Mesh, safe_normalize
|
386 |
+
os.makedirs(os.path.join(self.opt.outdir, self.opt.save_path+'_meshes'), exist_ok=True)
|
387 |
+
for t in range(self.opt.batch_size):
|
388 |
+
path = os.path.join(self.opt.outdir, self.opt.save_path+'_meshes', f'{t:03d}.obj')
|
389 |
+
mesh = self.renderer.gaussians.extract_mesh_t(path, self.opt.density_thresh, t=t)
|
390 |
+
|
391 |
+
# perform texture extraction
|
392 |
+
print(f"[INFO] unwrap uv...")
|
393 |
+
h = w = texture_size
|
394 |
+
mesh.auto_uv()
|
395 |
+
mesh.auto_normal()
|
396 |
+
|
397 |
+
albedo = torch.zeros((h, w, 3), device=self.device, dtype=torch.float32)
|
398 |
+
cnt = torch.zeros((h, w, 1), device=self.device, dtype=torch.float32)
|
399 |
+
|
400 |
+
vers = [0] * 8 + [-45] * 8 + [45] * 8 + [-89.9, 89.9]
|
401 |
+
hors = [0, 45, -45, 90, -90, 135, -135, 180] * 3 + [0, 0]
|
402 |
+
|
403 |
+
render_resolution = 512
|
404 |
+
|
405 |
+
import nvdiffrast.torch as dr
|
406 |
+
|
407 |
+
if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
|
408 |
+
glctx = dr.RasterizeGLContext()
|
409 |
+
else:
|
410 |
+
glctx = dr.RasterizeCudaContext()
|
411 |
+
|
412 |
+
for ver, hor in zip(vers, hors):
|
413 |
+
# render image
|
414 |
+
pose = orbit_camera(ver, hor, self.cam.radius)
|
415 |
+
|
416 |
+
cur_cam = MiniCam(
|
417 |
+
pose,
|
418 |
+
render_resolution,
|
419 |
+
render_resolution,
|
420 |
+
self.cam.fovy,
|
421 |
+
self.cam.fovx,
|
422 |
+
self.cam.near,
|
423 |
+
self.cam.far,
|
424 |
+
time=t
|
425 |
+
)
|
426 |
+
|
427 |
+
cur_out = self.renderer.render(cur_cam)
|
428 |
+
|
429 |
+
rgbs = cur_out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
|
430 |
+
|
431 |
+
# get coordinate in texture image
|
432 |
+
pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
|
433 |
+
proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).to(self.device)
|
434 |
+
|
435 |
+
v_cam = torch.matmul(F.pad(mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
|
436 |
+
v_clip = v_cam @ proj.T
|
437 |
+
rast, rast_db = dr.rasterize(glctx, v_clip, mesh.f, (render_resolution, render_resolution))
|
438 |
+
|
439 |
+
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, mesh.f) # [1, H, W, 1]
|
440 |
+
depth = depth.squeeze(0) # [H, W, 1]
|
441 |
+
|
442 |
+
alpha = (rast[0, ..., 3:] > 0).float()
|
443 |
+
|
444 |
+
uvs, _ = dr.interpolate(mesh.vt.unsqueeze(0), rast, mesh.ft) # [1, 512, 512, 2] in [0, 1]
|
445 |
+
|
446 |
+
# use normal to produce a back-project mask
|
447 |
+
normal, _ = dr.interpolate(mesh.vn.unsqueeze(0).contiguous(), rast, mesh.fn)
|
448 |
+
normal = safe_normalize(normal[0])
|
449 |
+
|
450 |
+
# rotated normal (where [0, 0, 1] always faces camera)
|
451 |
+
rot_normal = normal @ pose[:3, :3]
|
452 |
+
viewcos = rot_normal[..., [2]]
|
453 |
+
|
454 |
+
mask = (alpha > 0) & (viewcos > 0.5) # [H, W, 1]
|
455 |
+
mask = mask.view(-1)
|
456 |
+
|
457 |
+
uvs = uvs.view(-1, 2).clamp(0, 1)[mask]
|
458 |
+
rgbs = rgbs.view(3, -1).permute(1, 0)[mask].contiguous()
|
459 |
+
|
460 |
+
# update texture image
|
461 |
+
cur_albedo, cur_cnt = mipmap_linear_grid_put_2d(
|
462 |
+
h, w,
|
463 |
+
uvs[..., [1, 0]] * 2 - 1,
|
464 |
+
rgbs,
|
465 |
+
min_resolution=256,
|
466 |
+
return_count=True,
|
467 |
+
)
|
468 |
+
|
469 |
+
mask = cnt.squeeze(-1) < 0.1
|
470 |
+
albedo[mask] += cur_albedo[mask]
|
471 |
+
cnt[mask] += cur_cnt[mask]
|
472 |
+
|
473 |
+
mask = cnt.squeeze(-1) > 0
|
474 |
+
albedo[mask] = albedo[mask] / cnt[mask].repeat(1, 3)
|
475 |
+
|
476 |
+
mask = mask.view(h, w)
|
477 |
+
|
478 |
+
albedo = albedo.detach().cpu().numpy()
|
479 |
+
mask = mask.detach().cpu().numpy()
|
480 |
+
|
481 |
+
# dilate texture
|
482 |
+
from sklearn.neighbors import NearestNeighbors
|
483 |
+
from scipy.ndimage import binary_dilation, binary_erosion
|
484 |
+
|
485 |
+
inpaint_region = binary_dilation(mask, iterations=32)
|
486 |
+
inpaint_region[mask] = 0
|
487 |
+
|
488 |
+
search_region = mask.copy()
|
489 |
+
not_search_region = binary_erosion(search_region, iterations=3)
|
490 |
+
search_region[not_search_region] = 0
|
491 |
+
|
492 |
+
search_coords = np.stack(np.nonzero(search_region), axis=-1)
|
493 |
+
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
|
494 |
+
|
495 |
+
knn = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(
|
496 |
+
search_coords
|
497 |
+
)
|
498 |
+
_, indices = knn.kneighbors(inpaint_coords)
|
499 |
+
|
500 |
+
albedo[tuple(inpaint_coords.T)] = albedo[tuple(search_coords[indices[:, 0]].T)]
|
501 |
+
|
502 |
+
mesh.albedo = torch.from_numpy(albedo).to(self.device)
|
503 |
+
mesh.write(path)
|
504 |
+
|
505 |
+
|
506 |
+
elif mode == 'frames':
|
507 |
+
os.makedirs(os.path.join(self.opt.outdir, self.opt.save_path+'_frames'), exist_ok=True)
|
508 |
+
for t in range(self.opt.batch_size * interp):
|
509 |
+
tt = t / interp
|
510 |
+
path = os.path.join(self.opt.outdir, self.opt.save_path+'_frames', f'{t:03d}.ply')
|
511 |
+
self.renderer.gaussians.save_frame_ply(path, tt)
|
512 |
+
else:
|
513 |
+
path = os.path.join(self.opt.outdir, self.opt.save_path + '_4d_model.ply')
|
514 |
+
self.renderer.gaussians.save_ply(path)
|
515 |
+
self.renderer.gaussians.save_deformation(self.opt.outdir, self.opt.save_path)
|
516 |
+
|
517 |
+
print(f"[INFO] save model to {path}.")
|
518 |
+
|
519 |
+
# no gui mode
|
520 |
+
def train(self, iters=500, ui=False):
|
521 |
+
if self.gui:
|
522 |
+
from visualizer.visergui import ViserViewer
|
523 |
+
self.viser_gui = ViserViewer(device="cuda", viewer_port=8080)
|
524 |
+
if iters > 0:
|
525 |
+
self.prepare_train()
|
526 |
+
if self.gui:
|
527 |
+
self.viser_gui.set_renderer(self.renderer, self.fixed_cam)
|
528 |
+
|
529 |
+
for i in tqdm.trange(iters):
|
530 |
+
self.train_step()
|
531 |
+
if self.gui:
|
532 |
+
self.viser_gui.update()
|
533 |
+
if self.opt.mesh_format == 'frames':
|
534 |
+
self.save_model(mode='frames', interp=4)
|
535 |
+
elif self.opt.mesh_format == 'obj':
|
536 |
+
self.save_model(mode='geo+tex')
|
537 |
+
|
538 |
+
if self.opt.save_model:
|
539 |
+
self.save_model(mode='model')
|
540 |
+
|
541 |
+
# render eval
|
542 |
+
image_list =[]
|
543 |
+
nframes = self.opt.batch_size * 7 + 15 * 7
|
544 |
+
hor = 180
|
545 |
+
delta_hor = 45 / 15
|
546 |
+
delta_time = 1
|
547 |
+
for i in range(8):
|
548 |
+
time = 0
|
549 |
+
for j in range(self.opt.batch_size + 15):
|
550 |
+
pose = orbit_camera(self.opt.elevation, hor-180, self.opt.radius)
|
551 |
+
cur_cam = MiniCam(
|
552 |
+
pose,
|
553 |
+
512,
|
554 |
+
512,
|
555 |
+
self.cam.fovy,
|
556 |
+
self.cam.fovx,
|
557 |
+
self.cam.near,
|
558 |
+
self.cam.far,
|
559 |
+
time=time
|
560 |
+
)
|
561 |
+
with torch.no_grad():
|
562 |
+
outputs = self.renderer.render(cur_cam)
|
563 |
+
|
564 |
+
out = outputs["image"].cpu().detach().numpy().astype(np.float32)
|
565 |
+
out = np.transpose(out, (1, 2, 0))
|
566 |
+
out = np.uint8(out*255)
|
567 |
+
image_list.append(out)
|
568 |
+
|
569 |
+
time = (time + delta_time) % self.opt.batch_size
|
570 |
+
if j >= self.opt.batch_size:
|
571 |
+
hor = (hor+delta_hor) % 360
|
572 |
+
|
573 |
+
|
574 |
+
imageio.mimwrite(f'vis_data/{opt.save_path}.mp4', image_list, fps=7)
|
575 |
+
|
576 |
+
if self.gui:
|
577 |
+
while True:
|
578 |
+
self.viser_gui.update()
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
import argparse
|
582 |
+
from omegaconf import OmegaConf
|
583 |
+
|
584 |
+
parser = argparse.ArgumentParser()
|
585 |
+
parser.add_argument("--config", required=True, help="path to the yaml config file")
|
586 |
+
args, extras = parser.parse_known_args()
|
587 |
+
|
588 |
+
# override default config from cli
|
589 |
+
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
|
590 |
+
opt.save_path = os.path.splitext(os.path.basename(opt.input))[0] if opt.save_path == '' else opt.save_path
|
591 |
+
|
592 |
+
|
593 |
+
# auto find mesh from stage 1
|
594 |
+
opt.load = os.path.join(opt.outdir, opt.save_path + '_model.ply')
|
595 |
+
|
596 |
+
gui = GUI(opt)
|
597 |
+
|
598 |
+
gui.train(opt.iters)
|
599 |
+
|
600 |
+
|
601 |
+
# python main_4d.py --config configs/4d_low.yaml input=data/CONSISTENT4D_DATA/in-the-wild/blooming_rose
|
requirements.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tqdm
|
2 |
+
rich
|
3 |
+
ninja
|
4 |
+
numpy
|
5 |
+
pandas
|
6 |
+
scipy
|
7 |
+
scikit-learn
|
8 |
+
matplotlib
|
9 |
+
opencv-python
|
10 |
+
imageio
|
11 |
+
imageio-ffmpeg
|
12 |
+
omegaconf
|
13 |
+
|
14 |
+
torch==2.1.0 --index-url https://download.pytorch.org/whl/cu118
|
15 |
+
torchvision==0.16.0 --index-url https://download.pytorch.org/whl/cu118
|
16 |
+
torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
|
17 |
+
xformer --index-url https://download.pytorch.org/whl/cu118 --no-deps
|
18 |
+
einops
|
19 |
+
plyfile
|
20 |
+
pygltflib
|
21 |
+
torchvision
|
22 |
+
|
23 |
+
# for stable-diffusion
|
24 |
+
huggingface_hub
|
25 |
+
diffusers
|
26 |
+
accelerate
|
27 |
+
transformers
|
28 |
+
|
29 |
+
rembg[gpu,cli]
|
30 |
+
|
31 |
+
# gradio demo
|
32 |
+
gradio
|
33 |
+
gradio-model4dgs
|
34 |
+
|
35 |
+
-e git+https://github.com/ashawkey/kiuikit.git@main#egg=kiui
|
scene/deformation.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from tkinter import W
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.utils.cpp_extension import load
|
12 |
+
import torch.nn.init as init
|
13 |
+
from scene.hexplane import HexPlaneField
|
14 |
+
|
15 |
+
|
16 |
+
class Linear_Res(nn.Module):
|
17 |
+
def __init__(self, W):
|
18 |
+
super(Linear_Res, self).__init__()
|
19 |
+
self.main_stream = nn.Linear(W, W)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = F.relu(x)
|
23 |
+
return x + self.main_stream(x)
|
24 |
+
|
25 |
+
|
26 |
+
class Head_Res_Net(nn.Module):
|
27 |
+
def __init__(self, W, H):
|
28 |
+
super(Head_Res_Net, self).__init__()
|
