Spaces:
Runtime error
Runtime error
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
subprocess.run('pip install -U timm', shell=True) | |
import spaces | |
import os | |
import torch | |
import argparse | |
import warnings | |
from rdkit import Chem | |
from rdkit.Chem import CanonSmiles | |
from rdkit.Chem import MolFromSmiles, MolToSmiles | |
from data_provider.pretrain_dm import PretrainDM | |
from data_provider.tune_dm import * | |
from model.opt_flash_attention import replace_opt_attn_with_flash_attn | |
from model.blip2_model import Blip2Model | |
from data_provider.data_utils import json_read, json_write | |
from data_provider.data_utils import smiles2data, reformat_smiles | |
import gradio as gr | |
from datetime import datetime | |
## disable online tokenizers parallelism to avoid deadlocks | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
## for pyg bug | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
## for A5000 gpus | |
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32) | |
def smiles_split(string, separator='.'): | |
string = str(string) | |
mols = [] | |
for smi in string.split(separator): | |
mol = MolFromSmiles(smi) | |
if mol is None: | |
continue # Skip invalid SMILES strings | |
mols.append(mol) | |
parts = [] | |
current_part = [] | |
charge_count = 0 | |
for mol in mols: | |
charge = Chem.GetFormalCharge(mol) | |
if charge==0: | |
if current_part: | |
smiles = '.'.join([MolToSmiles(m) for m in current_part]) | |
smiles = CanonSmiles(smiles) | |
parts.append(smiles) | |
current_part = [] | |
charge_count = 0 | |
parts.append(MolToSmiles(mol)) | |
else: | |
charge_count += charge | |
current_part.append(mol) | |
if charge_count == 0: | |
smiles = '.'.join([MolToSmiles(m) for m in current_part]) | |
smiles = CanonSmiles(smiles) | |
parts.append(smiles) | |
current_part = [] | |
charge_count = 0 | |
if current_part: | |
smiles = '.'.join([MolToSmiles(m) for m in current_part]) | |
smiles = CanonSmiles(smiles) | |
parts.append(smiles) | |
return parts | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--filename', type=str, default="main") | |
parser.add_argument('--seed', type=int, default=42, help='random seed') | |
# MM settings | |
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval']) | |
parser.add_argument('--strategy_name', type=str, default='mydeepspeed') | |
parser.add_argument('--iupac_prediction', action='store_true', default=False) | |
parser.add_argument('--ckpt_path', type=str, default=None) | |
# parser = Trainer.add_argparse_args(parser) | |
parser = Blip2Model.add_model_specific_args(parser) # add model args | |
parser = PretrainDM.add_model_specific_args(parser) | |
parser.add_argument('--accelerator', type=str, default='gpu') | |
parser.add_argument('--devices', type=str, default='0,1,2,3') | |
parser.add_argument('--precision', type=str, default='bf16-mixed') | |
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi']) | |
parser.add_argument('--max_epochs', type=int, default=10) | |
parser.add_argument('--enable_flash', action='store_true', default=False) | |
parser.add_argument('--disable_graph_cache', action='store_true', default=False) | |
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False) | |
parser.add_argument('--train_restrict_tokens', action='store_true', default=False) | |
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles']) | |
parser.add_argument('--accumulate_grad_batches', type=int, default=1) | |
parser.add_argument('--tqdm_interval', type=int, default=50) | |
parser.add_argument('--check_val_every_n_epoch', type=int, default=1) | |
args = parser.parse_args() | |
if args.enable_flash: | |
replace_opt_attn_with_flash_attn() | |
return args | |
app_config = { | |
"init_checkpoint": "all_checkpoints/ckpt_tune_hybridFeb11_May31/last_converted.ckpt", | |
