File size: 6,768 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import torch
import sys
from datetime import datetime
import numpy as np
import random

def inverse_sigmoid(x):
    return torch.log(x/(1-x))

def PILtoTorch(pil_image, resolution):
    resized_image_PIL = pil_image.resize(resolution)
    resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0
    if len(resized_image.shape) == 3:
        return resized_image.permute(2, 0, 1)
    else:
        return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)

def get_expon_lr_func(
    lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
):
    """
    Copied from Plenoxels

    Continuous learning rate decay function. Adapted from JaxNeRF
    The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
    is log-linearly interpolated elsewhere (equivalent to exponential decay).
    If lr_delay_steps>0 then the learning rate will be scaled by some smooth
    function of lr_delay_mult, such that the initial learning rate is
    lr_init*lr_delay_mult at the beginning of optimization but will be eased back
    to the normal learning rate when steps>lr_delay_steps.
    :param conf: config subtree 'lr' or similar
    :param max_steps: int, the number of steps during optimization.
    :return HoF which takes step as input
    """

    def helper(step):
        if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
            # Disable this parameter
            return 0.0
        if lr_delay_steps > 0:
            # A kind of reverse cosine decay.
            delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
                0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
            )
        else:
            delay_rate = 1.0
        t = np.clip(step / max_steps, 0, 1)
        log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
        return delay_rate * log_lerp

    return helper

def strip_lowerdiag(L):
    uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")

    uncertainty[:, 0] = L[:, 0, 0]
    uncertainty[:, 1] = L[:, 0, 1]
    uncertainty[:, 2] = L[:, 0, 2]
    uncertainty[:, 3] = L[:, 1, 1]
    uncertainty[:, 4] = L[:, 1, 2]
    uncertainty[:, 5] = L[:, 2, 2]
    return uncertainty

def strip_symmetric(sym):
    return strip_lowerdiag(sym)

def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
    """
    From Pytorch3d
    Convert a unit quaternion to a standard form: one in which the real
    part is non negative.

    Args:
        quaternions: Quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Standardized quaternions as tensor of shape (..., 4).
    """
    return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)

def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    """
    From Pytorch3d
    Multiply two quaternions.
    Usual torch rules for broadcasting apply.

    Args:
        a: Quaternions as tensor of shape (..., 4), real part first.
        b: Quaternions as tensor of shape (..., 4), real part first.

    Returns:
        The product of a and b, a tensor of quaternions shape (..., 4).
    """
    aw, ax, ay, az = torch.unbind(a, -1)
    bw, bx, by, bz = torch.unbind(b, -1)
    ow = aw * bw - ax * bx - ay * by - az * bz
    ox = aw * bx + ax * bw + ay * bz - az * by
    oy = aw * by - ax * bz + ay * bw + az * bx
    oz = aw * bz + ax * by - ay * bx + az * bw
    return torch.stack((ow, ox, oy, oz), -1)

# Matrix to quaternion does not come under NVIDIA Copyright
# Written by Stan Szymanowicz 2023
def matrix_to_quaternion(M: torch.Tensor) -> torch.Tensor:
    """
    Matrix-to-quaternion conversion method. Equation taken from 
    https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
    Args:
        M: rotation matrices, (3 x 3)
    Returns:
        q: quaternion of shape (4)
    """
    tr = 1 + M[ 0, 0] + M[ 1, 1] + M[ 2, 2]

    if tr > 0:
        r = torch.sqrt(tr) / 2.0
        x = ( M[ 2, 1] - M[ 1, 2] ) / ( 4 * r )
        y = ( M[ 0, 2] - M[ 2, 0] ) / ( 4 * r )
        z = ( M[ 1, 0] - M[ 0, 1] ) / ( 4 * r )
    elif ( M[ 0, 0] > M[ 1, 1]) and (M[ 0, 0] > M[ 2, 2]):
        S = torch.sqrt(1.0 + M[ 0, 0] - M[ 1, 1] - M[ 2, 2]) * 2 # S=4*qx 
        r = (M[ 2, 1] - M[ 1, 2]) / S
        x = 0.25 * S
        y = (M[ 0, 1] + M[ 1, 0]) / S 
        z = (M[ 0, 2] + M[ 2, 0]) / S 
    elif M[ 1, 1] > M[ 2, 2]: 
        S = torch.sqrt(1.0 + M[ 1, 1] - M[ 0, 0] - M[ 2, 2]) * 2 # S=4*qy
        r = (M[ 0, 2] - M[ 2, 0]) / S
        x = (M[ 0, 1] + M[ 1, 0]) / S
        y = 0.25 * S
        z = (M[ 1, 2] + M[ 2, 1]) / S
    else:
        S = torch.sqrt(1.0 + M[ 2, 2] - M[ 0, 0] -  M[ 1, 1]) * 2 # S=4*qz
        r = (M[ 1, 0] - M[ 0, 1]) / S
        x = (M[ 0, 2] + M[ 2, 0]) / S
        y = (M[ 1, 2] + M[ 2, 1]) / S
        z = 0.25 * S

    return torch.stack([r, x, y, z], dim=-1)

def build_rotation(r):
    norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])

    q = r / norm[:, None]

    R = torch.zeros((q.size(0), 3, 3), device='cuda')

    r = q[:, 0]
    x = q[:, 1]
    y = q[:, 2]
    z = q[:, 3]

    R[:, 0, 0] = 1 - 2 * (y*y + z*z)
    R[:, 0, 1] = 2 * (x*y - r*z)
    R[:, 0, 2] = 2 * (x*z + r*y)
    R[:, 1, 0] = 2 * (x*y + r*z)
    R[:, 1, 1] = 1 - 2 * (x*x + z*z)
    R[:, 1, 2] = 2 * (y*z - r*x)
    R[:, 2, 0] = 2 * (x*z - r*y)
    R[:, 2, 1] = 2 * (y*z + r*x)
    R[:, 2, 2] = 1 - 2 * (x*x + y*y)
    return R

def build_scaling_rotation(s, r):
    L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
    R = build_rotation(r)

    L[:,0,0] = s[:,0]
    L[:,1,1] = s[:,1]
    L[:,2,2] = s[:,2]

    L = R @ L
    return L

def safe_state(cfg, silent=False):
    old_f = sys.stdout
    class F:
        def __init__(self, silent):
            self.silent = silent

        def write(self, x):
            if not self.silent:
                if x.endswith("\n"):
                    old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S")))))
                else:
                    old_f.write(x)

        def flush(self):
            old_f.flush()

    sys.stdout = F(silent)

    random.seed(cfg.general.random_seed)
    np.random.seed(cfg.general.random_seed)
    torch.manual_seed(cfg.general.random_seed)
    device = torch.device("cuda:{}".format(cfg.general.device))
    torch.cuda.set_device(device)

    return device