Spaces:
Paused
Paused
File size: 9,857 Bytes
9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e e3ea0a6 9fe4d8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# import gradio as gr
# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()
# %%writefile demo-4bit.py
from textwrap import dedent
# credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py
# while mistakes are mine
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
from loguru import logger
model_name = "THUDM/chatglm2-6b"
model_name = "THUDM/chatglm2-6b-int4"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()
import torch
has_cuda = torch.cuda.is_available()
# has_cuda = False # force cpu
if has_cuda:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda() # 3.92G
else:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half() # .float() .half().float()
model = model.eval()
_ = """Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values):
chatbot.append((parse_text(input), ""))
for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values,
return_past_key_values=True,
max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history, past_key_values
def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
if max_length < 100:
max_length = 4096
if top_p < 0.1:
top_p = 0.8
if temperature <= 0:
temperature = 0.01
try:
res, _ = model.chat(
tokenizer,
input,
history=[],
past_key_values=None,
max_length=max_length,
top_p=top_p,
temperature=temperature,
)
# logger.debug(f"{res=} \n{_=}")
except Exception as exc:
logger.error(f"{exc=}")
res = str(exc)
return res
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], [], None
# Delete last turn
def delete_last_turn(chat, history):
if chat and history:
chat.pop(-1)
history.pop(-1)
history.pop(-1)
return chat, history
# Regenerate response
def retry_last_answer(
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values
):
if chat and history:
# Removing the previous conversation from chat
chat.pop(-1)
# Removing bot response from the history
history.pop(-1)
# Setting up a flag to capture a retry
RETRY_FLAG = True
# Getting last message from user
user_message = history[-1]
yield from predict(
RETRY_FLAG,
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values
)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
gr.HTML("""<center><a href="https://huggingface.co/spaces/ysharma/chatglm2-6b-4bit?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>To avoid the queue and for faster inference Duplicate this Space and upgrade to GPU</center>""")
with gr.Accordion("Info", open=False):
_ = """
A query takes from 30 seconds to a few tens of seconds, dependent on the number of words/characters
the question and answer contain.
* Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
* Suggested temperatures -- translation: up to 0.3; chatting: > 0.4
* Top P controls dynamic vocabulary selection based on context.
For a table of example values for different scenarios, refer to [this](https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683)
If the instance is not on a GPU (T4), it will be very slow. You can try to run the colab notebook [chatglm2-6b-4bit colab notebook](https://colab.research.google.com/drive/1WkF7kOjVCcBBatDHjaGkuJHnPdMWNtbW?usp=sharing) for a spin.
The T4 GPU is sponsored by a community GPU grant from Huggingface. Thanks a lot!
"""
gr.Markdown(dedent(_))
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
RETRY_FLAG = gr.Checkbox(value=False, visible=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
deleteBtn = gr.Button("Delete last turn", variant="secondary")
retryBtn = gr.Button("Regenerate", variant="secondary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 32768, value=8192/2, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
past_key_values = gr.State(None)
user_input.submit(predict, [RETRY_FLAG, user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
[chatbot, history, past_key_values], show_progress=True)
submitBtn.click(predict, [RETRY_FLAG, user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
[chatbot, history, past_key_values], show_progress=True, api_name="predict")
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True)
regenerate_button.click(
retry_last_answer,
inputs = [user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
#outputs = [chatbot, history, last_user_message, user_message]
outputs=[chatbot, history, past_key_values]
)
delete_turn_button.click(delete_last_turn, [chatbot, history], [chatbot, history])
with gr.Accordion("For Translation API", open=False):
input_text = gr.Text()
tr_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
tr_btn.click(trans_api, [input_text, max_length, top_p, temperature], out_text, show_progress=True, api_name="tr")
input_text.submit(trans_api, [input_text, max_length, top_p, temperature], out_text, show_progress=True, api_name="tr")
with gr.Accordion("Example inputs", open=True):
examples = gr.Examples(
examples=[["Explain the plot of Cinderella in a sentence."],
["How long does it take to become proficient in French, and what are the best methods for retaining information?"],
["What are some common mistakes to avoid when writing code?"],
["Build a prompt to generate a beautiful portrait of a horse"],
["Suggest four metaphors to describe the benefits of AI"],
["Write a pop song about leaving home for the sandy beaches."],
["Write a summary demonstrating my ability to do beat-boxing"]],
inputs = [user_input],
)
# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)
demo.queue().launch(debug=True) |