Spaces:
Sleeping
Sleeping
Commit
•
3951475
1
Parent(s):
0847403
Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,6 @@ from transformers import AutoConfig # Required for Hugging Face integration
|
|
3 |
from calc_params import calc_params # Import calc_params from the new file
|
4 |
|
5 |
# ---- Helper Functions ---- #
|
6 |
-
def convert_params(params):
|
7 |
-
if params == 0:
|
8 |
-
return "0"
|
9 |
-
size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y")
|
10 |
-
i = int(math.floor(math.log(params, 1000)))
|
11 |
-
p = math.pow(1000, i)
|
12 |
-
s = round(params / p, 2)
|
13 |
-
return "%s %s" % (s, size_name[i])
|
14 |
-
|
15 |
-
# Get Hugging Face model configuration and update the parameters
|
16 |
def get_hf_model_args(hf_model_name_or_path):
|
17 |
try:
|
18 |
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
|
@@ -34,6 +24,20 @@ def get_hf_model_args(hf_model_name_or_path):
|
|
34 |
"sequence_length": sequence_length,
|
35 |
}, None
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# ---- Memory Calculation ---- #
|
38 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
39 |
model_params, hf_error = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else (None, None)
|
@@ -62,20 +66,6 @@ def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_par
|
|
62 |
|
63 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
64 |
|
65 |
-
# ---- Update Gradio inputs with Hugging Face model config ---- #
|
66 |
-
def update_from_hf_model(hf_model_name_or_path):
|
67 |
-
model_params, hf_error = get_hf_model_args(hf_model_name_or_path)
|
68 |
-
|
69 |
-
if hf_error:
|
70 |
-
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), hf_error
|
71 |
-
|
72 |
-
return (gr.update(value=model_params["num_layers"]),
|
73 |
-
gr.update(value=model_params["hidden_size"]),
|
74 |
-
gr.update(value=model_params["num_attention_heads"]),
|
75 |
-
gr.update(value=model_params["vocab_size"]),
|
76 |
-
gr.update(value=model_params["sequence_length"]),
|
77 |
-
"")
|
78 |
-
|
79 |
# ---- Gradio Interface ---- #
|
80 |
with gr.Blocks() as demo:
|
81 |
with gr.Tabs():
|
@@ -107,6 +97,7 @@ with gr.Blocks() as demo:
|
|
107 |
|
108 |
# Parameter Calculation Tab
|
109 |
with gr.TabItem("Parameter Calculation"):
|
|
|
110 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
111 |
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
|
112 |
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
@@ -128,4 +119,8 @@ with gr.Blocks() as demo:
|
|
128 |
inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
|
129 |
outputs=param_result)
|
130 |
|
|
|
|
|
|
|
|
|
131 |
demo.launch()
|
|
|
3 |
from calc_params import calc_params # Import calc_params from the new file
|
4 |
|
5 |
# ---- Helper Functions ---- #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def get_hf_model_args(hf_model_name_or_path):
|
7 |
try:
|
8 |
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
|
|
|
24 |
"sequence_length": sequence_length,
|
25 |
}, None
|
26 |
|
27 |
+
# ---- Update Gradio inputs with Hugging Face model config ---- #
|
28 |
+
def update_from_hf_model(hf_model_name_or_path):
|
29 |
+
model_params, hf_error = get_hf_model_args(hf_model_name_or_path)
|
30 |
+
|
31 |
+
if hf_error:
|
32 |
+
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), hf_error
|
33 |
+
|
34 |
+
return (gr.update(value=model_params["num_layers"]),
|
35 |
+
gr.update(value=model_params["hidden_size"]),
|
36 |
+
gr.update(value=model_params["num_attention_heads"]),
|
37 |
+
gr.update(value=model_params["vocab_size"]),
|
38 |
+
gr.update(value=model_params["sequence_length"]),
|
39 |
+
"")
|
40 |
+
|
41 |
# ---- Memory Calculation ---- #
|
42 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
43 |
model_params, hf_error = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else (None, None)
|
|
|
66 |
|
67 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# ---- Gradio Interface ---- #
|
70 |
with gr.Blocks() as demo:
|
71 |
with gr.Tabs():
|
|
|
97 |
|
98 |
# Parameter Calculation Tab
|
99 |
with gr.TabItem("Parameter Calculation"):
|
100 |
+
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path (optional)", value="")
|
101 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
102 |
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
|
103 |
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
|
|
119 |
inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
|
120 |
outputs=param_result)
|
121 |
|
122 |
+
hf_model_name_or_path.change(fn=update_from_hf_model,
|
123 |
+
inputs=[hf_model_name_or_path],
|
124 |
+
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length])
|
125 |
+
|
126 |
demo.launch()
|