"filename": "app", | |
"opt_model": "facebook/galactica-1.3b", | |
"num_workers": 4, | |
"rxn_max_len": 512, | |
"text_max_len": 512, | |
"precision": "bf16-mixed", | |
"max_inference_len": 512, | |
} | |
class InferenceRunner: | |
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len, | |
smiles_type='default', device='cuda', args=None): | |
self.model = model | |
self.rxn_max_len = rxn_max_len | |
self.smi_max_len = smi_max_len | |
self.tokenizer = tokenizer | |
self.collater = Collater([], []) | |
self.mol_ph = '<mol>' * args.num_query_token | |
self.mol_token_id = tokenizer.mol_token_id | |
self.is_gal = args.opt_model.find('galactica') >= 0 | |
self.collater = Collater([], []) | |
self.device = device | |
self.smiles_type = smiles_type | |
self.args = args | |
time_stamp = datetime.now().strftime("%Y.%m.%d-%H:%M") | |
self.cache_dir = f'results/{self.args.filename}/{time_stamp}' | |
os.makedirs(self.cache_dir, exist_ok=True) | |
def make_query_dict(self, rxn_string): | |
try: | |
reactant, solvent, product = rxn_string.split('>') | |
reactant = smiles_split(reactant) | |
product = smiles_split(product) | |
solvent = smiles_split(solvent) if solvent else [] | |
assert reactant and product | |
except: | |
raise gr.Error('Please input a valid reaction string') | |
extracted_molecules = {product[0]: "$-1$"} | |
for mol in reactant+solvent: | |
extracted_molecules[mol] = f"${len(extracted_molecules)}$" | |
result_dict = {} | |
result_dict['time_stamp'] = datetime.now().strftime("%Y.%m.%d %H:%M:%S.%f")[:-3] | |
result_dict['reaction_string'] = rxn_string | |
result_dict['REACTANT'] = reactant | |
result_dict['SOLVENT'] = solvent | |
result_dict['CATALYST'] = [] | |
result_dict['PRODUCT'] = product | |
result_dict['extracted_molecules'] = extracted_molecules | |
return result_dict | |
def save_prediction(self, result_dict): | |
os.makedirs(self.cache_dir, exist_ok=True) | |
result_id = result_dict['time_stamp'] | |
result_path = os.path.join(self.cache_dir, f'{result_id}.json') | |
json_write(result_path, result_dict) | |
def make_prompt(self, param_dict, smi_max_len=128): | |
smiles_list = [] | |
prompt = '' | |
prompt += 'Reactants: ' | |
smiles_wrapper = lambda x: reformat_smiles(x, smiles_type=self.smiles_type)[:smi_max_len] | |
for smi in param_dict['REACTANT']: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
prompt += 'Product: ' | |
for smi in param_dict['PRODUCT']: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
if param_dict['CATALYST']: | |
prompt += 'Catalysts: ' | |
for smi in param_dict['CATALYST']: | |
if smi in param_dict["extracted_molecules"]: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
else: | |
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
if param_dict['SOLVENT']: | |
prompt += 'Solvents: ' | |
for smi in param_dict['SOLVENT']: | |
if smi in param_dict["extracted_molecules"]: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
else: | |
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
prompt += 'Action Squence: ' | |
return prompt, smiles_list | |
def get_action_elements(self, rxn_dict): | |
input_text, smiles_list = self.make_prompt(rxn_dict, self.smi_max_len) | |
graph_list = [] | |
for smiles in smiles_list: | |
graph_item = smiles2data(smiles) | |
graph_list.append(graph_item) | |
return graph_list, input_text | |
def predict(self, rxn_dict, temperature=1): | |
graphs, prompt_tokens = self.tokenize(rxn_dict) | |
self.model.blip2opt = self.model.blip2opt.to('cuda') | |
result_dict = rxn_dict | |
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens} | |
prediction = self.model.blip2opt.generate( | |
samples, | |
do_sample=self.args.do_sample, | |
num_beams=self.args.num_beams, | |
max_length=self.args.max_inference_len, | |
min_length=self.args.min_inference_len, | |
