Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from typing import Dict, List, Optional, Tuple, Union | |
import functools | |
import fsspec | |
import os | |
import open_clip | |
import torch.nn as nn | |
from functools import partial | |
import clip | |
from einops import rearrange, repeat | |
import kornia | |
import numpy as np | |
from inspect import isfunction | |
from pdb import set_trace as st | |
# from transformers import CLIPTokenizer, CLIPTextModel | |
from ...util import (append_dims, autocast, count_params, default, | |
disabled_train, expand_dims_like, instantiate_from_config) | |
from ..x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class'): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
def forward(self, batch, key=None): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
c = self.embedding(c) | |
return c | |
class TransformerEmbedder(AbstractEncoder): | |
"""Some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): | |
super().__init__() | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer)) | |
def forward(self, tokens): | |
tokens = tokens.to(self.device) # meh | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, x): | |
return self(x) | |
class BERTTokenizer(AbstractEncoder): | |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" | |
def __init__(self, device="cuda", vq_interface=True, max_length=77): | |
super().__init__() | |
from transformers import BertTokenizerFast # TODO: add to reuquirements | |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") | |
self.device = device | |
self.vq_interface = vq_interface | |
self.max_length = max_length | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
return tokens | |
def encode(self, text): | |
tokens = self(text) | |
if not self.vq_interface: | |
return tokens | |
return None, None, [None, None, tokens] | |
def decode(self, text): | |
return text | |
class BERTEmbedder(AbstractEncoder): | |
"""Uses the BERT tokenizr model and add some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, | |
device="cuda",use_tokenizer=True, embedding_dropout=0.0): | |
super().__init__() | |
self.use_tknz_fn = use_tokenizer | |
if self.use_tknz_fn: | |
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer), | |
emb_dropout=embedding_dropout) | |
def forward(self, text): | |
if self.use_tknz_fn: | |
tokens = self.tknz_fn(text)#.to(self.device) | |
else: | |
tokens = text | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, text): | |
# output of length 77 | |
return self(text) | |
class SpatialRescaler(nn.Module): | |
def __init__(self, | |
n_stages=1, | |
method='bilinear', | |
multiplier=0.5, | |
in_channels=3, | |
out_channels=None, | |
bias=False): | |
super().__init__() | |
self.n_stages = n_stages | |
assert self.n_stages >= 0 | |
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] | |
self.multiplier = multiplier | |
self.interpolator = partial(torch.nn.functional.interpolate, mode=method) | |
self.remap_output = out_channels is not None | |
if self.remap_output: | |
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') | |
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) | |
def forward(self,x): | |
for stage in range(self.n_stages): | |
x = self.interpolator(x, scale_factor=self.multiplier) | |
if self.remap_output: | |
x = self.channel_mapper(x) | |
return x | |
def encode(self, x): | |
return self(x) | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from Hugging Face)""" | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, use_eos_feature=False): | |
super().__init__() | |
from transformers import CLIPTokenizer, CLIPTextModel | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version).to(device) | |
self.device = device | |
self.max_length = max_length | |
self.freeze() | |
self.use_eos_feature = use_eos_feature | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
if self.use_eos_feature: # for DiT | |
z = outputs.pooler_output # N 77 C | |
else: | |
z = outputs.last_hidden_state # N 77 C | |
return z | |
def encode(self, text): | |
return self(text) | |
class TextEmbedder(nn.Module): | |
""" | |
Embeds text prompt into vector representations. Also handles text dropout for classifier-free guidance. | |
""" | |
def __init__(self, dropout_prob=0.1, use_eos_feature=False): | |
super().__init__() | |
self.text_encodder = FrozenCLIPEmbedder(use_eos_feature=use_eos_feature) # no normalization projection | |
self.dropout_prob = dropout_prob | |
def token_drop(self, text_prompts, force_drop_ids=None): | |
""" | |