29 |
+
self.W = W
|
30 |
+
self.H = H
|
31 |
+
|
32 |
+
self.feature_out = [Linear_Res(self.W)]
|
33 |
+
self.feature_out.append(nn.Linear(W, self.H))
|
34 |
+
self.feature_out = nn.Sequential(*self.feature_out)
|
35 |
+
|
36 |
+
def initialize_weights(self,):
|
37 |
+
for m in self.feature_out.modules():
|
38 |
+
if isinstance(m, nn.Linear):
|
39 |
+
init.constant_(m.weight, 0)
|
40 |
+
if m.bias is not None:
|
41 |
+
init.constant_(m.bias, 0)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
return self.feature_out(x)
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
class Deformation(nn.Module):
|
49 |
+
def __init__(self, D=8, W=256, input_ch=27, input_ch_time=9, skips=[], args=None, use_res=False):
|
50 |
+
super(Deformation, self).__init__()
|
51 |
+
self.D = D
|
52 |
+
self.W = W
|
53 |
+
self.input_ch = input_ch
|
54 |
+
self.input_ch_time = input_ch_time
|
55 |
+
self.skips = skips
|
56 |
+
|
57 |
+
self.no_grid = args.no_grid
|
58 |
+
self.grid = HexPlaneField(args.bounds, args.kplanes_config, args.multires)
|
59 |
+
|
60 |
+
self.use_res = use_res
|
61 |
+
if not self.use_res:
|
62 |
+
self.pos_deform, self.scales_deform, self.rotations_deform, self.opacity_deform = self.create_net()
|
63 |
+
else:
|
64 |
+
self.pos_deform, self.scales_deform, self.rotations_deform, self.opacity_deform = self.create_res_net()
|
65 |
+
self.args = args
|
66 |
+
|
67 |
+
def create_net(self):
|
68 |
+
|
69 |
+
mlp_out_dim = 0
|
70 |
+
if self.no_grid:
|
71 |
+
self.feature_out = [nn.Linear(4,self.W)]
|
72 |
+
else:
|
73 |
+
self.feature_out = [nn.Linear(mlp_out_dim + self.grid.feat_dim ,self.W)]
|
74 |
+
|
75 |
+
for i in range(self.D-1):
|
76 |
+
self.feature_out.append(nn.ReLU())
|
77 |
+
self.feature_out.append(nn.Linear(self.W,self.W))
|
78 |
+
self.feature_out = nn.Sequential(*self.feature_out)
|
79 |
+
output_dim = self.W
|
80 |
+
return \
|
81 |
+
nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 3)),\
|
82 |
+
nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 3)),\
|
83 |
+
nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 4)), \
|
84 |
+
nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 1))
|
85 |
+
|
86 |
+
def create_res_net(self,):
|
87 |
+
|
88 |
+
mlp_out_dim = 0
|
89 |
+
|
90 |
+
if self.no_grid:
|
91 |
+
self.feature_out = [nn.Linear(4,self.W)]
|
92 |
+
else:
|
93 |
+
self.feature_out = [nn.Linear(mlp_out_dim + self.grid.feat_dim ,self.W)]
|
94 |
+
|
95 |
+
for i in range(self.D-1):
|
96 |
+
self.feature_out.append(nn.ReLU())
|
97 |
+
self.feature_out.append(nn.Linear(self.W,self.W))
|
98 |
+
self.feature_out = nn.Sequential(*self.feature_out)
|
99 |
+
|
100 |
+
output_dim = self.W
|
101 |
+
return \
|
102 |
+
Head_Res_Net(self.W, 3), \
|
103 |
+
Head_Res_Net(self.W, 3), \
|
104 |
+
Head_Res_Net(self.W, 4), \
|
105 |
+
Head_Res_Net(self.W, 1)
|
106 |
+
|
107 |
+
|
108 |
+
def query_time(self, rays_pts_emb, scales_emb, rotations_emb, time_emb):
|
109 |
+
if self.args.no_mlp:
|
110 |
+
assert not self.no_grid
|
111 |
+
grid_feature = self.grid(rays_pts_emb[:,:3], time_emb[:,:1])
|
112 |
+
h = grid_feature
|
113 |
+
elif not self.use_res:
|
114 |
+
if self.no_grid:
|
115 |
+
h = torch.cat([rays_pts_emb[:,:3],time_emb[:,:1]],-1)
|
116 |
+
else:
|
117 |
+
grid_feature = self.grid(rays_pts_emb[:,:3], time_emb[:,:1])
|
118 |
+
|
119 |
+
h = grid_feature
|
120 |
+
|
121 |
+
h = self.feature_out(h)
|
122 |
+
else:
|
123 |
+
if self.no_grid:
|
124 |
+
h = torch.cat([rays_pts_emb[:,:3],time_emb[:,:1]],-1)
|
125 |
+
h = self.feature_out(h)
|
126 |
+
else:
|
127 |
+
grid_feature = self.grid(rays_pts_emb[:,:3], time_emb[:,:1])
|
128 |
+
h = self.feature_out(grid_feature)
|
129 |
+
return h
|
130 |
+
|
131 |
+
def forward(self, rays_pts_emb, scales_emb=None, rotations_emb=None, opacity = None, time_emb=None):
|
132 |
+
if time_emb is None:
|
133 |
+
return self.forward_static(rays_pts_emb[:,:3])
|
134 |
+
else:
|
135 |
+
return self.forward_dynamic(rays_pts_emb, scales_emb, rotations_emb, opacity, time_emb)
|
136 |
+
|
137 |
+
def forward_static(self, rays_pts_emb):
|
138 |
+
grid_feature = self.grid(rays_pts_emb[:,:3])
|
139 |
+
dx = self.static_mlp(grid_feature)
|
140 |
+
return rays_pts_emb[:, :3] + dx
|
141 |
+
|
142 |
+
def forward_dynamic(self,rays_pts_emb, scales_emb, rotations_emb, opacity_emb, time_emb):
|
143 |
+
hidden = self.query_time(rays_pts_emb, scales_emb, rotations_emb, time_emb).float()
|
144 |
+
if self.args.no_mlp:
|
145 |
+
return hidden[:, :3], hidden[:, 3:6], hidden[:, 6:10], hidden[:, 10:11]
|
146 |
+
dx = self.pos_deform(hidden)
|
147 |
+
pts = dx
|
148 |
+
if self.args.no_ds:
|
149 |
+
scales = scales_emb[:,:3]
|
150 |
+
else:
|
151 |
+
ds = self.scales_deform(hidden)
|
152 |
+
scales = ds
|
153 |
+
if self.args.no_dr:
|
154 |
+
rotations = rotations_emb[:,:4]
|
155 |
+
else:
|
156 |
+
dr = self.rotations_deform(hidden)
|
157 |
+
rotations = dr
|
158 |
+
if self.args.no_do:
|
159 |
+
opacity = opacity_emb[:,:1]
|
160 |
+
else:
|
161 |
+
do = self.opacity_deform(hidden)
|
162 |
+
opacity = do
|
163 |
+
|
164 |
+
return pts, scales, rotations, opacity
|
165 |
+
def get_mlp_parameters(self):
|
166 |
+
parameter_list = []
|
167 |
+
for name, param in self.named_parameters():
|
168 |
+
if "grid" not in name:
|
169 |
+
parameter_list.append(param)
|
170 |
+
return parameter_list
|
171 |
+
def get_grid_parameters(self):
|
172 |
+
return list(self.grid.parameters() )
|
173 |
+
|
174 |
+
|
175 |
+
class deform_network(nn.Module):
|
176 |
+
def __init__(self, args) :
|
177 |
+
super(deform_network, self).__init__()
|
178 |
+
net_width = args.net_width
|
179 |
+
timebase_pe = args.timebase_pe
|
180 |
+
defor_depth= args.defor_depth
|
181 |
+
posbase_pe= args.posebase_pe
|
182 |
+
scale_rotation_pe = args.scale_rotation_pe
|
183 |
+
opacity_pe = args.opacity_pe
|
184 |
+
timenet_width = args.timenet_width
|
185 |
+
timenet_output = args.timenet_output
|
186 |
+
times_ch = 2*timebase_pe+1
|
187 |
+
self.timenet = nn.Sequential(
|
188 |
+
nn.Linear(times_ch, timenet_width), nn.ReLU(),
|
189 |
+
nn.Linear(timenet_width, timenet_output))
|
190 |
+
|
191 |
+
self.use_res = args.use_res
|
192 |
+
if self.use_res:
|
193 |
+
print("Using zero-init and residual")
|
194 |
+
self.deformation_net = Deformation(W=net_width, D=defor_depth, input_ch=(4+3)+((4+3)*scale_rotation_pe)*2, input_ch_time=timenet_output, args=args, use_res=self.use_res)
|
195 |
+
self.register_buffer('time_poc', torch.FloatTensor([(2**i) for i in range(timebase_pe)]))
|
196 |
+
self.register_buffer('pos_poc', torch.FloatTensor([(2**i) for i in range(posbase_pe)]))
|
197 |
+
self.register_buffer('rotation_scaling_poc', torch.FloatTensor([(2**i) for i in range(scale_rotation_pe)]))
|
198 |
+
self.register_buffer('opacity_poc', torch.FloatTensor([(2**i) for i in range(opacity_pe)]))
|
199 |
+
self.apply(initialize_weights)
|
200 |
+
|
201 |
+
if self.use_res:
|
202 |
+
self.deformation_net.pos_deform.initialize_weights()
|
203 |
+
self.deformation_net.scales_deform.initialize_weights()
|
204 |
+
self.deformation_net.rotations_deform.initialize_weights()
|
205 |
+
self.deformation_net.opacity_deform.initialize_weights()
|
206 |
+
|
207 |
+
|
208 |
+
def forward(self, point, scales=None, rotations=None, opacity=None, times_sel=None):
|
209 |
+
if times_sel is not None:
|
210 |
+
return self.forward_dynamic(point, scales, rotations, opacity, times_sel)
|
211 |
+
else:
|
212 |
+
return self.forward_static(point)
|
213 |
+
|
214 |
+
|
215 |
+
def forward_static(self, points):
|
216 |
+
points = self.deformation_net(points)
|
217 |
+
return points
|
218 |
+
def forward_dynamic(self, point, scales=None, rotations=None, opacity=None, times_sel=None):
|
219 |
+
means3D, scales, rotations, opacity = self.deformation_net( point,
|
220 |
+
scales,
|
221 |
+
rotations,
|
222 |
+
opacity,
|
223 |
+
times_sel)
|
224 |
+
return means3D, scales, rotations, opacity
|
225 |
+
def get_mlp_parameters(self):
|
226 |
+
return self.deformation_net.get_mlp_parameters() + list(self.timenet.parameters())
|
227 |
+
def get_grid_parameters(self):
|
228 |
+
return self.deformation_net.get_grid_parameters()
|
229 |
+
|
230 |
+
|
231 |
+
def initialize_weights(m):
|
232 |
+
if isinstance(m, nn.Linear):
|
233 |
+
init.xavier_uniform_(m.weight,gain=1)
|
234 |
+
if m.bias is not None:
|
235 |
+
init.xavier_uniform_(m.weight,gain=1)
|
236 |
+
|
237 |
+
def initialize_zeros_weights(m):
|
238 |
+
if isinstance(m, nn.Linear):
|
239 |
+
init.constant_(m.weight, 0)
|
240 |
+
if m.bias is not None:
|
241 |
+
init.constant_(m.bias, 0)
|
scene/hexplane.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import logging as log
|
3 |
+
from typing import Optional, Union, List, Dict, Sequence, Iterable, Collection, Callable
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
|
10 |
+
def get_normalized_directions(directions):
|
11 |
+
"""SH encoding must be in the range [0, 1]
|
12 |
+
|
13 |
+
Args:
|
14 |
+
directions: batch of directions
|
15 |
+
"""
|
16 |
+
return (directions + 1.0) / 2.0
|
17 |
+
|
18 |
+
|
19 |
+
def normalize_aabb(pts, aabb):
|
20 |
+
return (pts - aabb[0]) * (2.0 / (aabb[1] - aabb[0])) - 1.0
|
21 |
+
def grid_sample_wrapper(grid: torch.Tensor, coords: torch.Tensor, align_corners: bool = True) -> torch.Tensor:
|
22 |
+
grid_dim = coords.shape[-1]
|
23 |
+
|
24 |
+
if grid.dim() == grid_dim + 1:
|
25 |
+
# no batch dimension present, need to add it
|
26 |
+
grid = grid.unsqueeze(0)
|
27 |
+
if coords.dim() == 2:
|
28 |
+
coords = coords.unsqueeze(0)
|
29 |
+
|
30 |
+
if grid_dim == 2 or grid_dim == 3:
|
31 |
+
grid_sampler = F.grid_sample
|
32 |
+
else:
|
33 |
+
raise NotImplementedError(f"Grid-sample was called with {grid_dim}D data but is only "
|
34 |
+
f"implemented for 2 and 3D data.")
