Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,124 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import json
import sys
import os
sys.path.append('.')
from pdb import set_trace as st
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
continuous_diffusion_defaults,
control_net_defaults,
)
from pathlib import Path
from tqdm import tqdm, trange
import dnnlib
from dnnlib.util import EasyDict, InfiniteSampler
from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults
from datasets.shapenet import load_eval_data
from torch.utils.data import Subset
from datasets.eg3d_dataset import init_dataset_kwargs
from datasets.eg3d_dataset import LMDBDataset_MV_Compressed_eg3d
SEED = 0
def main(args):
# args.rendering_kwargs = rendering_options_defaults(args)
dist_util.setup_dist(args)
logger.configure(dir=args.logdir)
th.cuda.empty_cache()
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
# * set denoise model args
logger.log("creating model and diffusion...")
args.img_size = [args.image_size_encoder]
# ! no longer required for LDM
# args.denoise_in_channels = args.out_chans
# args.denoise_out_channels = args.out_chans
args.image_size = args.image_size_encoder # 224, follow the triplane size
denoise_model, diffusion = create_model_and_diffusion(
**args_to_dict(args,
model_and_diffusion_defaults().keys()))
if 'cldm' in args.trainer_name:
assert isinstance(denoise_model, tuple)
denoise_model, controlNet = denoise_model
controlNet.to(dist_util.dev())
controlNet.train()
else:
controlNet = None
opts = eg3d_options_default()
if args.sr_training:
args.sr_kwargs = dnnlib.EasyDict(
channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True
) # ! close noise injection? since noise_mode='none' in eg3d
# denoise_model.load_state_dict(
# dist_util.load_state_dict(args.ddpm_model_path, map_location="cpu"))
denoise_model.to(dist_util.dev())
if args.use_fp16:
denoise_model.convert_to_fp16()
denoise_model.eval()
# * auto-encoder reconstruction model
logger.log("creating 3DAE...")
auto_encoder = create_3DAE_model(
**args_to_dict(args,
encoder_and_nsr_defaults().keys()))
# logger.log("AE triplane decoder reuses G_ema decoder...")
# auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg)
# print(auto_encoder.decoder.w_avg.shape) # [512]
# auto_encoder.load_state_dict(
# dist_util.load_state_dict(args.rec_model_path, map_location="cpu"))
auto_encoder.to(dist_util.dev())
auto_encoder.eval()
# TODO, how to set the scale?
logger.log("create dataset")
# data = None
if args.objv_dataset:
