Spaces:
Runtime error
Runtime error
File size: 10,367 Bytes
3b8e6ee de33098 3b8e6ee de33098 3b8e6ee 8f63650 3b8e6ee fd8bc49 83a6d20 3b8e6ee 7c0ff63 3b8e6ee de33098 3b8e6ee de33098 3b8e6ee b5a9780 3b8e6ee d42f4c5 ca97dd1 d42f4c5 ca97dd1 4b7632d 30c1c6f 732cd32 a648d42 c043471 3b8e6ee 44d732d daaa781 3b8e6ee d39ac3a ef949f6 732cd32 4b7632d be45df9 4b7632d ffd211a 3409d90 766c020 be45df9 04c5803 4b7632d 774f569 ca97dd1 4a5727c ca97dd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
## **** below codelines are borrowed from multimodalart space
from pydoc import describe
import gradio as gr
import torch
from omegaconf import OmegaConf
import sys
sys.path.append(".")
sys.path.append('./taming-transformers')
#sys.path.append('./latent-diffusion')
from taming.models import vqgan
from util import instantiate_from_config
from huggingface_hub import hf_hub_download
model_path_e = hf_hub_download(repo_id="multimodalart/compvis-latent-diffusion-text2img-large", filename="txt2img-f8-large.ckpt")
#@title Import stuff
import argparse, os, sys, glob
import numpy as np
from PIL import Image
from einops import rearrange
from torchvision.utils import make_grid
import transformers
import gc
from util import instantiate_from_config
from ddim import DDIMSampler
from plms import PLMSSampler
from open_clip import tokenizer
import open_clip
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
#pl_sd = torch.load(ckpt, map_location="cuda")
#please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
pl_sd = torch.load(ckpt, map_location=torch.device('cpu'))
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
#model = model.half() #.cuda()
model.eval()
return model
def load_safety_model(clip_model):
"""load the safety model"""
import autokeras as ak # pylint: disable=import-outside-toplevel
from tensorflow.keras.models import load_model # pylint: disable=import-outside-toplevel
from os.path import expanduser # pylint: disable=import-outside-toplevel
home = expanduser("~")
cache_folder = home + "/.cache/clip_retrieval/" + clip_model.replace("/", "_")
if clip_model == "ViT-L/14":
model_dir = cache_folder + "/clip_autokeras_binary_nsfw"
dim = 768
elif clip_model == "ViT-B/32":
model_dir = cache_folder + "/clip_autokeras_nsfw_b32"
dim = 512
else:
raise ValueError("Unknown clip model")
if not os.path.exists(model_dir):
os.makedirs(cache_folder, exist_ok=True)
from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel
path_to_zip_file = cache_folder + "/clip_autokeras_binary_nsfw.zip"
if clip_model == "ViT-L/14":
url_model = "https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_binary_nsfw.zip"
elif clip_model == "ViT-B/32":
url_model = (
"https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_nsfw_b32.zip"
)
else:
raise ValueError("Unknown model {}".format(clip_model))
urlretrieve(url_model, path_to_zip_file)
import zipfile # pylint: disable=import-outside-toplevel
with zipfile.ZipFile(path_to_zip_file, "r") as zip_ref:
zip_ref.extractall(cache_folder)
loaded_model = load_model(model_dir, custom_objects=ak.CUSTOM_OBJECTS)
loaded_model.predict(np.random.rand(10 ** 3, dim).astype("float32"), batch_size=10 ** 3)
return loaded_model
def is_unsafe(safety_model, embeddings, threshold=0.5):
"""find unsafe embeddings"""
nsfw_values = safety_model.predict(embeddings, batch_size=embeddings.shape[0])
x = np.array([e[0] for e in nsfw_values])
return True if x > threshold else False
config = OmegaConf.load("./txt2img-1p4B-eval.yaml")
model = load_model_from_config(config,model_path_e)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
#NSFW CLIP Filter
safety_model = load_safety_model("ViT-B/32")
clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai')
def run(prompt, steps, width, height, images, scale):
opt = argparse.Namespace(
prompt = prompt,
outdir='./outputs',
ddim_steps = int(steps),
ddim_eta = 1,
n_iter = 1,
W=int(width),
H=int(height),
n_samples=int(images),
scale=scale,
plms=True
)
if opt.plms:
opt.ddim_eta = 0
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
prompt = opt.prompt
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
all_samples=list()
all_samples_images=list()
with torch.no_grad():
with torch.cuda.amp.autocast():
with model.ema_scope():
uc = None
if opt.scale > 0:
uc = model.get_learned_conditioning(opt.n_samples * [""])
for n in range(opt.n_iter):
c = model.get_learned_conditioning(opt.n_samples * [prompt])
shape = [4, opt.H//8, opt.W//8]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
image_vector = Image.fromarray(x_sample.astype(np.uint8))
image_preprocess = preprocess(image_vector).unsqueeze(0)
with torch.no_grad():
image_features = clip_model.encode_image(image_preprocess)
image_features /= image_features.norm(dim=-1, keepdim=True)
query = image_features.cpu().detach().numpy().astype("float32")
unsafe = is_unsafe(safety_model,query,0.5)
if(not unsafe):
all_samples_images.append(image_vector)
else:
return(None,None,"Sorry, potential NSFW content was detected on your outputs by our NSFW detection model. Try again with different prompts. If you feel your prompt was not supposed to give NSFW outputs, this may be due to a bias in the model. Read more about biases in the Biases Acknowledgment section below.")
#Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png"))
base_count += 1
all_samples.append(x_samples_ddim)
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=2)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png'))
#return(Image.fromarray(grid.astype(np.uint8)),all_samples_images,None)
return Image.fromarray(grid.astype(np.uint8))
## **** above codelines are borrowed from multimodalart space
import gradio as gr
fastspeech = gr.Interface.load("huggingface/facebook/fastspeech2-en-ljspeech")
def text2speech(text):
return fastspeech(text)
def engine(text_input):
ner = gr.Interface.load("huggingface/flair/ner-english-ontonotes-large")
entities = ner(text_input)
entities = [tupl for tupl in entities if None not in tupl]
entities_num = len(entities)
img = run(entities[0],'50','256','256','1',10)
#img_intfc = gr.Interface.load("spaces/multimodalart/latentdiffusion")
#img_intfc = gr.Interface.load("spaces/multimodalart/latentdiffusion", inputs=[gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text"), gr.inputs.Textbox(lines=1, label="Input Text")],
#outputs=[gr.outputs.Image(type="pil", label="output image"),gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")], )
#title="Convert text to image")
#img = img_intfc[0]
#img = img_intfc('George','50','256','256','1','10')
#img = img[0]
#inputs=['George',50,256,256,1,10]
#run(prompt, steps, width, height, images, scale)
speech = text2speech(text_input)
return entities, speech, img
app = gr.Interface(fn=engine,
inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
#live=True,
description="Takes a text as input and reads it out to you.",
outputs=[gr.outputs.Textbox(type="auto", label="Text"), gr.outputs.Audio(type="file", label="Speech Answer"), #],
gr.outputs.Image(type="file", label="output image")],
examples=["On April 17th Sunday George celebrated Easter. He is staying at Empire State building with his parents. He is a citizen of Canada and speaks English and French fluently. His role model is former president Obama. He got 1000 dollar from his mother to visit Disney World and to buy new iPhone mobile. George likes watching Game of Thrones."]
).launch(debug=True)
#get_audio = gr.Button("generate audio")
#get_audio.click(text2speech, inputs=text, outputs=speech)
#def greet(name):
# return "Hello " + name + "!!"
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
#iface.launch() |