|
35 |
+
|
36 |
+
coords = coords.view([coords.shape[0]] + [1] * (grid_dim - 1) + list(coords.shape[1:]))
|
37 |
+
B, feature_dim = grid.shape[:2]
|
38 |
+
n = coords.shape[-2]
|
39 |
+
interp = grid_sampler(
|
40 |
+
grid, # [B, feature_dim, reso, ...]
|
41 |
+
coords, # [B, 1, ..., n, grid_dim]
|
42 |
+
align_corners=align_corners,
|
43 |
+
mode='bilinear', padding_mode='border')
|
44 |
+
interp = interp.view(B, feature_dim, n).transpose(-1, -2) # [B, n, feature_dim]
|
45 |
+
interp = interp.squeeze() # [B?, n, feature_dim?]
|
46 |
+
return interp
|
47 |
+
|
48 |
+
def init_grid_param(
|
49 |
+
grid_nd: int,
|
50 |
+
in_dim: int,
|
51 |
+
out_dim: int,
|
52 |
+
reso: Sequence[int],
|
53 |
+
a: float = 0.1,
|
54 |
+
b: float = 0.5):
|
55 |
+
assert in_dim == len(reso), "Resolution must have same number of elements as input-dimension"
|
56 |
+
has_time_planes = in_dim == 4
|
57 |
+
assert grid_nd <= in_dim
|
58 |
+
coo_combs = list(itertools.combinations(range(in_dim), grid_nd))
|
59 |
+
grid_coefs = nn.ParameterList()
|
60 |
+
for ci, coo_comb in enumerate(coo_combs):
|
61 |
+
new_grid_coef = nn.Parameter(torch.empty(
|
62 |
+
[1, out_dim] + [reso[cc] for cc in coo_comb[::-1]]
|
63 |
+
))
|
64 |
+
if has_time_planes and 3 in coo_comb: # Initialize time planes to 1
|
65 |
+
nn.init.ones_(new_grid_coef)
|
66 |
+
else:
|
67 |
+
nn.init.uniform_(new_grid_coef, a=a, b=b)
|
68 |
+
grid_coefs.append(new_grid_coef)
|
69 |
+
|
70 |
+
return grid_coefs
|
71 |
+
|
72 |
+
|
73 |
+
def interpolate_ms_features(pts: torch.Tensor,
|
74 |
+
ms_grids: Collection[Iterable[nn.Module]],
|
75 |
+
grid_dimensions: int,
|
76 |
+
concat_features: bool,
|
77 |
+
num_levels: Optional[int],
|
78 |
+
) -> torch.Tensor:
|
79 |
+
coo_combs = list(itertools.combinations(
|
80 |
+
range(pts.shape[-1]), grid_dimensions)
|
81 |
+
)
|
82 |
+
if num_levels is None:
|
83 |
+
num_levels = len(ms_grids)
|
84 |
+
multi_scale_interp = [] if concat_features else 0.
|
85 |
+
grid: nn.ParameterList
|
86 |
+
for scale_id, grid in enumerate(ms_grids[:num_levels]):
|
87 |
+
interp_space = 1.
|
88 |
+
for ci, coo_comb in enumerate(coo_combs):
|
89 |
+
# interpolate in plane
|
90 |
+
feature_dim = grid[ci].shape[1] # shape of grid[ci]: 1, out_dim, *reso
|
91 |
+
interp_out_plane = (
|
92 |
+
grid_sample_wrapper(grid[ci], pts[..., coo_comb])
|
93 |
+
.view(-1, feature_dim)
|
94 |
+
)
|
95 |
+
# compute product over planes
|
96 |
+
interp_space = interp_space * interp_out_plane
|
97 |
+
|
98 |
+
# combine over scales
|
99 |
+
if concat_features:
|
100 |
+
multi_scale_interp.append(interp_space)
|
101 |
+
else:
|
102 |
+
multi_scale_interp = multi_scale_interp + interp_space
|
103 |
+
|
104 |
+
if concat_features:
|
105 |
+
multi_scale_interp = torch.cat(multi_scale_interp, dim=-1)
|
106 |
+
return multi_scale_interp
|
107 |
+
|
108 |
+
|
109 |
+
class HexPlaneField(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
|
113 |
+
bounds,
|
114 |
+
planeconfig,
|
115 |
+
multires
|
116 |
+
) -> None:
|
117 |
+
super().__init__()
|
118 |
+
aabb = torch.tensor([[bounds,bounds,bounds],
|
119 |
+
[-bounds,-bounds,-bounds]])
|
120 |
+
self.aabb = nn.Parameter(aabb, requires_grad=False)
|
121 |
+
self.grid_config = [planeconfig]
|
122 |
+
self.multiscale_res_multipliers = multires
|
123 |
+
self.concat_features = True
|
124 |
+
|
125 |
+
# 1. Init planes
|
126 |
+
self.grids = nn.ModuleList()
|
127 |
+
self.feat_dim = 0
|
128 |
+
for res in self.multiscale_res_multipliers:
|
129 |
+
# initialize coordinate grid
|
130 |
+
config = self.grid_config[0].copy()
|
131 |
+
# Resolution fix: multi-res only on spatial planes
|
132 |
+
config["resolution"] = [
|
133 |
+
r * res for r in config["resolution"][:3]
|
134 |
+
] + config["resolution"][3:]
|
135 |
+
gp = init_grid_param(
|
136 |
+
grid_nd=config["grid_dimensions"],
|
137 |
+
in_dim=config["input_coordinate_dim"],
|
138 |
+
out_dim=config["output_coordinate_dim"],
|
139 |
+
reso=config["resolution"],
|
140 |
+
)
|
141 |
+
# shape[1] is out-dim - Concatenate over feature len for each scale
|
142 |
+
if self.concat_features:
|
143 |
+
self.feat_dim += gp[-1].shape[1]
|
144 |
+
else:
|
145 |
+
self.feat_dim = gp[-1].shape[1]
|
146 |
+
self.grids.append(gp)
|
147 |
+
# print(f"Initialized model grids: {self.grids}")
|
148 |
+
print("feature_dim:",self.feat_dim)
|
149 |
+
|
150 |
+
|
151 |
+
def set_aabb(self,xyz_max, xyz_min):
|
152 |
+
aabb = torch.tensor([
|
153 |
+
xyz_max,
|
154 |
+
xyz_min
|
155 |
+
])
|
156 |
+
self.aabb = nn.Parameter(aabb,requires_grad=True)
|
157 |
+
print("Voxel Plane: set aabb=",self.aabb)
|
158 |
+
|
159 |
+
def get_density(self, pts: torch.Tensor, timestamps: Optional[torch.Tensor] = None):
|
160 |
+
"""Computes and returns the densities."""
|
161 |
+
|
162 |
+
pts = normalize_aabb(pts, self.aabb)
|
163 |
+
pts = torch.cat((pts, timestamps), dim=-1) # [n_rays, n_samples, 4]
|
164 |
+
|
165 |
+
pts = pts.reshape(-1, pts.shape[-1])
|
166 |
+
features = interpolate_ms_features(
|
167 |
+
pts, ms_grids=self.grids, # noqa
|
168 |
+
grid_dimensions=self.grid_config[0]["grid_dimensions"],
|
169 |
+
concat_features=self.concat_features, num_levels=None)
|
170 |
+
if len(features) < 1:
|
171 |
+
features = torch.zeros((0, 1)).to(features.device)
|
172 |
+
|
173 |
+
|
174 |
+
return features
|
175 |
+
|
176 |
+
def forward(self,
|
177 |
+
pts: torch.Tensor,
|
178 |
+
timestamps: Optional[torch.Tensor] = None):
|
179 |
+
|
180 |
+
features = self.get_density(pts, timestamps)
|
181 |
+
|
182 |
+
return features
|
scene/regulation.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import os
|
3 |
+
from typing import Sequence
|
4 |
+
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.optim.lr_scheduler
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def compute_plane_tv(t):
|
14 |
+
batch_size, c, h, w = t.shape
|
15 |
+
count_h = batch_size * c * (h - 1) * w
|
16 |
+
count_w = batch_size * c * h * (w - 1)
|
17 |
+
h_tv = torch.square(t[..., 1:, :] - t[..., :h-1, :]).sum()
|
18 |
+
w_tv = torch.square(t[..., :, 1:] - t[..., :, :w-1]).sum()
|
19 |
+
return 2 * (h_tv / count_h + w_tv / count_w) # This is summing over batch and c instead of avg
|
20 |
+
|
21 |
+
|
22 |
+
def compute_plane_smoothness(t):
|
23 |
+
batch_size, c, h, w = t.shape
|
24 |
+
# Convolve with a second derivative filter, in the time dimension which is dimension 2
|
25 |
+
first_difference = t[..., 1:, :] - t[..., :h-1, :] # [batch, c, h-1, w]
|
26 |
+
second_difference = first_difference[..., 1:, :] - first_difference[..., :h-2, :] # [batch, c, h-2, w]
|
27 |
+
# Take the L2 norm of the result
|
28 |
+
return torch.square(second_difference).mean()
|
29 |
+
|
30 |
+
|
31 |
+
class Regularizer():
|
32 |
+
def __init__(self, reg_type, initialization):
|
33 |
+
self.reg_type = reg_type
|
34 |
+
self.initialization = initialization
|
35 |
+
self.weight = float(self.initialization)
|
36 |
+
self.last_reg = None
|
37 |
+
|
38 |
+
def step(self, global_step):
|
39 |
+
pass
|
40 |
+
|
41 |
+
def report(self, d):
|
42 |
+
if self.last_reg is not None:
|
43 |
+
d[self.reg_type].update(self.last_reg.item())
|
44 |
+
|
45 |
+
def regularize(self, *args, **kwargs) -> torch.Tensor:
|
46 |
+
out = self._regularize(*args, **kwargs) * self.weight
|
47 |
+
self.last_reg = out.detach()
|
48 |
+
return out
|
49 |
+
|
50 |
+
@abc.abstractmethod
|
51 |
+
def _regularize(self, *args, **kwargs) -> torch.Tensor:
|
52 |
+
raise NotImplementedError()
|
53 |
+
|
54 |
+
def __str__(self):
|
55 |
+
return f"Regularizer({self.reg_type}, weight={self.weight})"
|
56 |
+
|
57 |
+
|
58 |
+
class PlaneTV(Regularizer):
|
59 |
+
def __init__(self, initial_value, what: str = 'field'):
|
60 |
+
if what not in {'field', 'proposal_network'}:
|
61 |
+
raise ValueError(f'what must be one of "field" or "proposal_network" '
|
62 |
+
f'but {what} was passed.')
