File size: 9,857 Bytes
9fe4d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ea0a6
9fe4d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ea0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe4d8e
 
e3ea0a6
 
9fe4d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ea0a6
9fe4d8e
 
e3ea0a6
 
9fe4d8e
 
 
 
 
 
 
 
 
e3ea0a6
9fe4d8e
e3ea0a6
9fe4d8e
 
 
 
 
e3ea0a6
 
 
 
 
 
 
 
9fe4d8e
 
 
 
 
 
 
e3ea0a6
 
 
 
 
 
 
 
 
 
 
 
 
9fe4d8e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# import gradio as gr

# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()

# %%writefile demo-4bit.py

from textwrap import dedent

# credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py
# while mistakes are mine
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html

from loguru import logger

model_name = "THUDM/chatglm2-6b"
model_name = "THUDM/chatglm2-6b-int4"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()

# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()

import torch

has_cuda = torch.cuda.is_available()
# has_cuda = False  # force cpu

if has_cuda:
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()  # 3.92G
else:
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half()  # .float() .half().float()

model = model.eval()

_ = """Override Chatbot.postprocess"""

def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text


def predict(RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values):
    chatbot.append((parse_text(input), ""))
    for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values,
                                                                return_past_key_values=True,
                                                                max_length=max_length, top_p=top_p,
                                                                temperature=temperature):
        chatbot[-1] = (parse_text(input), parse_text(response))

        yield chatbot, history, past_key_values


def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
    if max_length < 100:
        max_length = 4096
    if top_p < 0.1:
        top_p = 0.8
    if temperature <= 0:
        temperature = 0.01
    try:
        res, _ = model.chat(
            tokenizer, 
            input, 
            history=[], 
            past_key_values=None,
            max_length=max_length,
            top_p=top_p,
            temperature=temperature,
        )
        # logger.debug(f"{res=} \n{_=}")
    except Exception as exc:
        logger.error(f"{exc=}")
        res = str(exc)

    return res
        

def reset_user_input():
    return gr.update(value='')


def reset_state():
    return [], [], None


# Delete last turn
def delete_last_turn(chat, history):
    if chat and history:
        chat.pop(-1)
        history.pop(-1)
        history.pop(-1)
    return chat, history


# Regenerate response
def retry_last_answer(
    user_input, 
    chatbot, 
    max_length, 
    top_p, 
    temperature, 
    history, 
    past_key_values
      ):
          
    if chat and history:
        # Removing the previous conversation from chat 
        chat.pop(-1)
        # Removing bot response from the history 
        history.pop(-1)
        # Setting up a flag to capture a retry 
        RETRY_FLAG = True
        # Getting last message from user
        user_message = history[-1]
        
    yield from predict(
        RETRY_FLAG,
        user_input, 
        chatbot, 
        max_length, 
        top_p, 
        temperature, 
        history, 
        past_key_values
        )
          

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
    gr.HTML("""<center><a href="https://huggingface.co/spaces/ysharma/chatglm2-6b-4bit?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>To avoid the queue and for faster inference Duplicate this Space and upgrade to GPU</center>""")

    with gr.Accordion("Info", open=False):
        _ = """
            A query takes from 30 seconds to a few tens of seconds, dependent on the number of words/characters 
            the question and answer contain.

            * Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
            
            * Suggested temperatures -- translation: up to 0.3; chatting: > 0.4

            * Top P controls dynamic vocabulary selection based on context. 

            For a table of example values for different scenarios, refer to [this](https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683)

            If the instance is not on a GPU (T4), it will be very slow. You can try to run the colab notebook [chatglm2-6b-4bit colab notebook](https://colab.research.google.com/drive/1WkF7kOjVCcBBatDHjaGkuJHnPdMWNtbW?usp=sharing) for a spin.

            The T4 GPU is sponsored by a community GPU grant from Huggingface. Thanks a lot!
            """
        gr.Markdown(dedent(_))
    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
                    container=False)
                RETRY_FLAG = gr.Checkbox(value=False, visible=False)
            with gr.Column(min_width=32, scale=1):
                submitBtn = gr.Button("Submit", variant="primary")
                deleteBtn = gr.Button("Delete last turn", variant="secondary")
                retryBtn = gr.Button("Regenerate", variant="secondary")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(0, 32768, value=8192/2, step=1.0, label="Maximum length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True)

    history = gr.State([])
    past_key_values = gr.State(None)

    user_input.submit(predict, [RETRY_FLAG, user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
                    [chatbot, history, past_key_values], show_progress=True)
    submitBtn.click(predict, [RETRY_FLAG, user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
                    [chatbot, history, past_key_values], show_progress=True, api_name="predict")
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True)

    regenerate_button.click(
        retry_last_answer, 
        inputs = [user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
        #outputs = [chatbot, history, last_user_message, user_message]
        outputs=[chatbot, history, past_key_values]
        )
    delete_turn_button.click(delete_last_turn, [chatbot, history], [chatbot, history])
    
    with gr.Accordion("For Translation API", open=False):
        input_text = gr.Text()
        tr_btn = gr.Button("Go", variant="primary")
        out_text = gr.Text()
    tr_btn.click(trans_api, [input_text, max_length, top_p, temperature], out_text, show_progress=True, api_name="tr")       
    input_text.submit(trans_api, [input_text, max_length, top_p, temperature], out_text, show_progress=True, api_name="tr")      

    with gr.Accordion("Example inputs", open=True):
        examples = gr.Examples(
            examples=[["Explain the plot of Cinderella in a sentence."],
                     ["How long does it take to become proficient in French, and what are the best methods for retaining information?"],
                     ["What are some common mistakes to avoid when writing code?"],
                     ["Build a prompt to generate a beautiful portrait of a horse"],
                     ["Suggest four metaphors to describe the benefits of AI"],
                     ["Write a pop song about leaving home for the sandy beaches."],
                     ["Write a summary demonstrating my ability to do beat-boxing"]],
            inputs = [user_input],
            
        )
        
# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)

demo.queue().launch(debug=True)