num_captions=self.args.num_generate_captions, | |
temperature=temperature, | |
use_graph=True | |
)[0] | |
for k, v in result_dict['extracted_molecules'].items(): | |
prediction = prediction.replace(v, k) | |
result_dict['prediction'] = prediction | |
return result_dict | |
def tokenize(self, rxn_dict): | |
graph_list, input_text = self.get_action_elements(rxn_dict) | |
if graph_list: | |
graphs = self.collater(graph_list).to(self.device) | |
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0] | |
## deal with prompt | |
self.tokenizer.padding_side = 'left' | |
input_prompt_tokens = self.tokenizer(input_prompt, | |
truncation=True, | |
padding='max_length', | |
add_special_tokens=True, | |
max_length=self.rxn_max_len, | |
return_tensors='pt', | |
return_attention_mask=True).to(self.device) | |
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id | |
input_prompt_tokens['is_mol_token'] = is_mol_token | |
return graphs, input_prompt_tokens | |
def main(args): | |
device = torch.device('cuda') | |
# model | |
if args.init_checkpoint: | |
model = Blip2Model(args).to(device) | |
ckpt = torch.load(args.init_checkpoint, map_location='cpu') | |
model.load_state_dict(ckpt['state_dict'], strict=False) | |
print(f"loaded model from {args.init_checkpoint}") | |
else: | |
model = Blip2Model(args).to(device) | |
model.eval() | |
print('total params:', sum(p.numel() for p in model.parameters())) | |
if args.opt_model.find('galactica') >= 0 or args.opt_model.find('t5') >= 0: | |
tokenizer = model.blip2opt.opt_tokenizer | |
elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0: | |
tokenizer = model.blip2opt.llm_tokenizer | |
else: | |
raise NotImplementedError | |
infer_runner = InferenceRunner( | |
model=model, | |
tokenizer=tokenizer, | |
rxn_max_len=args.rxn_max_len, | |
smi_max_len=args.smi_max_len, | |
device=device, | |
args=args | |
) | |
example_inputs = json_read('demo.json') | |
example_inputs = [[e] for e in example_inputs] | |
def online_chat(reaction_string, temperature=1): | |
data_item = infer_runner.make_query_dict(reaction_string) | |
result = infer_runner.predict(data_item, temperature=temperature) | |
infer_runner.save_prediction(result) | |
prediction = result['prediction'].replace(' ; ', ' ;\n') | |
return prediction | |
with gr.Blocks(css=""" | |
.center { display: flex; justify-content: center; } | |
""") as demo: | |
gr.HTML( | |
""" | |
<center><h1><b>ReactXT</b></h1></center> | |
<p style="font-size:20px; font-weight:bold;">This is the demo page of our ACL 2024 paper | |
<i>ReactXT: Understanding Molecular “Reaction-ship” via Reaction-Contextualized Molecule-Text Pretraining.</i></p> | |
<center><img src="/file=./figures/frameworks.jpg" alt="Framework" style="width:1000px;"></center> | |
<p style="font-size:16px;"> Please input one chemical reaction below, and we will generate the predicted experimental procedure.</p> | |
<p style="font-size:16px;"> The reaction should be in form of <b>Reactants>Reagents>Product</b>.</p> | |
""") | |
reaction_string = gr.Textbox(placeholder="Input one reaction", label='Input Reaction') | |
gr.Examples(example_inputs, [reaction_string,], fn=online_chat, label='Example Reactions') | |
with gr.Row(): | |
btn = gr.Button("Submit") | |
clear_btn = gr.Button("Clear") | |
temperature = gr.Slider(0.1, 1, value=1, label='Temperature') | |
with gr.Row(): | |
out = gr.Textbox(label="ReactXT's Output", placeholder="Predicted experimental procedure") | |
btn.click(fn=online_chat, inputs=[reaction_string, temperature], outputs=[out]) | |
clear_btn.click(fn=lambda:("", ""), inputs=[], outputs=[reaction_string, out]) | |
demo.launch(allowed_paths=['/home/user/app/figures/']) | |
if __name__ == '__main__': | |
args = get_args() | |
vars(args).update(app_config) | |
main(args) |