|
63 |
+
name = f'planeTV-{what[:2]}'
|
64 |
+
super().__init__(name, initial_value)
|
65 |
+
self.what = what
|
66 |
+
|
67 |
+
def step(self, global_step):
|
68 |
+
pass
|
69 |
+
|
70 |
+
def _regularize(self, model, **kwargs):
|
71 |
+
multi_res_grids: Sequence[nn.ParameterList]
|
72 |
+
if self.what == 'field':
|
73 |
+
multi_res_grids = model.field.grids
|
74 |
+
elif self.what == 'proposal_network':
|
75 |
+
multi_res_grids = [p.grids for p in model.proposal_networks]
|
76 |
+
else:
|
77 |
+
raise NotImplementedError(self.what)
|
78 |
+
total = 0
|
79 |
+
# Note: input to compute_plane_tv should be of shape [batch_size, c, h, w]
|
80 |
+
for grids in multi_res_grids:
|
81 |
+
if len(grids) == 3:
|
82 |
+
spatial_grids = [0, 1, 2]
|
83 |
+
else:
|
84 |
+
spatial_grids = [0, 1, 3] # These are the spatial grids; the others are spatiotemporal
|
85 |
+
for grid_id in spatial_grids:
|
86 |
+
total += compute_plane_tv(grids[grid_id])
|
87 |
+
for grid in grids:
|
88 |
+
# grid: [1, c, h, w]
|
89 |
+
total += compute_plane_tv(grid)
|
90 |
+
return total
|
91 |
+
|
92 |
+
|
93 |
+
class TimeSmoothness(Regularizer):
|
94 |
+
def __init__(self, initial_value, what: str = 'field'):
|
95 |
+
if what not in {'field', 'proposal_network'}:
|
96 |
+
raise ValueError(f'what must be one of "field" or "proposal_network" '
|
97 |
+
f'but {what} was passed.')
|
98 |
+
name = f'time-smooth-{what[:2]}'
|
99 |
+
super().__init__(name, initial_value)
|
100 |
+
self.what = what
|
101 |
+
|
102 |
+
def _regularize(self, model, **kwargs) -> torch.Tensor:
|
103 |
+
multi_res_grids: Sequence[nn.ParameterList]
|
104 |
+
if self.what == 'field':
|
105 |
+
multi_res_grids = model.field.grids
|
106 |
+
elif self.what == 'proposal_network':
|
107 |
+
multi_res_grids = [p.grids for p in model.proposal_networks]
|
108 |
+
else:
|
109 |
+
raise NotImplementedError(self.what)
|
110 |
+
total = 0
|
111 |
+
# model.grids is 6 x [1, rank * F_dim, reso, reso]
|
112 |
+
for grids in multi_res_grids:
|
113 |
+
if len(grids) == 3:
|
114 |
+
time_grids = []
|
115 |
+
else:
|
116 |
+
time_grids = [2, 4, 5]
|
117 |
+
for grid_id in time_grids:
|
118 |
+
total += compute_plane_smoothness(grids[grid_id])
|
119 |
+
return torch.as_tensor(total)
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
class L1ProposalNetwork(Regularizer):
|
124 |
+
def __init__(self, initial_value):
|
125 |
+
super().__init__('l1-proposal-network', initial_value)
|
126 |
+
|
127 |
+
def _regularize(self, model, **kwargs) -> torch.Tensor:
|
128 |
+
grids = [p.grids for p in model.proposal_networks]
|
129 |
+
total = 0.0
|
130 |
+
for pn_grids in grids:
|
131 |
+
for grid in pn_grids:
|
132 |
+
total += torch.abs(grid).mean()
|
133 |
+
return torch.as_tensor(total)
|
134 |
+
|
135 |
+
|
136 |
+
class DepthTV(Regularizer):
|
137 |
+
def __init__(self, initial_value):
|
138 |
+
super().__init__('tv-depth', initial_value)
|
139 |
+
|
140 |
+
def _regularize(self, model, model_out, **kwargs) -> torch.Tensor:
|
141 |
+
depth = model_out['depth']
|
142 |
+
tv = compute_plane_tv(
|
143 |
+
depth.reshape(64, 64)[None, None, :, :]
|
144 |
+
)
|
145 |
+
return tv
|
146 |
+
|
147 |
+
|
148 |
+
class L1TimePlanes(Regularizer):
|
149 |
+
def __init__(self, initial_value, what='field'):
|
150 |
+
if what not in {'field', 'proposal_network'}:
|
151 |
+
raise ValueError(f'what must be one of "field" or "proposal_network" '
|
152 |
+
f'but {what} was passed.')
|
153 |
+
super().__init__(f'l1-time-{what[:2]}', initial_value)
|
154 |
+
self.what = what
|
155 |
+
|
156 |
+
def _regularize(self, model, **kwargs) -> torch.Tensor:
|
157 |
+
# model.grids is 6 x [1, rank * F_dim, reso, reso]
|
158 |
+
multi_res_grids: Sequence[nn.ParameterList]
|
159 |
+
if self.what == 'field':
|
160 |
+
multi_res_grids = model.field.grids
|
161 |
+
elif self.what == 'proposal_network':
|
162 |
+
multi_res_grids = [p.grids for p in model.proposal_networks]
|
163 |
+
else:
|
164 |
+
raise NotImplementedError(self.what)
|
165 |
+
|
166 |
+
total = 0.0
|
167 |
+
for grids in multi_res_grids:
|
168 |
+
if len(grids) == 3:
|
169 |
+
continue
|
170 |
+
else:
|
171 |
+
# These are the spatiotemporal grids
|
172 |
+
spatiotemporal_grids = [2, 4, 5]
|
173 |
+
for grid_id in spatiotemporal_grids:
|
174 |
+
total += torch.abs(1 - grids[grid_id]).mean()
|
175 |
+
return torch.as_tensor(total)
|
176 |
+
|
scene/utils.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
from typing import Any, Callable, List, Optional, Text, Tuple, Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import scipy.signal
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import Tensor
|
14 |
+
|
15 |
+
|
16 |
+
PRNGKey = Any
|
17 |
+
Shape = Tuple[int]
|
18 |
+
Dtype = Any # this could be a real type?
|
19 |
+
Array = Any
|
20 |
+
Activation = Callable[[Array], Array]
|
21 |
+
Initializer = Callable[[PRNGKey, Shape, Dtype], Array]
|
22 |
+
Normalizer = Callable[[], Callable[[Array], Array]]
|
23 |
+
PathType = Union[Text, pathlib.PurePosixPath]
|
24 |
+
|
25 |
+
from pathlib import PurePosixPath as GPath
|
26 |
+
|
27 |
+
|
28 |
+
def _compute_residual_and_jacobian(
|
29 |
+
x: np.ndarray,
|
30 |
+
y: np.ndarray,
|
31 |
+
xd: np.ndarray,
|
32 |
+
yd: np.ndarray,
|
33 |
+
k1: float = 0.0,
|
34 |
+
k2: float = 0.0,
|
35 |
+
k3: float = 0.0,
|
36 |
+
p1: float = 0.0,
|
37 |
+
p2: float = 0.0,
|
38 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray,
|
39 |
+
np.ndarray]:
|
40 |
+
"""Auxiliary function of radial_and_tangential_undistort()."""
|
41 |
+
|
42 |
+
r = x * x + y * y
|
43 |
+
d = 1.0 + r * (k1 + r * (k2 + k3 * r))
|
44 |
+
|
45 |
+
fx = d * x + 2 * p1 * x * y + p2 * (r + 2 * x * x) - xd
|
46 |
+
fy = d * y + 2 * p2 * x * y + p1 * (r + 2 * y * y) - yd
|
47 |
+
|
48 |
+
# Compute derivative of d over [x, y]
|
49 |
+
d_r = (k1 + r * (2.0 * k2 + 3.0 * k3 * r))
|
50 |
+
d_x = 2.0 * x * d_r
|
51 |
+
d_y = 2.0 * y * d_r
|
52 |
+
|
53 |
+
# Compute derivative of fx over x and y.
|
54 |
+
fx_x = d + d_x * x + 2.0 * p1 * y + 6.0 * p2 * x
|
55 |
+
fx_y = d_y * x + 2.0 * p1 * x + 2.0 * p2 * y
|
56 |
+
|
57 |
+
# Compute derivative of fy over x and y.
|
58 |
+
fy_x = d_x * y + 2.0 * p2 * y + 2.0 * p1 * x
|
59 |
+
fy_y = d + d_y * y + 2.0 * p2 * x + 6.0 * p1 * y
|
60 |
+
|
61 |
+
return fx, fy, fx_x, fx_y, fy_x, fy_y
|
62 |
+
|
63 |
+
|
64 |
+
def _radial_and_tangential_undistort(
|
65 |
+
xd: np.ndarray,
|
66 |
+
yd: np.ndarray,
|
67 |
+
k1: float = 0,
|
68 |
+
k2: float = 0,
|
69 |
+
k3: float = 0,
|
70 |
+
p1: float = 0,
|
71 |
+
p2: float = 0,
|
72 |
+
eps: float = 1e-9,
|
73 |
+
max_iterations=10) -> Tuple[np.ndarray, np.ndarray]:
|
74 |
+
"""Computes undistorted (x, y) from (xd, yd)."""
|
75 |
+
# Initialize from the distorted point.
|
76 |
+
x = xd.copy()
|
77 |
+
y = yd.copy()
|
78 |
+
|
79 |
+
for _ in range(max_iterations):
|
80 |
+
fx, fy, fx_x, fx_y, fy_x, fy_y = _compute_residual_and_jacobian(
|
81 |
+
x=x, y=y, xd=xd, yd=yd, k1=k1, k2=k2, k3=k3, p1=p1, p2=p2)
|
82 |
+
denominator = fy_x * fx_y - fx_x * fy_y
|
83 |
+
x_numerator = fx * fy_y - fy * fx_y
|
84 |
+
y_numerator = fy * fx_x - fx * fy_x
|
85 |
+
step_x = np.where(
|
86 |
+
np.abs(denominator) > eps, x_numerator / denominator,
|
87 |
+
np.zeros_like(denominator))
|
88 |
+
step_y = np.where(
|
89 |
+
np.abs(denominator) > eps, y_numerator / denominator,
|
90 |
+
np.zeros_like(denominator))
|
91 |
+
|
92 |
+
x = x + step_x
|
93 |
+
y = y + step_y
|
94 |
+
|
95 |
+
return x, y
|
96 |
+
|
97 |
+
|
98 |
+
class Camera:
|
99 |
+
"""Class to handle camera geometry."""
|
100 |
+
|
101 |
+
def __init__(self,
|
102 |
+
orientation: np.ndarray,
|
103 |
+
position: np.ndarray,
|
104 |
+
focal_length: Union[np.ndarray, float],
|
105 |
+
principal_point: np.ndarray,
|
106 |
+
image_size: np.ndarray,
|
107 |
+
skew: Union[np.ndarray, float] = 0.0,
|
108 |
+
pixel_aspect_ratio: Union[np.ndarray, float] = 1.0,
|
109 |
+
radial_distortion: Optional[np.ndarray] = None,
|
110 |
+
tangential_distortion: Optional[np.ndarray] = None,
|
111 |
+
dtype=np.float32):
|
112 |
+
"""Constructor for camera class."""
