yourownvibhore commited on
Commit
8495354
β€’
1 Parent(s): bf8b4fe

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +123 -0
  2. requirements.txt +12 -0
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from llama_index.core import Settings
5
+ from langchain_community.vectorstores import FAISS
6
+ import pickle
7
+ import os
8
+ from dotenv import load_dotenv
9
+ from langchain.chains.question_answering import load_qa_chain
10
+ from langchain.prompts import ChatPromptTemplate
11
+ from dotenv import load_dotenv
12
+
13
+ from langchain_huggingface import HuggingFaceEndpoint
14
+ from langchain_huggingface import HuggingFaceEmbeddings
15
+ from langchain.prompts import PromptTemplate
16
+
17
+
18
+
19
+ load_dotenv()
20
+ hugging_face_api = os.getenv("HUGGINGFACEHUB_API_TOKEN")
21
+ os.environ["HUGGINGFACEHUB_API_TOKEN"]=hugging_face_api
22
+
23
+
24
+
25
+
26
+
27
+ def get_pdf_text(pdf_docs):
28
+ text=""
29
+ for pdf in pdf_docs:
30
+ pdf_reader= PdfReader(pdf)
31
+ for page in pdf_reader.pages:
32
+ text+= page.extract_text()
33
+ return text
34
+
35
+
36
+
37
+ def get_text_chunks(text):
38
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
39
+ chunks = text_splitter.split_text(text)
40
+ return chunks
41
+
42
+ def get_vector_store(text_chunks):
43
+ model_name = "sentence-transformers/all-MiniLM-L12-v2"
44
+ model_kwargs = {'device': 'cpu'}
45
+ encode_kwargs = {'normalize_embeddings': False}
46
+ embeddings = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs)
47
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
48
+ vector_store.save_local("faiss_index")
49
+
50
+ def get_conversational_chain():
51
+
52
+ prompt_template = """
53
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
54
+ provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
55
+ Context:\n {context}?\n
56
+ Question: \n{question}\n
57
+
58
+ Answer:
59
+ """
60
+
61
+ repo_id="mistralai/Mistral-7B-Instruct-v0.3"
62
+ model = HuggingFaceEndpoint(repo_id=repo_id,max_length=128, token=hugging_face_api)
63
+
64
+ prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
65
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
66
+
67
+ return chain
68
+
69
+ def user_input(user_question):
70
+ model_name = "sentence-transformers/all-MiniLM-L12-v2"
71
+ model_kwargs = {'device': 'cpu'}
72
+ encode_kwargs = {'normalize_embeddings': False}
73
+ embeddings = HuggingFaceEmbeddings(model_name=model_name,model_kwargs=model_kwargs,encode_kwargs=encode_kwargs)
74
+
75
+
76
+ new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
77
+ docs = new_db.similarity_search(user_question)
78
+
79
+ chain = get_conversational_chain()
80
+
81
+
82
+ response = chain(
83
+ {"input_documents":docs, "question": user_question}
84
+ , return_only_outputs=True)
85
+
86
+ print(response)
87
+ st.write("Reply: ", response["output_text"])
88
+
89
+
90
+
91
+
92
+ def main():
93
+ st.set_page_config("Chat PDF")
94
+ with st.sidebar:
95
+ st.title('Chat PDF πŸ“š')
96
+ st.markdown('''
97
+ ## About
98
+ This is a simple Streamlit app that allows you to chat with your PDF files.
99
+ ## How to use
100
+
101
+ ''')
102
+ st.write('Here you can upload your PDF files and ask questions from the PDF files.We will provide you the most relevant answer from the PDF files. You can also upload multiple files at once.')
103
+ st.header("Chat with your PDF πŸ’")
104
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button. you can also upload multiple files also", accept_multiple_files=True)
105
+ if st.button("Submit & Process"):
106
+ with st.spinner("Processing..."):
107
+ raw_text = get_pdf_text(pdf_docs)
108
+ text_chunks = get_text_chunks(raw_text)
109
+ get_vector_store(text_chunks)
110
+ st.success("Done")
111
+
112
+ user_question = st.text_input("Ask a Question from the PDF Files")
113
+
114
+ if user_question:
115
+ user_input(user_question)
116
+
117
+
118
+
119
+
120
+
121
+
122
+ if __name__ == '__main__':
123
+ main()
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain-huggingface
2
+ PyPDF2
3
+ python-dotenv
4
+ streamlit
5
+ streamlit_extras
6
+ huggingface_hub
7
+ accelerate
8
+ bitsandbytes
9
+ langchain-community
10
+ faiss-cpu
11
+ InstructorEmbedding
12
+ sentence_transformers