LN3Diff_I23D / scripts /vit_triplane_cvD_train.py
NIRVANALAN
init
11e6f7b
"""
Train a diffusion model on images.
"""
import json
import sys
import os
sys.path.append('.')
import torch.distributed as dist
import traceback
import torch as th
import torch.multiprocessing as mp
import numpy as np
import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
args_to_dict,
add_dict_to_argparser,
)
# from nsr.train_util import TrainLoop3DRec as TrainLoop
import nsr
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default
from datasets.shapenet import load_data, load_eval_data, load_memory_data
from nsr.losses.builder import E3DGELossClass
from pdb import set_trace as st
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16
SEED = 0
def training_loop(args):
# def training_loop(args):
dist_util.setup_dist(args)
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count())
print(f"{args.local_rank=} init complete")
th.cuda.set_device(args.local_rank)
th.cuda.empty_cache()
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
logger.configure(dir=args.logdir)
logger.log("creating encoder and NSR decoder...")
# device = dist_util.dev()
device = th.device("cuda", args.local_rank)
# shared eg3d opts
opts = eg3d_options_default()
if args.sr_training:
args.sr_kwargs = dnnlib.EasyDict(
channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True
) # ! close noise injection? since noise_mode='none' in eg3d
auto_encoder = create_3DAE_model(
**args_to_dict(args,
encoder_and_nsr_defaults().keys()))
auto_encoder.to(device)
auto_encoder.train()
logger.log("creating data loader...")
# data = load_data(
if args.overfitting:
data = load_memory_data(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
# trainer_name=args.trainer_name,
# load_depth=args.depth_lambda > 0
load_depth=True # for evaluation
)
else:
data = load_data(
dataset_size=args.dataset_size,
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True,
preprocess=auto_encoder.preprocess, # clip
trainer_name=args.trainer_name,
use_lmdb=args.use_lmdb
# load_depth=True # for evaluation
)
eval_data = load_eval_data(
file_path=args.eval_data_dir,
batch_size=args.eval_batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=2,
load_depth=True, # for evaluation
preprocess=auto_encoder.preprocess)
args.img_size = [args.image_size_encoder]
# try dry run
# batch = next(data)
# batch = None
# logger.log("creating model and diffusion...")
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
loss_class = E3DGELossClass(device, opt).to(device)
# writer = SummaryWriter() # TODO, add log dir
logger.log("training...")
TrainLoop = {
'cvD': nsr.TrainLoop3DcvD,
'nvsD': nsr.TrainLoop3DcvD_nvsD,
'nvsD_nosr': nsr.TrainLoop3DcvD_nvsD_noSR,
'cano_nvsD_nosr': nsr.TrainLoop3DcvD_nvsD_noSR,
'cano_nvs_cvD': nsr.TrainLoop3DcvD_nvsD_canoD,
'cano_nvs_cvD_nv': nsr.TrainLoop3DcvD_nvsD_canoD_multiview,
'cvD_nvsD_canoD_canomask': nsr.TrainLoop3DcvD_nvsD_canoD_canomask,
'canoD': nsr.TrainLoop3DcvD_canoD
}[args.trainer_name]
TrainLoop(rec_model=auto_encoder,
loss_class=loss_class,
data=data,
eval_data=eval_data,
**vars(args)).run_loop() # ! overfitting
def create_argparser(**kwargs):
# defaults.update(model_and_diffusion_defaults())
defaults = dict(
dataset_size=-1,
trainer_name='cvD',
use_amp=False,
overfitting=False,
num_workers=4,
image_size=128,
image_size_encoder=224,
iterations=150000,
anneal_lr=False,
lr=5e-5,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
eval_batch_size=12,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
eval_interval=2500,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
data_dir="",
eval_data_dir="",
# load_depth=False, # TODO
logdir="/mnt/lustre/yslan/logs/nips23/",
pose_warm_up_iter=-1,
use_lmdb=False,
)
defaults.update(encoder_and_nsr_defaults()) # type: ignore
defaults.update(loss_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
os.environ[
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
# master_addr = '127.0.0.1'
# master_port = dist_util._find_free_port()
# master_port = 31323
args = create_argparser().parse_args()
args.local_rank = int(os.environ["LOCAL_RANK"])
args.gpus = th.cuda.device_count()
opts = args
args.rendering_kwargs = rendering_options_defaults(opts)
# print(args)
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
# Launch processes.
print('Launching processes...')
try:
training_loop(args)
# except KeyboardInterrupt as e:
except Exception as e:
# print(e)
traceback.print_exc()
dist_util.cleanup() # clean port and socket when ctrl+c