|
113 |
+
if radial_distortion is None:
|
114 |
+
radial_distortion = np.array([0.0, 0.0, 0.0], dtype)
|
115 |
+
if tangential_distortion is None:
|
116 |
+
tangential_distortion = np.array([0.0, 0.0], dtype)
|
117 |
+
|
118 |
+
self.orientation = np.array(orientation, dtype)
|
119 |
+
self.position = np.array(position, dtype)
|
120 |
+
self.focal_length = np.array(focal_length, dtype)
|
121 |
+
self.principal_point = np.array(principal_point, dtype)
|
122 |
+
self.skew = np.array(skew, dtype)
|
123 |
+
self.pixel_aspect_ratio = np.array(pixel_aspect_ratio, dtype)
|
124 |
+
self.radial_distortion = np.array(radial_distortion, dtype)
|
125 |
+
self.tangential_distortion = np.array(tangential_distortion, dtype)
|
126 |
+
self.image_size = np.array(image_size, np.uint32)
|
127 |
+
self.dtype = dtype
|
128 |
+
|
129 |
+
@classmethod
|
130 |
+
def from_json(cls, path: PathType):
|
131 |
+
"""Loads a JSON camera into memory."""
|
132 |
+
path = GPath(path)
|
133 |
+
# with path.open('r') as fp:
|
134 |
+
with open(path, 'r') as fp:
|
135 |
+
camera_json = json.load(fp)
|
136 |
+
|
137 |
+
# Fix old camera JSON.
|
138 |
+
if 'tangential' in camera_json:
|
139 |
+
camera_json['tangential_distortion'] = camera_json['tangential']
|
140 |
+
|
141 |
+
return cls(
|
142 |
+
orientation=np.asarray(camera_json['orientation']),
|
143 |
+
position=np.asarray(camera_json['position']),
|
144 |
+
focal_length=camera_json['focal_length'],
|
145 |
+
principal_point=np.asarray(camera_json['principal_point']),
|
146 |
+
skew=camera_json['skew'],
|
147 |
+
pixel_aspect_ratio=camera_json['pixel_aspect_ratio'],
|
148 |
+
radial_distortion=np.asarray(camera_json['radial_distortion']),
|
149 |
+
tangential_distortion=np.asarray(camera_json['tangential_distortion']),
|
150 |
+
image_size=np.asarray(camera_json['image_size']),
|
151 |
+
)
|
152 |
+
|
153 |
+
def to_json(self):
|
154 |
+
return {
|
155 |
+
k: (v.tolist() if hasattr(v, 'tolist') else v)
|
156 |
+
for k, v in self.get_parameters().items()
|
157 |
+
}
|
158 |
+
|
159 |
+
def get_parameters(self):
|
160 |
+
return {
|
161 |
+
'orientation': self.orientation,
|
162 |
+
'position': self.position,
|
163 |
+
'focal_length': self.focal_length,
|
164 |
+
'principal_point': self.principal_point,
|
165 |
+
'skew': self.skew,
|
166 |
+
'pixel_aspect_ratio': self.pixel_aspect_ratio,
|
167 |
+
'radial_distortion': self.radial_distortion,
|
168 |
+
'tangential_distortion': self.tangential_distortion,
|
169 |
+
'image_size': self.image_size,
|
170 |
+
}
|
171 |
+
|
172 |
+
@property
|
173 |
+
def scale_factor_x(self):
|
174 |
+
return self.focal_length
|
175 |
+
|
176 |
+
@property
|
177 |
+
def scale_factor_y(self):
|
178 |
+
return self.focal_length * self.pixel_aspect_ratio
|
179 |
+
|
180 |
+
@property
|
181 |
+
def principal_point_x(self):
|
182 |
+
return self.principal_point[0]
|
183 |
+
|
184 |
+
@property
|
185 |
+
def principal_point_y(self):
|
186 |
+
return self.principal_point[1]
|
187 |
+
|
188 |
+
@property
|
189 |
+
def has_tangential_distortion(self):
|
190 |
+
return any(self.tangential_distortion != 0.0)
|
191 |
+
|
192 |
+
@property
|
193 |
+
def has_radial_distortion(self):
|
194 |
+
return any(self.radial_distortion != 0.0)
|
195 |
+
|
196 |
+
@property
|
197 |
+
def image_size_y(self):
|
198 |
+
return self.image_size[1]
|
199 |
+
|
200 |
+
@property
|
201 |
+
def image_size_x(self):
|
202 |
+
return self.image_size[0]
|
203 |
+
|
204 |
+
@property
|
205 |
+
def image_shape(self):
|
206 |
+
return self.image_size_y, self.image_size_x
|
207 |
+
|
208 |
+
@property
|
209 |
+
def optical_axis(self):
|
210 |
+
return self.orientation[2, :]
|
211 |
+
|
212 |
+
@property
|
213 |
+
def translation(self):
|
214 |
+
return -np.matmul(self.orientation, self.position)
|
215 |
+
|
216 |
+
def pixel_to_local_rays(self, pixels: np.ndarray):
|
217 |
+
"""Returns the local ray directions for the provided pixels."""
|
218 |
+
y = ((pixels[..., 1] - self.principal_point_y) / self.scale_factor_y)
|
219 |
+
x = ((pixels[..., 0] - self.principal_point_x - y * self.skew) /
|
220 |
+
self.scale_factor_x)
|
221 |
+
|
222 |
+
if self.has_radial_distortion or self.has_tangential_distortion:
|
223 |
+
x, y = _radial_and_tangential_undistort(
|
224 |
+
x,
|
225 |
+
y,
|
226 |
+
k1=self.radial_distortion[0],
|
227 |
+
k2=self.radial_distortion[1],
|
228 |
+
k3=self.radial_distortion[2],
|
229 |
+
p1=self.tangential_distortion[0],
|
230 |
+
p2=self.tangential_distortion[1])
|
231 |
+
|
232 |
+
dirs = np.stack([x, y, np.ones_like(x)], axis=-1)
|
233 |
+
return dirs / np.linalg.norm(dirs, axis=-1, keepdims=True)
|
234 |
+
|
235 |
+
def pixels_to_rays(self, pixels: np.ndarray) -> np.ndarray:
|
236 |
+
"""Returns the rays for the provided pixels.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
pixels: [A1, ..., An, 2] tensor or np.array containing 2d pixel positions.
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
An array containing the normalized ray directions in world coordinates.
|
243 |
+
"""
|
244 |
+
if pixels.shape[-1] != 2:
|
245 |
+
raise ValueError('The last dimension of pixels must be 2.')
|
246 |
+
if pixels.dtype != self.dtype:
|
247 |
+
raise ValueError(f'pixels dtype ({pixels.dtype!r}) must match camera '
|
248 |
+
f'dtype ({self.dtype!r})')
|
249 |
+
|
250 |
+
batch_shape = pixels.shape[:-1]
|
251 |
+
pixels = np.reshape(pixels, (-1, 2))
|
252 |
+
|
253 |
+
local_rays_dir = self.pixel_to_local_rays(pixels)
|
254 |
+
rays_dir = np.matmul(self.orientation.T, local_rays_dir[..., np.newaxis])
|
255 |
+
rays_dir = np.squeeze(rays_dir, axis=-1)
|
256 |
+
|
257 |
+
# Normalize rays.
|
258 |
+
rays_dir /= np.linalg.norm(rays_dir, axis=-1, keepdims=True)
|
259 |
+
rays_dir = rays_dir.reshape((*batch_shape, 3))
|
260 |
+
return rays_dir
|
261 |
+
|
262 |
+
def pixels_to_points(self, pixels: np.ndarray, depth: np.ndarray):
|
263 |
+
rays_through_pixels = self.pixels_to_rays(pixels)
|
264 |
+
cosa = np.matmul(rays_through_pixels, self.optical_axis)
|
265 |
+
points = (
|
266 |
+
rays_through_pixels * depth[..., np.newaxis] / cosa[..., np.newaxis] +
|
267 |
+
self.position)
|
268 |
+
return points
|
269 |
+
|
270 |
+
def points_to_local_points(self, points: np.ndarray):
|
271 |
+
translated_points = points - self.position
|
272 |
+
local_points = (np.matmul(self.orientation, translated_points.T)).T
|
273 |
+
return local_points
|
274 |
+
|
275 |
+
def project(self, points: np.ndarray):
|
276 |
+
"""Projects a 3D point (x,y,z) to a pixel position (x,y)."""
|
277 |
+
batch_shape = points.shape[:-1]
|
278 |
+
points = points.reshape((-1, 3))
|
279 |
+
local_points = self.points_to_local_points(points)
|
280 |
+
|
281 |
+
# Get normalized local pixel positions.
|
282 |
+
x = local_points[..., 0] / local_points[..., 2]
|
283 |
+
y = local_points[..., 1] / local_points[..., 2]
|
284 |
+
r2 = x**2 + y**2
|
285 |
+
|
286 |
+
# Apply radial distortion.
|
287 |
+
distortion = 1.0 + r2 * (
|
288 |
+
self.radial_distortion[0] + r2 *
|
289 |
+
(self.radial_distortion[1] + self.radial_distortion[2] * r2))
|
290 |
+
|
291 |
+
# Apply tangential distortion.
|
292 |
+
x_times_y = x * y
|
293 |
+
x = (
|
294 |
+
x * distortion + 2.0 * self.tangential_distortion[0] * x_times_y +
|
295 |
+
self.tangential_distortion[1] * (r2 + 2.0 * x**2))
|
296 |
+
y = (
|
297 |
+
y * distortion + 2.0 * self.tangential_distortion[1] * x_times_y +
|
298 |
+
self.tangential_distortion[0] * (r2 + 2.0 * y**2))
|
299 |
+
|
300 |
+
# Map the distorted ray to the image plane and return the depth.
|
301 |
+
pixel_x = self.focal_length * x + self.skew * y + self.principal_point_x
|
302 |
+
pixel_y = (self.focal_length * self.pixel_aspect_ratio * y
|
303 |
+
+ self.principal_point_y)
|
304 |
+
|
305 |
+
pixels = np.stack([pixel_x, pixel_y], axis=-1)
|
306 |
+
return pixels.reshape((*batch_shape, 2))
|
307 |
+
|
308 |
+
def get_pixel_centers(self):
|
309 |
+
"""Returns the pixel centers."""
|
310 |
+
xx, yy = np.meshgrid(np.arange(self.image_size_x, dtype=self.dtype),
|
311 |
+
np.arange(self.image_size_y, dtype=self.dtype))
|
312 |
+
return np.stack([xx, yy], axis=-1) + 0.5
|
313 |
+
|
314 |
+
def scale(self, scale: float):
|
315 |
+
"""Scales the camera."""
|
316 |
+
if scale <= 0:
|
317 |
+
raise ValueError('scale needs to be positive.')
|
318 |
+
|
319 |
+
new_camera = Camera(
|
320 |
+
orientation=self.orientation.copy(),
|
321 |
+
position=self.position.copy(),
|
322 |
+
focal_length=self.focal_length * scale,
|
323 |
+
principal_point=self.principal_point.copy() * scale,
|
324 |
+
skew=self.skew,
|
325 |
+
pixel_aspect_ratio=self.pixel_aspect_ratio,
|
326 |
+
radial_distortion=self.radial_distortion.copy(),
|
327 |
+
tangential_distortion=self.tangential_distortion.copy(),
|
328 |
+
image_size=np.array((int(round(self.image_size[0] * scale)),
|
329 |
+
int(round(self.image_size[1] * scale)))),
|
330 |
+
)
|
331 |
+
return new_camera
|
332 |
+
|
333 |
+
def look_at(self, position, look_at, up, eps=1e-6):
|
334 |
+
"""Creates a copy of the camera which looks at a given point.
|
335 |
+
|
336 |
+
Copies the provided vision_sfm camera and returns a new camera that is
|
337 |
+
positioned at `camera_position` while looking at `look_at_position`.
|
338 |
+
Camera intrinsics are copied by this method. A common value for the
|
339 |
+
up_vector is (0, 1, 0).
|
340 |
+
|
341 |
+
Args:
|
342 |
+
position: A (3,) numpy array representing the position of the camera.
|
343 |
+
look_at: A (3,) numpy array representing the location the camera
|
344 |
+
looks at.
|
345 |
+
up: A (3,) numpy array representing the up direction, whose
|
346 |
+
projection is parallel to the y-axis of the image plane.
|
347 |
+
eps: a small number to prevent divides by zero.