Drops text to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = np.random.uniform(0, 1, len(text_prompts)) < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = list(np.where(drop_ids, "None", text_prompts)) | |
# print(labels) | |
return labels | |
def forward(self, text_prompts, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
text_prompts = self.token_drop(text_prompts, force_drop_ids) | |
embeddings = self.text_encodder(text_prompts) | |
return embeddings | |
class FrozenCLIPTextEmbedder(nn.Module): | |
""" | |
Uses the CLIP transformer encoder for text. | |
""" | |
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True, dropout_prob=0., scale_clip_encoding=None): | |
super().__init__() | |
self.model, _ = clip.load(version, jit=False, device=device) | |
self.device = device | |
self.max_length = max_length | |
self.n_repeat = n_repeat | |
self.normalize = normalize | |
self.dropout_prob = dropout_prob | |
self.scale_clip_encoding = scale_clip_encoding | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = clip.tokenize(text).to(self.device) | |
z = self.model.encode_text(tokens) | |
if self.normalize: | |
z = z / torch.linalg.norm(z, dim=1, keepdim=True) | |
if self.scale_clip_encoding is not None: | |
z = z * self.scale_clip_encoding | |
return z | |
def token_drop(self, text_prompts, force_drop_ids=None): | |
""" | |
Drops text to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = np.random.uniform(0, 1, len(text_prompts)) < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = list(np.where(drop_ids, "None", text_prompts)) | |
# print(labels) | |
return labels | |
def encode(self, text): | |
z = self(text) | |
if z.ndim==2: # match cross attention shape | |
z = z[:, None, :] | |
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) | |
return z | |
class FrozenClipImageEmbedder(nn.Module): | |
""" | |
Uses the CLIP image encoder. | |
""" | |
def __init__( | |
self, | |
model, | |
jit=False, | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
antialias=False, | |
n_repeat=1, | |
dropout_prob=0.2, # follow Rodin | |
normalize_encoding=False, | |
scale_clip_encoding=1.0, | |
): | |
super().__init__() | |
self.model, _ = clip.load(name=model, device=device, jit=jit) | |
self.n_repeat = n_repeat | |
self.normalize_encoding = normalize_encoding | |
self.scale_clip_encoding = torch.tensor(scale_clip_encoding, dtype=torch.float32, device=device) | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
self.dropout_prob = dropout_prob | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def preprocess(self, x): | |
# normalize to [0,1] | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic',align_corners=True, | |
antialias=self.antialias) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) # type: ignore | |
return x | |
def token_drop(self, z): | |
""" | |
zero the image encoding to enable classifier-free guidance. | |
""" | |
drop_ids = np.random.uniform(0, 1, z.shape[0]) < self.dropout_prob # idx token to drop | |
drop_ids = torch.from_numpy(drop_ids).unsqueeze(1).expand_as(z).bool().to(z.device) | |
z = torch.where(drop_ids, torch.zeros_like(z), z) | |
return z | |
def forward(self, x): | |
# x is assumed to be in range [-1,1] | |
# return self.model.encode_image(self.preprocess(x)) | |
z = self.model.encode_image(self.preprocess(x)) | |
# ? normalized features, seems not working? | |
if self.normalize_encoding: | |
z = z / torch.linalg.norm(z, dim=1, keepdim=True) | |
if self.scale_clip_encoding: | |
# st() | |
z = z * self.scale_clip_encoding | |
if self.dropout_prob>0: # for cfg | |
z = self.token_drop(z) | |
if z.ndim==2: | |
# repeat 1 dim, for context shape compatability. | |
z = z[:, None, :] | |
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) | |
return z | |
class AbstractEmbModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self._is_trainable = None | |
self._ucg_rate = None | |
self._input_key = None | |
def is_trainable(self) -> bool: | |
return self._is_trainable | |
def ucg_rate(self) -> Union[float, torch.Tensor]: | |
return self._ucg_rate | |
def input_key(self) -> str: | |
return self._input_key | |
def is_trainable(self, value: bool): | |
self._is_trainable = value | |
def ucg_rate(self, value: Union[float, torch.Tensor]): | |
self._ucg_rate = value | |
def input_key(self, value: str): | |
self._input_key = value | |
def is_trainable(self): | |
del self._is_trainable | |
def ucg_rate(self): | |
del self._ucg_rate | |
def input_key(self): | |
del self._input_key | |
class FrozenOpenCLIPImageEmbedder(AbstractEmbModel): | |
