derek-thomas HF staff commited on
Commit
8abcf2d
1 Parent(s): 7ff7edf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import math
3
+
4
+ # Helper function to pretty-print message sizes
5
+ def convert_params(params):
6
+ if params == 0:
7
+ return "0"
8
+ size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y")
9
+ i = int(math.floor(math.log(params, 1000)))
10
+ p = math.pow(1000, i)
11
+ s = round(params / p, 2)
12
+ return "%s %s" % (s, size_name[i])
13
+
14
+ # calculates the params of a model given their hparams
15
+ def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
16
+ # Calculate embedding and unembedding params. If tied, re-use the same params
17
+ if tied_embeddings:
18
+ embedding_params = hidden_size * vocab_size
19
+ else:
20
+ embedding_params = 2 * hidden_size * vocab_size
21
+ position_embedding_params = hidden_size * sequence_length
22
+ # Each QKVO matrix is (hxh)
23
+ # Unless using GQA/MQA which makes K/V smaller
24
+ attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size)
25
+ # (4*2)lh from the layernorm weights and biases for each of the QKV and mlp_in layernorms, 1h for the final layernorm.
26
+ # the extra 4lh is a mystery but we include it here
27
+ layernorm_params = 13 * num_layers * hidden_size
28
+ #ffn_params = 12 * num_layers * hidden_size * hidden_size
29
+
30
+ if moe:
31
+ # the number of layers that are MoE. (e.g. interval is 2 for GShard)
32
+ num_expert_layers = num_layers / expert_interval
33
+ # the number of FFN params for each MoE layer
34
+ ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size
35
+ # the number of FFN params for every dense layer
36
+ ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
37
+ ffn_params = ffn_expert_params + ffn_dense_params
38
+ # the number of gating layer params assuming it's implemented as a simple linear layer
39
+ gating_params = num_expert_layers * hidden_size * num_experts
40
+ else:
41
+ # num_mlp_layers * (h x [ffn_expansion_factor * h]) FFN matrices
42
+ ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
43
+
44
+ total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
45
+
46
+ if moe:
47
+ total_params += gating_params
48
+
49
+ result = f"""
50
+ Embedding parameters: {convert_params(embedding_params)}
51
+ Attention parameters: {convert_params(attention_params)}
52
+ FFN parameters: {convert_params(ffn_params)}
53
+ {'Gating parameters: ' + convert_params(gating_params) if moe else ''}
54
+ Total Params in the Model: {convert_params(total_params)}
55
+ """
56
+ return result
57
+
58
+ # Gradio interface
59
+ with gr.Blocks() as demo:
60
+ gr.Markdown("# Transformer Model Parameter Calculator")
61
+
62
+ vocab_size = gr.Number(label="Vocab Size", value=51200)
63
+ tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
64
+ hidden_size = gr.Number(label="Hidden Size", value=6144)
65
+ sequence_length = gr.Number(label="Sequence Length", value=2048)
66
+ num_layers = gr.Number(label="Number of Layers", value=44)
67
+ moe = gr.Checkbox(label="MoE", value=False)
68
+ num_experts = gr.Number(label="Number of Experts", value=8)
69
+ expert_interval = gr.Number(label="Expert Interval", value=1)
70
+ topk = gr.Number(label="Top k Routing", value=1)
71
+ ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
72
+ num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
73
+ kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
74
+
75
+ result = gr.Textbox(label="Output", interactive=False)
76
+
77
+ def run_calculation(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
78
+ return calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio)
79
+
80
+ calculate_button = gr.Button("Calculate")
81
+ calculate_button.click(run_calculation,
82
+ inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
83
+ outputs=[result])
84
+
85
+ demo.launch()