import torch import os from PIL import Image, ImageDraw, ImageFont from matplotlib import pyplot as plt plt.rcParams['font.sans-serif'] = ['Times New Roman'] import numpy as np import copy @torch.no_grad() def render_training_image(scene, gaussians, viewpoints, render_func, pipe, background, stage, iteration, time_now): def render(gaussians, viewpoint, path, scaling): # scaling_copy = gaussians._scaling render_pkg = render_func(viewpoint, gaussians, pipe, background, stage=stage) label1 = f"stage:{stage},iter:{iteration}" times = time_now/60 if times < 1: end = "min" else: end = "mins" label2 = "time:%.2f" % times + end image = render_pkg["render"] depth = render_pkg["depth"] image_np = image.permute(1, 2, 0).cpu().numpy() # 转换通道顺序为 (H, W, 3) depth_np = depth.permute(1, 2, 0).cpu().numpy() depth_np /= depth_np.max() depth_np = np.repeat(depth_np, 3, axis=2) image_np = np.concatenate((image_np, depth_np), axis=1) image_with_labels = Image.fromarray((np.clip(image_np,0,1) * 255).astype('uint8')) # 转换为8位图像 # 创建PIL图像对象的副本以绘制标签 draw1 = ImageDraw.Draw(image_with_labels) # 选择字体和字体大小 font = ImageFont.truetype('./utils/TIMES.TTF', size=40) # 请将路径替换为您选择的字体文件路径 # 选择文本颜色 text_color = (255, 0, 0) # 白色 # 选择标签的位置(左上角坐标) label1_position = (10, 10) label2_position = (image_with_labels.width - 100 - len(label2) * 10, 10) # 右上角坐标 # 在图像上添加标签 draw1.text(label1_position, label1, fill=text_color, font=font) draw1.text(label2_position, label2, fill=text_color, font=font) image_with_labels.save(path) render_base_path = os.path.join(scene.model_path, f"{stage}_render") point_cloud_path = os.path.join(render_base_path,"pointclouds") image_path = os.path.join(render_base_path,"images") if not os.path.exists(os.path.join(scene.model_path, f"{stage}_render")): os.makedirs(render_base_path) if not os.path.exists(point_cloud_path): os.makedirs(point_cloud_path) if not os.path.exists(image_path): os.makedirs(image_path) # image:3,800,800 # point_save_path = os.path.join(point_cloud_path,f"{iteration}.jpg") for idx in range(len(viewpoints)): image_save_path = os.path.join(image_path,f"{iteration}_{idx}.jpg") render(gaussians,viewpoints[idx],image_save_path,scaling = 1) # render(gaussians,point_save_path,scaling = 0.1) # 保存带有标签的图像 pc_mask = gaussians.get_opacity pc_mask = pc_mask > 0.1 xyz = gaussians.get_xyz.detach()[pc_mask.squeeze()].cpu().permute(1,0).numpy() # visualize_and_save_point_cloud(xyz, viewpoint.R, viewpoint.T, point_save_path) # 如果需要,您可以将PIL图像转换回PyTorch张量 # return image # image_with_labels_tensor = torch.tensor(image_with_labels, dtype=torch.float32).permute(2, 0, 1) / 255.0 def visualize_and_save_point_cloud(point_cloud, R, T, filename): # 创建3D散点图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') R = R.T # 应用旋转和平移变换 T = -R.dot(T) transformed_point_cloud = np.dot(R, point_cloud) + T.reshape(-1, 1) # pcd = o3d.geometry.PointCloud() # pcd.points = o3d.utility.Vector3dVector(transformed_point_cloud.T) # 转置点云数据以匹配Open3D的格式 # transformed_point_cloud[2,:] = -transformed_point_cloud[2,:] # 可视化点云 ax.scatter(transformed_point_cloud[0], transformed_point_cloud[1], transformed_point_cloud[2], c='g', marker='o') ax.axis("off") # ax.set_xlabel('X Label') # ax.set_ylabel('Y Label') # ax.set_zlabel('Z Label') # 保存渲染结果为图片 plt.savefig(filename)