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
A new camera that is copied from the original but is positioned and
|
351 |
+
looks at the provided coordinates.
|
352 |
+
|
353 |
+
Raises:
|
354 |
+
ValueError: If the camera position and look at position are very close
|
355 |
+
to each other or if the up-vector is parallel to the requested optical
|
356 |
+
axis.
|
357 |
+
"""
|
358 |
+
|
359 |
+
look_at_camera = self.copy()
|
360 |
+
optical_axis = look_at - position
|
361 |
+
norm = np.linalg.norm(optical_axis)
|
362 |
+
if norm < eps:
|
363 |
+
raise ValueError('The camera center and look at position are too close.')
|
364 |
+
optical_axis /= norm
|
365 |
+
|
366 |
+
right_vector = np.cross(optical_axis, up)
|
367 |
+
norm = np.linalg.norm(right_vector)
|
368 |
+
if norm < eps:
|
369 |
+
raise ValueError('The up-vector is parallel to the optical axis.')
|
370 |
+
right_vector /= norm
|
371 |
+
|
372 |
+
# The three directions here are orthogonal to each other and form a right
|
373 |
+
# handed coordinate system.
|
374 |
+
camera_rotation = np.identity(3)
|
375 |
+
camera_rotation[0, :] = right_vector
|
376 |
+
camera_rotation[1, :] = np.cross(optical_axis, right_vector)
|
377 |
+
camera_rotation[2, :] = optical_axis
|
378 |
+
|
379 |
+
look_at_camera.position = position
|
380 |
+
look_at_camera.orientation = camera_rotation
|
381 |
+
return look_at_camera
|
382 |
+
|
383 |
+
def crop_image_domain(
|
384 |
+
self, left: int = 0, right: int = 0, top: int = 0, bottom: int = 0):
|
385 |
+
"""Returns a copy of the camera with adjusted image bounds.
|
386 |
+
|
387 |
+
Args:
|
388 |
+
left: number of pixels by which to reduce (or augment, if negative) the
|
389 |
+
image domain at the associated boundary.
|
390 |
+
right: likewise.
|
391 |
+
top: likewise.
|
392 |
+
bottom: likewise.
|
393 |
+
|
394 |
+
The crop parameters may not cause the camera image domain dimensions to
|
395 |
+
become non-positive.
|
396 |
+
|
397 |
+
Returns:
|
398 |
+
A camera with adjusted image dimensions. The focal length is unchanged,
|
399 |
+
and the principal point is updated to preserve the original principal
|
400 |
+
axis.
|
401 |
+
"""
|
402 |
+
|
403 |
+
crop_left_top = np.array([left, top])
|
404 |
+
crop_right_bottom = np.array([right, bottom])
|
405 |
+
new_resolution = self.image_size - crop_left_top - crop_right_bottom
|
406 |
+
new_principal_point = self.principal_point - crop_left_top
|
407 |
+
if np.any(new_resolution <= 0):
|
408 |
+
raise ValueError('Crop would result in non-positive image dimensions.')
|
409 |
+
|
410 |
+
new_camera = self.copy()
|
411 |
+
new_camera.image_size = np.array([int(new_resolution[0]),
|
412 |
+
int(new_resolution[1])])
|
413 |
+
new_camera.principal_point = np.array([new_principal_point[0],
|
414 |
+
new_principal_point[1]])
|
415 |
+
return new_camera
|
416 |
+
|
417 |
+
def copy(self):
|
418 |
+
return copy.deepcopy(self)
|
419 |
+
|
420 |
+
|
421 |
+
''' Misc
|
422 |
+
'''
|
423 |
+
mse2psnr = lambda x : -10. * torch.log10(x)
|
424 |
+
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
''' Checkpoint utils
|
429 |
+
'''
|
scripts/add_bg_to_gt.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
os.makedirs('data/CONSISTENT4D_DATA/test_dataset/eval_gt_rgb', exist_ok=True)
|
5 |
+
file_list = []
|
6 |
+
for img_name in ['aurorus', 'crocodile', 'guppie', 'monster', 'pistol', 'skull', 'trump']:
|
7 |
+
os.makedirs(f'data/CONSISTENT4D_DATA/test_dataset/eval_gt_rgb/{img_name}', exist_ok=True)
|
8 |
+
for view in range(4):
|
9 |
+
os.makedirs(f'datdata/CONSISTENT4D_DATAa/test_dataset/eval_gt_rgb/{img_name}/eval_{view}', exist_ok=True)
|
10 |
+
for t in range(32):
|
11 |
+
file_list.append(f'data/CONSISTENT4D_DATA/test_dataset/eval_gt/{img_name}/eval_{view}/{t}.png')
|
12 |
+
for file in file_list:
|
13 |
+
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
14 |
+
input_mask = img[..., 3:]
|
15 |
+
input_mask = input_mask / 255.
|
16 |
+
input_img = img[..., :3] * input_mask + (1 - input_mask) * 255
|
17 |
+
fpath = file.replace('eval_gt', 'eval_gt_rgb')
|
18 |
+
cv2.imwrite(fpath, input_img)
|
scripts/convert_obj_to_video.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument('--dir', default='logs', type=str, help='Directory where obj files are stored')
|
7 |
+
parser.add_argument('--out', default='videos', type=str, help='Directory where videos will be saved')
|
8 |
+
args = parser.parse_args()
|
9 |
+
|
10 |
+
out = args.out
|
11 |
+
os.makedirs(out, exist_ok=True)
|
12 |
+
|
13 |
+
files = glob.glob(f'{args.dir}/*.obj')
|
14 |
+
for f in files:
|
15 |
+
name = os.path.basename(f)
|
16 |
+
# first stage model, ignore
|
17 |
+
if name.endswith('_mesh.obj'):
|
18 |
+
continue
|
19 |
+
print(f'[INFO] process {name}')
|
20 |
+
os.system(f"python -m kiui.render {f} --save_video {os.path.join(out, name.replace('.obj', '.mp4'))} ")
|
scripts/gen_vid.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from diffusers import StableVideoDiffusionPipeline
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import rembg
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import imageio
|
13 |
+
import os
|
14 |
+
|
15 |
+
def add_margin(pil_img, top, right, bottom, left, color):
|
16 |
+
width, height = pil_img.size
|
17 |
+
new_width = width + right + left
|
18 |
+
new_height = height + top + bottom
|
19 |
+
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
20 |
+
result.paste(pil_img, (left, top))
|
21 |
+
return result
|
22 |
+
|
23 |
+
def resize_image(image, output_size=(1024, 576)):
|
24 |
+
image = image.resize((output_size[1],output_size[1]))
|
25 |
+
pad_size = (output_size[0]-output_size[1]) //2
|
26 |
+
image = add_margin(image, 0, pad_size, 0, pad_size, tuple(np.array(image)[0,0]))
|
27 |
+
return image
|
28 |
+
|
29 |
+
|
30 |
+
def load_image(file, W, H, bg='white'):
|
31 |
+
# load image
|
32 |
+
print(f'[INFO] load image from {file}...')
|
33 |
+
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
34 |
+
bg_remover = rembg.new_session()
|
35 |
+
img = rembg.remove(img, session=bg_remover)
|
36 |
+
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
|
37 |
+
img = img.astype(np.float32) / 255.0
|
38 |
+
input_mask = img[..., 3:]
|
39 |
+
# white bg
|
40 |
+
if bg == 'white':
|
41 |
+
input_img = img[..., :3] * input_mask + (1 - input_mask)
|
42 |
+
elif bg == 'black':
|
43 |
+
input_img = img[..., :3]
|
44 |
+
else:
|
45 |
+
raise NotImplementedError
|
46 |
+
# bgr to rgb
|
47 |
+
input_img = input_img[..., ::-1].copy()
|
48 |
+
input_img = Image.fromarray(np.uint8(input_img*255))
|
49 |
+
return input_img
|
50 |
+
|
51 |
+
def load_image_w_bg(file, W, H):
|
52 |
+
# load image
|
53 |
+
print(f'[INFO] load image from {file}...')
|
54 |
+
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
55 |
+
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
|
56 |
+
img = img.astype(np.float32) / 255.0
|
57 |
+
input_img = img[..., :3]
|
58 |
+
# bgr to rgb
|
59 |
+
input_img = input_img[..., ::-1].copy()
|
60 |
+
input_img = Image.fromarray(np.uint8(input_img*255))
|
61 |
+
return input_img
|
62 |
+
|
63 |
+
def gen_vid(input_path, seed, bg, is_pad):
|
64 |
+
name = input_path.split('/')[-1].split('.')[0]
|
65 |
+
input_dir = os.path.dirname(input_path)
|
66 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
67 |
+
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
|
68 |
+
)
|
69 |
+
# pipe.enable_model_cpu_offload()
|
70 |
+
pipe.to("cuda")
|
71 |
+
|
72 |
+
if is_pad:
|
73 |
+
height, width = 576, 1024
|
74 |
+
else:
|
75 |
+
height, width = 512, 512
|
76 |
+
|
77 |
+
if seed is None:
|
78 |
+
for bg in ['white', 'black', 'orig']:
|
79 |
+
if bg == 'orig':
|
80 |
+
if 'rgba' in name:
|
81 |
+
continue
|
82 |
+
image = load_image_w_bg(input_path, width, height)
|
83 |
+
else:
|
84 |
+
image = load_image(input_path, width, height, bg)
|
85 |
+
if is_pad:
|
86 |
+
image = resize_image(image, output_size=(width, height))
|
87 |
+
for seed in range(20):
|
88 |
+
generator = torch.manual_seed(seed)
|
89 |
+
frames = pipe(image, height, width, generator=generator).frames[0]
|
90 |
+
imageio.mimwrite(f"{input_dir}/videos/{name}_{bg}_{seed:03}.mp4", frames, fps=7)
|
91 |
+
else:
|
92 |
+
if bg == 'orig':
|
93 |
+
if 'rgba' in name:
|
94 |
+
raise ValueError
|
95 |
+
image = load_image_w_bg(input_path, width, height)
|
96 |
+
else:
|
97 |
+
image = load_image(input_path, width, height, bg)
|
98 |
+
if is_pad:
|
99 |
+
image = resize_image(image, output_size=(width, height))
|
100 |
+
generator = torch.manual_seed(seed)
|
101 |
+
frames = pipe(image, height, width, generator=generator).frames[0]
|
102 |
+
|
103 |
+
imageio.mimwrite(f"{input_dir}/{name}_generated.mp4", frames, fps=7)
|
104 |
+
os.makedirs(f"{input_dir}/{name}_frames", exist_ok=True)
|
105 |
+
for idx, img in enumerate(frames):
|
106 |
+
if is_pad:
|
107 |
+
img = img.crop(((width-height) //2, 0, width - (width-height) //2, height))
|
108 |
+
img.save(f"{input_dir}/{name}_frames/{idx:03}.png")
|
109 |
+
|
110 |
+
if __name__ == '__main__':
|
111 |
+
parser = argparse.ArgumentParser()
|
112 |
+
parser.add_argument("--path", type=str, required=True)
|
113 |
+
parser.add_argument("--seed", type=int, default=None)
|
114 |
+
parser.add_argument("--bg", type=str, default='white')
|
115 |
+
parser.add_argument("--is_pad", type=bool, default=False)
|
116 |
+
args, extras = parser.parse_known_args()
|
117 |
+
gen_vid(args.path, args.seed, args.bg, args.is_pad)
|
scripts/process.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import sys
|
4 |
+
import cv2
|
5 |
+
import argparse
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torchvision import transforms
|
13 |
+
from PIL import Image
|
14 |
+
import rembg
|
15 |
+
|
16 |
+
class BLIP2():
|
17 |
+
def __init__(self, device='cuda'):
|
18 |
+
self.device = device
|
19 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
20 |
+
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
21 |
+
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16).to(device)
|
22 |
+
|
23 |
+
@torch.no_grad()
|
24 |
+
def __call__(self, image):
|
25 |
+
image = Image.fromarray(image)
|
26 |
+
inputs = self.processor(image, return_tensors="pt").to(self.device, torch.float16)
|
27 |
+
|
28 |
+
generated_ids = self.model.generate(**inputs, max_new_tokens=20)
|
29 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
30 |
+
|
31 |
+
return generated_text
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
|
36 |
+
parser = argparse.ArgumentParser()
|
37 |
+
parser.add_argument('path', type=str, help="path to image (png, jpeg, etc.)")