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
else: # shapenet
from datasets.shapenet import load_data, load_eval_data, load_memory_data
eval_data = None
# if args.cfg in ('afhq', 'ffhq'):
# # ! load data
# if args.use_lmdb:
# logger.log("creating LMDB eg3d data loader...")
# training_set = LMDBDataset_MV_Compressed_eg3d(
# args.data_dir,
# args.image_size,
# args.image_size_encoder,
# )
# else:
# logger.log("creating eg3d data loader...")
# training_set_kwargs, dataset_name = init_dataset_kwargs(
# data=args.data_dir,
# class_name='datasets.eg3d_dataset.ImageFolderDataset'
# ) # only load pose here
# # if args.cond and not training_set_kwargs.use_labels:
# # raise Exception('check here')
# # training_set_kwargs.use_labels = args.cond
# training_set_kwargs.use_labels = True
# training_set_kwargs.xflip = True
# training_set_kwargs.random_seed = SEED
# # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'
# # * construct ffhq/afhq dataset
# training_set = dnnlib.util.construct_class_by_name(
# **training_set_kwargs) # subclass of training.dataset.Dataset
# training_set = dnnlib.util.construct_class_by_name(
# **training_set_kwargs) # subclass of training.dataset.Dataset
# # training_set_sampler = InfiniteSampler(
# # dataset=training_set,
# # rank=dist_util.get_rank(),
# # num_replicas=dist_util.get_world_size(),
# # seed=SEED)
# # data = iter(
# # th.utils.data.DataLoader(dataset=training_set,
# # sampler=training_set_sampler,
# # batch_size=args.batch_size,
# # pin_memory=True,
# # num_workers=args.num_workers,))
# # # prefetch_factor=2))
# # training_set_sampler = InfiniteSampler(
# # dataset=training_set,
# # rank=dist_util.get_rank(),
# # num_replicas=dist_util.get_world_size(),
# # seed=SEED)
# # data = iter(
# # th.utils.data.DataLoader(
# # dataset=training_set,
# # sampler=training_set_sampler,
# # batch_size=args.batch_size,
# # pin_memory=True,
# # num_workers=args.num_workers,
# # persistent_workers=args.num_workers > 0,
# # # prefetch_factor=max(8//args.batch_size, 2),
# # ))
# eval_data = th.utils.data.DataLoader(dataset=Subset(
# training_set, np.arange(25)),
# batch_size=args.eval_batch_size,
# num_workers=1)
# else:
# logger.log("creating data loader...")
# # if args.objv_dataset:
# # from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data
# # else: # shapenet
# # from datasets.shapenet import load_data, load_eval_data, load_memory_data
# # eval_data = load_eval_data(
# # file_path=args.eval_data_dir,
# # batch_size=args.eval_batch_size,
# # reso=args.image_size,
# # reso_encoder=args.image_size_encoder, # 224 -> 128
# # num_workers=args.num_workers,
# # load_depth=True, # for evaluation
# # interval=args.interval,
# # use_lmdb=args.use_lmdb,
# # )
# if args.use_wds:
# if args.eval_data_dir == 'NONE':
# with open(args.eval_shards_lst) as f:
# eval_shards_lst = [url.strip() for url in f.readlines()]
# else:
# eval_shards_lst = args.eval_data_dir # auto expanded
# eval_data = load_wds_data(
# eval_shards_lst, args.image_size, args.image_size_encoder,
# args.eval_batch_size, args.num_workers,
# **args_to_dict(args,
# dataset_defaults().keys()))
# else:
# eval_data = load_eval_data(
# file_path=args.eval_data_dir,
# batch_size=args.eval_batch_size,
# reso=args.image_size,
# reso_encoder=args.image_size_encoder, # 224 -> 128
# num_workers=args.num_workers,
# # load_depth=True, # for evaluation
# **args_to_dict(args,
# dataset_defaults().keys()))
TrainLoop = {
'adm': nsr.TrainLoop3DDiffusion,
'vpsde_crossattn': nsr.lsgm.TrainLoop3DDiffusionLSGM_crossattn,
}[args.trainer_name]
# continuous
if 'vpsde' in args.trainer_name:
sde_diffusion = make_sde_diffusion(
dnnlib.EasyDict(
args_to_dict(args,
continuous_diffusion_defaults().keys())))
assert args.mixed_prediction, 'enable mixed_prediction by default'
logger.log('create VPSDE diffusion.')
else:
sde_diffusion = None
# if 'cldm' in args.trainer_name:
# assert isinstance(denoise_model, tuple)
# denoise_model, controlNet = denoise_model
# controlNet.to(dist_util.dev())
# controlNet.train()
# else:
# controlNet = None
training_loop_class = TrainLoop(rec_model=auto_encoder,
denoise_model=denoise_model,
control_model=controlNet,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
loss_class=None,
data=None,
eval_data=eval_data,
**vars(args))
logger.log("sampling...")
dist_util.synchronize()
# all_images = []
# all_labels = []
# while len(all_images) * args.batch_size < args.num_samples:
if dist_util.get_rank() == 0:
(Path(logger.get_dir()) / 'FID_Cals').mkdir(exist_ok=True,
parents=True)
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
# load eval pose
if args.cfg == 'ffhq':
camera = th.load('assets/ffhq_eval_pose.pt',
map_location=dist_util.dev())[:]
elif args.cfg == 'shapenet':
camera = th.load('assets/shapenet_eval_pose.pt',
map_location=dist_util.dev())[:]
for sample_idx in trange(args.num_samples):
model_kwargs = {}
# if args.class_cond:
# classes = th.randint(low=0,
# high=NUM_CLASSES,
# size=(args.batch_size, ),
# device=dist_util.dev())
# model_kwargs["y"] = classes
training_loop_class.step = sample_idx # save to different position
if args.create_controlnet or 'crossattn' in args.trainer_name:
training_loop_class.eval_cldm(
prompt=args.prompt,
unconditional_guidance_scale=args.
unconditional_guidance_scale,
use_ddim=args.use_ddim,
save_img=args.save_img,
use_train_trajectory=args.use_train_trajectory,
export_mesh=args.export_mesh,
camera=camera,
overwrite_diff_inp_size=args.overwrite_diff_inp_size,
# training_loop_class.rec_model,
# training_loop_class.ddpm_model
)
else:
# evaluate ldm
training_loop_class.eval_ddpm_sample(
training_loop_class.rec_model,
save_img=args.save_img,
use_train_trajectory=args.use_train_trajectory,
export_mesh=args.export_mesh,
camera=camera,
# training_loop_class.ddpm_model
)
dist.barrier()
logger.log("sampling complete")
def create_argparser():
defaults = dict(
image_size_encoder=224,
triplane_scaling_divider=1.0, # divide by this value
diffusion_input_size=-1,
trainer_name='adm',
use_amp=False,
# triplane_scaling_divider=1.0, # divide by this value
# * sampling flags
clip_denoised=False,
num_samples=10,
use_ddim=False,
ddpm_model_path="",
cldm_model_path="",
rec_model_path="",
# * eval logging flags
logdir="/mnt/lustre/yslan/logs/nips23/",
data_dir="",
eval_data_dir="",
eval_batch_size=1,
num_workers=1,
# * training flags for loading TrainingLoop class
overfitting=False,
image_size=128,
iterations=150000,
schedule_sampler="uniform",
anneal_lr=False,
lr=5e-5,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
eval_interval=2500,
save_interval=10000,
resume_checkpoint="",
resume_cldm_checkpoint="",
resume_checkpoint_EG3D="",
use_fp16=False,
fp16_scale_growth=1e-3,
load_submodule_name='', # for loading pretrained auto_encoder model
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
# inference prompt
prompt="a red chair",
interval=1,
objv_dataset=False,
use_lmdb=False,
save_img=False,
use_train_trajectory=
False, # use train trajectory to sample images for fid calculation
unconditional_guidance_scale=1.0,
cond_key='img_sr',
use_eos_feature=False,
export_mesh=False,
overwrite_diff_inp_size=None,
allow_tf32=True,
)
defaults.update(model_and_diffusion_defaults())
defaults.update(encoder_and_nsr_defaults()) # type: ignore
defaults.update(loss_defaults())
defaults.update(continuous_diffusion_defaults())
defaults.update(control_net_defaults())
defaults.update(dataset_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
# os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
# os.environ["NCCL_DEBUG"] = "INFO"
os.environ[
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
args = create_argparser().parse_args()
args.local_rank = int(os.environ["LOCAL_RANK"])
args.gpus = th.cuda.device_count()
args.rendering_kwargs = rendering_options_defaults(args)
main(args)
|