""" | |
Uses the OpenCLIP vision transformer encoder for images | |
""" | |
def __init__( | |
self, | |
arch="ViT-H-14", | |
version="laion2b_s32b_b79k", | |
device="cuda", | |
max_length=77, | |
freeze=True, | |
antialias=True, | |
ucg_rate=0.0, | |
unsqueeze_dim=False, | |
repeat_to_max_len=False, | |
num_image_crops=0, | |
output_tokens=False, | |
init_device=None, | |
): | |
super().__init__() | |
model, _, _ = open_clip.create_model_and_transforms( | |
arch, | |
device=torch.device(default(init_device, "cpu")), | |
pretrained=version, | |
) | |
del model.transformer | |
self.model = model | |
self.max_crops = num_image_crops | |
self.pad_to_max_len = self.max_crops > 0 | |
self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.antialias = antialias | |
self.register_buffer( | |
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False | |
) | |
self.register_buffer( | |
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False | |
) | |
self.ucg_rate = ucg_rate | |
self.unsqueeze_dim = unsqueeze_dim | |
self.stored_batch = None | |
self.model.visual.output_tokens = output_tokens | |
self.output_tokens = output_tokens | |
def preprocess(self, x): | |
# normalize to [0,1] | |
x = kornia.geometry.resize( | |
x, | |
(224, 224), | |
interpolation="bicubic", | |
align_corners=True, | |
antialias=self.antialias, | |
) | |
x = (x + 1.0) / 2.0 | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, image, no_dropout=False): | |
z = self.encode_with_vision_transformer(image) | |
tokens = None | |
if self.output_tokens: | |
z, tokens = z[0], z[1] | |
z = z.to(image.dtype) | |
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0): | |
z = ( | |
torch.bernoulli( | |
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device) | |
)[:, None] | |
* z | |
) | |
if tokens is not None: | |
tokens = ( | |
expand_dims_like( | |
torch.bernoulli( | |
(1.0 - self.ucg_rate) | |
* torch.ones(tokens.shape[0], device=tokens.device) | |
), | |
tokens, | |
) | |
* tokens | |
) | |
if self.unsqueeze_dim: | |
z = z[:, None, :] | |
if self.output_tokens: | |
assert not self.repeat_to_max_len | |
assert not self.pad_to_max_len | |
return tokens, z | |
if self.repeat_to_max_len: | |
if z.dim() == 2: | |
z_ = z[:, None, :] | |
else: | |
z_ = z | |
return repeat(z_, "b 1 d -> b n d", n=self.max_length), z | |
elif self.pad_to_max_len: | |
assert z.dim() == 3 | |
z_pad = torch.cat( | |
( | |
z, | |
torch.zeros( | |
z.shape[0], | |
self.max_length - z.shape[1], | |
z.shape[2], | |
device=z.device, | |
), | |
), | |
1, | |
) | |
return z_pad, z_pad[:, 0, ...] | |
return z | |
def encode_with_vision_transformer(self, img): | |
# if self.max_crops > 0: | |
# img = self.preprocess_by_cropping(img) | |
if img.dim() == 5: | |
assert self.max_crops == img.shape[1] | |
img = rearrange(img, "b n c h w -> (b n) c h w") | |
img = self.preprocess(img) | |
if not self.output_tokens: | |
assert not self.model.visual.output_tokens | |
x = self.model.visual(img) | |
tokens = None | |
else: | |
assert self.model.visual.output_tokens | |
x, tokens = self.model.visual(img) | |
if self.max_crops > 0: | |
x = rearrange(x, "(b n) d -> b n d", n=self.max_crops) | |
# drop out between 0 and all along the sequence axis | |
x = ( | |
torch.bernoulli( | |
(1.0 - self.ucg_rate) | |
* torch.ones(x.shape[0], x.shape[1], 1, device=x.device) | |
) | |
* x | |
) | |
if tokens is not None: | |
tokens = rearrange(tokens, "(b n) t d -> b t (n d)", n=self.max_crops) | |
print( | |
f"You are running very experimental token-concat in {self.__class__.__name__}. " | |
f"Check what you are doing, and then remove this message." | |
) | |
if self.output_tokens: | |
return x, tokens | |
return x | |
def encode(self, text): | |
return self(text) | |
class FrozenOpenCLIPImagePredictionEmbedder(AbstractEmbModel): | |
def __init__( | |
self, | |
# open_clip_embedding_config: Dict, | |
n_cond_frames: int, | |
n_copies: int, | |
open_clip_module, | |
): | |
super().__init__() | |
self.n_cond_frames = n_cond_frames | |
self.n_copies = n_copies | |
# self.open_clip = instantiate_from_config(open_clip_embedding_config) | |
self.open_clip = open_clip_module | |
def forward(self, vid): | |
vid = self.open_clip(vid) | |
vid = rearrange(vid, "(b t) d -> b t d", t=self.n_cond_frames) | |
vid = repeat(vid, "b t d -> (b s) t d", s=self.n_copies) | |
return vid | |
if __name__ == "__main__": | |
from ldm.util import count_params | |
model = FrozenCLIPEmbedder() | |
count_params(model, verbose=True) | |