|
38 |
+
parser.add_argument('--model', default='u2net', type=str, help="rembg model, see https://github.com/danielgatis/rembg#models")
|
39 |
+
parser.add_argument('--size', default=256, type=int, help="output resolution")
|
40 |
+
parser.add_argument('--border_ratio', default=0.2, type=float, help="output border ratio")
|
41 |
+
parser.add_argument('--recenter', type=bool, default=True, help="recenter, potentially not helpful for multiview zero123")
|
42 |
+
opt = parser.parse_args()
|
43 |
+
|
44 |
+
session = rembg.new_session(model_name=opt.model)
|
45 |
+
|
46 |
+
if os.path.isdir(opt.path):
|
47 |
+
print(f'[INFO] processing directory {opt.path}...')
|
48 |
+
files = glob.glob(f'{opt.path}/*')
|
49 |
+
out_dir = opt.path
|
50 |
+
else: # isfile
|
51 |
+
files = [opt.path]
|
52 |
+
out_dir = os.path.dirname(opt.path)
|
53 |
+
|
54 |
+
for file in files:
|
55 |
+
|
56 |
+
out_base = os.path.basename(file).split('.')[0]
|
57 |
+
out_rgba = os.path.join(out_dir, out_base + '_rgba.png')
|
58 |
+
|
59 |
+
# load image
|
60 |
+
print(f'[INFO] loading image {file}...')
|
61 |
+
image = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
62 |
+
|
63 |
+
# carve background
|
64 |
+
print(f'[INFO] background removal...')
|
65 |
+
carved_image = rembg.remove(image, session=session) # [H, W, 4]
|
66 |
+
mask = carved_image[..., -1] > 0
|
67 |
+
|
68 |
+
# recenter
|
69 |
+
if opt.recenter:
|
70 |
+
print(f'[INFO] recenter...')
|
71 |
+
final_rgba = np.zeros((opt.size, opt.size, 4), dtype=np.uint8)
|
72 |
+
|
73 |
+
coords = np.nonzero(mask)
|
74 |
+
x_min, x_max = coords[0].min(), coords[0].max()
|
75 |
+
y_min, y_max = coords[1].min(), coords[1].max()
|
76 |
+
h = x_max - x_min
|
77 |
+
w = y_max - y_min
|
78 |
+
desired_size = int(opt.size * (1 - opt.border_ratio))
|
79 |
+
scale = desired_size / max(h, w)
|
80 |
+
h2 = int(h * scale)
|
81 |
+
w2 = int(w * scale)
|
82 |
+
x2_min = (opt.size - h2) // 2
|
83 |
+
x2_max = x2_min + h2
|
84 |
+
y2_min = (opt.size - w2) // 2
|
85 |
+
y2_max = y2_min + w2
|
86 |
+
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
|
87 |
+
|
88 |
+
else:
|
89 |
+
final_rgba = carved_image
|
90 |
+
|
91 |
+
# write image
|
92 |
+
cv2.imwrite(out_rgba, final_rgba)
|
scripts/runall.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument('--dir', default='data', type=str, help='Directory where processed images are stored')
|
7 |
+
parser.add_argument('--out', default='logs', type=str, help='Directory where obj files will be saved')
|
8 |
+
parser.add_argument('--video-out', default='videos', type=str, help='Directory where videos will be saved')
|
9 |
+
parser.add_argument('--gpu', default=0, type=int, help='ID of GPU to use')
|
10 |
+
parser.add_argument('--elevation', default=0, type=int, help='Elevation angle of view in degrees')
|
11 |
+
parser.add_argument('--config', default='configs', type=str, help='Path to config directory, which contains image.yaml')
|
12 |
+
args = parser.parse_args()
|
13 |
+
|
14 |
+
files = glob.glob(f'{args.dir}/*_rgba.png')
|
15 |
+
configs_dir = args.config
|
16 |
+
|
17 |
+
# check if image.yaml exists
|
18 |
+
if not os.path.exists(os.path.join(configs_dir, 'image.yaml')):
|
19 |
+
raise FileNotFoundError(
|
20 |
+
f'image.yaml not found in {configs_dir} directory. Please check if the directory is correct.'
|
21 |
+
)
|
22 |
+
|
23 |
+
# create output directories if not exists
|
24 |
+
out_dir = args.out
|
25 |
+
os.makedirs(out_dir, exist_ok=True)
|
26 |
+
video_dir = args.video_out
|
27 |
+
os.makedirs(video_dir, exist_ok=True)
|
28 |
+
|
29 |
+
|
30 |
+
for file in files:
|
31 |
+
name = os.path.basename(file).replace("_rgba.png", "")
|
32 |
+
print(f'======== processing {name} ========')
|
33 |
+
# first stage
|
34 |
+
os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main.py '
|
35 |
+
f'--config {configs_dir}/image.yaml '
|
36 |
+
f'input={file} '
|
37 |
+
f'save_path={name} elevation={args.elevation}')
|
38 |
+
# second stage
|
39 |
+
os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main2.py '
|
40 |
+
f'--config {configs_dir}/image.yaml '
|
41 |
+
f'input={file} '
|
42 |
+
f'save_path={name} elevation={args.elevation}')
|
43 |
+
# export video
|
44 |
+
mesh_path = os.path.join(out_dir, f'{name}.obj')
|
45 |
+
os.system(f'python -m kiui.render {mesh_path} '
|
46 |
+
f'--save_video {video_dir}/{name}.mp4 '
|
47 |
+
f'--wogui '
|
48 |
+
f'--elevation {args.elevation}')
|
scripts/runall_mvdream.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument('--gpu', default=0, type=int)
|
7 |
+
args = parser.parse_args()
|
8 |
+
|
9 |
+
prompts = [
|
10 |
+
# ('butterfly', 'a beautiful, intricate butterfly'),
|
11 |
+
# ('boy', 'a nendoroid of a chibi cute boy'),
|
12 |
+
# ('axe', 'a viking axe, fantasy, blender'),
|
13 |
+
# ('dog_rocket', 'corgi riding a rocket'),
|
14 |
+
('teapot', 'a chinese teapot'),
|
15 |
+
('squirrel_guitar', 'a DSLR photo of a squirrel playing guitar'),
|
16 |
+
# ('house', 'fisherman house, cute, cartoon, blender, stylized'),
|
17 |
+
# ('ship', 'Higly detailed, majestic royal tall ship, realistic painting'),
|
18 |
+
('einstein', 'Albert Einstein with grey suit is riding a bicycle'),
|
19 |
+
# ('angle', 'a statue of an angle'),
|
20 |
+
('lion', 'A 3D model of Simba, the lion cub from The Lion King, standing majestically on Pride Rock, character'),
|
21 |
+
# ('paris', 'mini Paris, highly detailed 3d model'),
|
22 |
+
# ('pig_backpack', 'a pig wearing a backpack'),
|
23 |
+
('pisa_tower', 'Picture of the Leaning Tower of Pisa, featuring its tilted structure and marble facade'),
|
24 |
+
# ('robot', 'a human-like full body robot'),
|
25 |
+
('coin', 'a golden coin'),
|
26 |
+
# ('cake', 'a delicious and beautiful cake'),
|
27 |
+
# ('horse', 'a DSLR photo of a horse'),
|
28 |
+
# ('cat', 'a photo of a cat'),
|
29 |
+
('cat_hat', 'a photo of a cat wearing a wizard hat'),
|
30 |
+
# ('cat_ball', 'a photo of a cat playing with a red ball'),
|
31 |
+
# ('nendoroid', 'a nendoroid of a chibi girl'),
|
32 |
+
|
33 |
+
]
|
34 |
+
|
35 |
+
for name, prompt in prompts:
|
36 |
+
print(f'======== processing {name} ========')
|
37 |
+
# first stage
|
38 |
+
os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main.py --config configs/text_mv.yaml prompt="{prompt}" save_path={name}')
|
39 |
+
# second stage
|
40 |
+
os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main2.py --config configs/text_mv.yaml prompt="{prompt}" save_path={name}')
|
41 |
+
# export video
|
42 |
+
mesh_path = os.path.join('logs', f'{name}.obj')
|
43 |
+
os.makedirs('videos', exist_ok=True)
|
44 |
+
os.system(f'python -m kiui.render {mesh_path} --save_video videos/{name}.mp4 --wogui')
|
scripts/runall_sd.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument('--gpu', default=0, type=int)
|
7 |
+
args = parser.parse_args()
|
8 |
+
|
9 |
+
prompts = [
|
10 |
+
('strawberry', 'a ripe strawberry'),
|
11 |
+
('cactus_pot', 'a small saguaro cactus planted in a clay pot'),
|
12 |
+
('hamburger', 'a delicious hamburger'),
|
13 |
+
('icecream', 'an icecream'),
|
14 |
+
('tulip', 'a blue tulip'),
|
15 |
+
('pineapple', 'a ripe pineapple'),
|
16 |
+
('goblet', 'a golden goblet'),
|
17 |
+
# ('squitopus', 'a squirrel-octopus hybrid'),
|
18 |
+
# ('astronaut', 'Michelangelo style statue of an astronaut'),
|
19 |
+
# ('teddy_bear', 'a teddy bear'),
|
20 |
+
# ('corgi_nurse', 'a plush toy of a corgi nurse'),
|
21 |
+
# ('teapot', 'a blue and white porcelain teapot'),
|
22 |
+
# ('skull', "a human skull"),
|
23 |
+
# ('penguin', 'a penguin'),
|
24 |
+
# ('campfire', 'a campfire'),
|
25 |
+
# ('donut', 'a donut with pink icing'),
|
26 |
+
# ('cupcake', 'a birthday cupcake'),
|
27 |
+
# ('pie', 'shepherds pie'),
|
28 |
+
# ('cone', 'a traffic cone'),
|
29 |
+
# ('schoolbus', 'a schoolbus'),
|
30 |
+
# ('avocado_chair', 'a chair that looks like an avocado'),
|
31 |
+
# ('glasses', 'a pair of sunglasses')
|
32 |
+
# ('potion', 'a bottle of green potion'),
|
33 |
+
# ('chalice', 'a delicate chalice'),
|
34 |
+
]
|
35 |
+
|
36 |
+
for name, prompt in prompts:
|
37 |
+
print(f'======== processing {name} ========')
|
38 |
+
# first stage
|
39 |
+
os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main.py --config configs/text.yaml prompt="{prompt}" save_path={name}')
|
40 |
+
# second stage
|
41 |
+
os.system(f'CUDA_VISIBLE_DEVICES={args.gpu} python main2.py --config configs/text.yaml prompt="{prompt}" save_path={name}')
|
42 |
+
# export video
|
43 |
+
mesh_path = os.path.join('logs', f'{name}.obj')
|
44 |
+
os.makedirs('videos', exist_ok=True)
|
45 |
+
os.system(f'python -m kiui.render {mesh_path} --save_video videos/{name}.mp4 --wogui')
|
sh_utils.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The PlenOctree Authors.
|
2 |
+
# Redistribution and use in source and binary forms, with or without
|
3 |
+
# modification, are permitted provided that the following conditions are met:
|
4 |
+
#
|
5 |
+
# 1. Redistributions of source code must retain the above copyright notice,
|
6 |
+
# this list of conditions and the following disclaimer.
|
7 |
+
#
|
8 |
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
9 |
+
# this list of conditions and the following disclaimer in the documentation
|
10 |
+
# and/or other materials provided with the distribution.
|
11 |
+
#
|
12 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
13 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
14 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
15 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
16 |
+
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
17 |
+
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
18 |
+
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
19 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
20 |
+
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
21 |
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
22 |
+
# POSSIBILITY OF SUCH DAMAGE.
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
C0 = 0.28209479177387814
|
27 |
+
C1 = 0.4886025119029199
|
28 |
+
C2 = [
|
29 |
+
1.0925484305920792,
|
30 |
+
-1.0925484305920792,
|
31 |
+
0.31539156525252005,
|
32 |
+
-1.0925484305920792,
|
33 |
+
0.5462742152960396
|
34 |
+
]
|
35 |
+
C3 = [
|
36 |
+
-0.5900435899266435,
|
37 |
+
2.890611442640554,
|
38 |
+
-0.4570457994644658,
|
39 |
+
0.3731763325901154,
|
40 |
+
-0.4570457994644658,
|
41 |
+
1.445305721320277,
|
42 |
+
-0.5900435899266435
|
43 |
+
]
|
44 |
+
C4 = [
|
45 |
+
2.5033429417967046,
|
46 |
+
-1.7701307697799304,
|
47 |
+
0.9461746957575601,
|
48 |
+
-0.6690465435572892,
|
49 |
+
0.10578554691520431,
|
50 |
+
-0.6690465435572892,
|
51 |
+
0.47308734787878004,
|
52 |
+
-1.7701307697799304,
|
53 |
+
0.6258357354491761,
|
54 |
+
]
|
55 |
+
|
56 |
+
|
57 |
+
def eval_sh(deg, sh, dirs):
|
58 |
+
"""
|
59 |
+
Evaluate spherical harmonics at unit directions
|
60 |
+
using hardcoded SH polynomials.
|
61 |
+
Works with torch/np/jnp.
|
62 |
+
... Can be 0 or more batch dimensions.
|
63 |
+
Args:
|
64 |
+
deg: int SH deg. Currently, 0-3 supported
|
65 |
+
sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
|
66 |
+
dirs: jnp.ndarray unit directions [..., 3]
|
67 |
+
Returns:
|
68 |
+
[..., C]
|
69 |
+
"""
|
70 |
+
assert deg <= 4 and deg >= 0
|
71 |
+
coeff = (deg + 1) ** 2
|
72 |
+
assert sh.shape[-1] >= coeff
|
73 |
+
|
74 |
+
result = C0 * sh[..., 0]
|
75 |
+
if deg > 0:
|
76 |
+
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
77 |
+
result = (result -
|
78 |
+
C1 * y * sh[..., 1] +
|
79 |
+
C1 * z * sh[..., 2] -
|
80 |
+
C1 * x * sh[..., 3])
|
81 |
+
|
82 |
+
if deg > 1:
|
83 |
+
xx, yy, zz = x * x, y * y, z * z
|
84 |
+
xy, yz, xz = x * y, y * z, x * z
|
85 |
+
result = (result +
|
86 |
+
C2[0] * xy * sh[..., 4] +
|
87 |
+
C2[1] * yz * sh[..., 5] +
|
88 |
+
C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] +
|
89 |
+
C2[3] * xz * sh[..., 7] +
|
90 |
+
C2[4] * (xx - yy) * sh[..., 8])
|
91 |
+
|
92 |
+
if deg > 2:
|
93 |
+
result = (result +
|
94 |
+
C3[0] * y * (3 * xx - yy) * sh[..., 9] +
|
95 |
+
C3[1] * xy * z * sh[..., 10] +
|
96 |
+
C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] +
|
97 |
+
C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] +
|
98 |
+
C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] +
|
99 |
+
C3[5] * z * (xx - yy) * sh[..., 14] +
|
100 |
+
C3[6] * x * (xx - 3 * yy) * sh[..., 15])
|
101 |
+
|
102 |
+
if deg > 3:
|
103 |
+
result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] +
|
104 |
+
C4[1] * yz * (3 * xx - yy) * sh[..., 17] +
|
105 |
+
C4[2] * xy * (7 * zz - 1) * sh[..., 18] +
|
106 |
+
C4[3] * yz * (7 * zz - 3) * sh[..., 19] +
|
107 |
+
C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] +
|
108 |
+
C4[5] * xz * (7 * zz - 3) * sh[..., 21] +
|
109 |
+
C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] +
|
110 |
+
C4[7] * xz * (xx - 3 * yy) * sh[..., 23] +
|
111 |
+
C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24])
|
112 |
+
return result
|
113 |
+
|
114 |
+
def RGB2SH(rgb):
|
115 |
+
return (rgb - 0.5) / C0
|
116 |
+
|
117 |
+
def SH2RGB(sh):
|
118 |
+
return sh * C0 + 0.5
|
utils/camera_utils.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact [email protected]
|
10 |
+
#
|
11 |
+
|
12 |
+
from scene.cameras import Camera
|
13 |
+
import numpy as np
|
14 |
+
from utils.general_utils import PILtoTorch
|
15 |
+
from utils.graphics_utils import fov2focal
|
16 |
+
|
17 |
+
WARNED = False
|
18 |
+
|
19 |
+
def loadCam(args, id, cam_info, resolution_scale):
|
20 |
+
|
21 |
+
|
22 |
+
# resized_image_rgb = PILtoTorch(cam_info.image, resolution)
|
23 |
+
|
24 |
+
# gt_image = resized_image_rgb[:3, ...]
|
25 |
+
# loaded_mask = None
|
26 |
+
|
27 |
+
# if resized_image_rgb.shape[1] == 4:
|
28 |
+
# loaded_mask = resized_image_rgb[3:4, ...]
|
29 |
+
|
30 |
+
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
31 |
+
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
|
32 |
+
image=cam_info.image, gt_alpha_mask=None,
|
33 |
+
image_name=cam_info.image_name, uid=id, data_device=args.data_device,
|
34 |
+
time = cam_info.time,
|
35 |
+
)
|
36 |
+
|
37 |
+
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
|
38 |
+
camera_list = []
|
39 |
+
|
40 |
+
for id, c in enumerate(cam_infos):
|
41 |
+
camera_list.append(loadCam(args, id, c, resolution_scale))
|
42 |
+
|
43 |
+
return camera_list
|
44 |
+
|
45 |
+
def camera_to_JSON(id, camera : Camera):
|
46 |
+
Rt = np.zeros((4, 4))
|
47 |
+
Rt[:3, :3] = camera.R.transpose()
|
48 |
+
Rt[:3, 3] = camera.T
|
49 |
+
Rt[3, 3] = 1.0
|
50 |
+
|
51 |
+
W2C = np.linalg.inv(Rt)
|
52 |
+
pos = W2C[:3, 3]
|
53 |
+
rot = W2C[:3, :3]
|
54 |
+
serializable_array_2d = [x.tolist() for x in rot]
|
55 |
+
camera_entry = {
|
56 |
+
'id' : id,
|
57 |
+
'img_name' : camera.image_name,
|
58 |
+
'width' : camera.width,
|
59 |
+
'height' : camera.height,
|
60 |
+
'position': pos.tolist(),
|
61 |
+
'rotation': serializable_array_2d,
|
62 |
+
'fy' : fov2focal(camera.FovY, camera.height),
|
63 |
+
'fx' : fov2focal(camera.FovX, camera.width)
|
64 |
+
}
|
65 |
+
return camera_entry
|
utils/general_utils.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact [email protected]
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import sys
|
14 |
+
from datetime import datetime
|
15 |
+
import numpy as np
|
16 |
+
import random
|
17 |
+
|
18 |
+
def inverse_sigmoid(x):
|
19 |
+
return torch.log(x/(1-x))
|
20 |
+
|
21 |
+
def PILtoTorch(pil_image, resolution):
|
22 |
+
if resolution is not None:
|
23 |
+
resized_image_PIL = pil_image.resize(resolution)
|
24 |
+
else:
|
25 |
+
resized_image_PIL = pil_image
|
26 |
+
resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0
|
27 |
+
if len(resized_image.shape) == 3:
|
28 |
+
return resized_image.permute(2, 0, 1)
|
29 |
+
else:
|
30 |
+
return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)
|
31 |
+
|
32 |
+
def get_expon_lr_func(
|
33 |
+
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Copied from Plenoxels
|
37 |
+
|
38 |
+
Continuous learning rate decay function. Adapted from JaxNeRF
|
39 |
+
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
|
40 |
+
is log-linearly interpolated elsewhere (equivalent to exponential decay).
|
41 |
+
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
|
42 |
+
function of lr_delay_mult, such that the initial learning rate is
|
43 |
+
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
|
44 |
+
to the normal learning rate when steps>lr_delay_steps.
|
45 |
+
:param conf: config subtree 'lr' or similar
|
46 |
+
:param max_steps: int, the number of steps during optimization.
|
47 |
+
:return HoF which takes step as input
|
48 |
+
"""
|
49 |
+
|
50 |
+
def helper(step):
|
51 |
+
if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
|
52 |
+
# Disable this parameter
|
53 |
+
return 0.0
|
54 |
+
if lr_delay_steps > 0:
|
55 |
+
# A kind of reverse cosine decay.
|
56 |
+
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
|
57 |
+
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
|
58 |
+
)
|
59 |
+
else:
|
60 |
+
delay_rate = 1.0
|
61 |
+
t = np.clip(step / max_steps, 0, 1)
|
62 |
+
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
|
63 |
+
return delay_rate * log_lerp
|
64 |
+
|
65 |
+
return helper
|
66 |
+
|
67 |
+
def strip_lowerdiag(L):
|
68 |
+
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")
|
69 |
+
|
70 |
+
uncertainty[:, 0] = L[:, 0, 0]
|
71 |
+
uncertainty[:, 1] = L[:, 0, 1]
|
72 |
+
uncertainty[:, 2] = L[:, 0, 2]
|
73 |
+
uncertainty[:, 3] = L[:, 1, 1]
|
74 |
+
uncertainty[:, 4] = L[:, 1, 2]
|
75 |
+
uncertainty[:, 5] = L[:, 2, 2]
|
76 |
+
return uncertainty
|
77 |
+
|
78 |
+
def strip_symmetric(sym):
|
79 |
+
return strip_lowerdiag(sym)
|
80 |
+
|
81 |
+
def build_rotation(r):
|
82 |
+
norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])
|
83 |
+
|
84 |
+
q = r / norm[:, None]
|
85 |
+
|
86 |
+
R = torch.zeros((q.size(0), 3, 3), device='cuda')
|
87 |
+
|
88 |
+
w = q[:, 0]
|
89 |
+
x = q[:, 1]
|
90 |
+
y = q[:, 2]
|
91 |
+
z = q[:, 3]
|
92 |
+
|
93 |
+
R[:, 0, 0] = 1 - 2 * (y*y + z*z)
|
94 |
+
R[:, 0, 1] = 2 * (x*y - w*z)
|
95 |
+
R[:, 0, 2] = 2 * (x*z + w*y)
|
96 |
+
R[:, 1, 0] = 2 * (x*y + w*z)
|
97 |
+
R[:, 1, 1] = 1 - 2 * (x*x + z*z)
|
98 |
+
R[:, 1, 2] = 2 * (y*z - w*x)
|
99 |
+
R[:, 2, 0] = 2 * (x*z - w*y)
|
100 |
+
R[:, 2, 1] = 2 * (y*z + w*x)
|
101 |
+
R[:, 2, 2] = 1 - 2 * (x*x + y*y)
|
102 |
+
return R
|
103 |
+
|
104 |
+
def build_scaling_rotation(s, r):
|
105 |
+
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
|
106 |
+
R = build_rotation(r)
|
107 |
+
|
108 |
+
L[:,0,0] = s[:,0]
|
109 |
+
L[:,1,1] = s[:,1]
|
110 |
+
L[:,2,2] = s[:,2]
|
111 |
+
|
112 |
+
L = R @ L
|
113 |
+
return L
|
114 |
+
|
115 |
+
def safe_state(silent):
|
116 |
+
old_f = sys.stdout
|
117 |
+
class F:
|
118 |
+
def __init__(self, silent):
|
119 |
+
self.silent = silent
|
120 |
+
|
121 |
+
def write(self, x):
|
122 |
+
if not self.silent:
|
123 |
+
if x.endswith("\n"):
|
124 |
+
old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S")))))
|
125 |
+
else:
|
126 |
+
old_f.write(x)
|
127 |
+
|
128 |
+
def flush(self):
|
129 |
+
old_f.flush()
|
130 |
+
|
131 |
+
sys.stdout = F(silent)
|
132 |
+
|
133 |
+
random.seed(0)
|
134 |
+
np.random.seed(0)
|
135 |
+
torch.manual_seed(0)
|
136 |
+
torch.cuda.set_device(torch.device("cuda:0"))
|