# Adding this at the very top of app.py to make 'generative-models' directory discoverable import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), "generative-models")) import math import random import uuid from glob import glob from pathlib import Path from typing import Optional import cv2 import gradio as gr import numpy as np import torch from einops import rearrange, repeat from fire import Fire from huggingface_hub import hf_hub_download from omegaconf import OmegaConf from PIL import Image from torchvision.transforms import ToTensor from scripts.sampling.simple_video_sample import ( get_batch, get_unique_embedder_keys_from_conditioner, load_model) from scripts.util.detection.nsfw_and_watermark_dectection import \ DeepFloydDataFiltering from sgm.inference.helpers import embed_watermark from sgm.util import default, instantiate_from_config # To download all svd models # hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints") # hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid", filename="svd.safetensors", local_dir="checkpoints") # hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir="checkpoints") # Define the repo, local directory and filename repo_id = "stabilityai/stable-video-diffusion-img2vid-xt-1-1" # replace with "stabilityai/stable-video-diffusion-img2vid-xt" or "stabilityai/stable-video-diffusion-img2vid" for other models filename = "svd_xt_1_1.safetensors" # replace with "svd_xt.safetensors" or "svd.safetensors" for other models local_dir = "checkpoints" local_file_path = os.path.join(local_dir, filename) # Check if the file already exists if not os.path.exists(local_file_path): # If the file doesn't exist, download it hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) print("File downloaded.") else: print("File already exists. No need to download.") version = "svd_xt_1_1" # replace with 'svd_xt' or 'svd' for other models device = "cuda" max_64_bit_int = 2**63 - 1 if version == "svd_xt_1_1": num_frames = 25 num_steps = 30 model_config = "scripts/sampling/configs/svd_xt_1_1.yaml" else: raise ValueError(f"Version {version} does not exist.") model, filter = load_model( model_config, device, num_frames, num_steps, ) def sample( input_path: str = "assets/test_image.png", # Can either be image file or folder with image files seed: Optional[int] = None, randomize_seed: bool = True, motion_bucket_id: int = 127, fps_id: int = 6, version: str = "svd_xt_1_1", cond_aug: float = 0.02, decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. device: str = "cuda", output_folder: str = "outputs", progress=gr.Progress(track_tqdm=True), ): """ Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. """ fps_id = int(fps_id) # casting float slider values to int) if randomize_seed: seed = random.randint(0, max_64_bit_int) torch.manual_seed(seed) path = Path(input_path) all_img_paths = [] if path.is_file(): if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): all_img_paths = [input_path] else: raise ValueError("Path is not valid image file.") elif path.is_dir(): all_img_paths = sorted( [ f for f in path.iterdir() if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] ] ) if len(all_img_paths) == 0: raise ValueError("Folder does not contain any images.") else: raise ValueError for input_img_path in all_img_paths: with Image.open(input_img_path) as image: if image.mode == "RGBA": image = image.convert("RGB") w, h = image.size if h % 64 != 0 or w % 64 != 0: width, height = map(lambda x: x - x % 64, (w, h)) image = image.resize((width, height)) print( f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" ) image = ToTensor()(image) image = image * 2.0 - 1.0 image = image.unsqueeze(0).to(device) H, W = image.shape[2:] assert image.shape[1] == 3 F = 8 C = 4 shape = (num_frames, C, H // F, W // F) if (H, W) != (576, 1024): print( "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." ) if motion_bucket_id > 255: print( "WARNING: High motion bucket! This may lead to suboptimal performance." ) if fps_id < 5: print("WARNING: Small fps value! This may lead to suboptimal performance.") if fps_id > 30: print("WARNING: Large fps value! This may lead to suboptimal performance.") value_dict = {} value_dict["motion_bucket_id"] = motion_bucket_id value_dict["fps_id"] = fps_id value_dict["cond_aug"] = cond_aug value_dict["cond_frames_without_noise"] = image value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) value_dict["cond_aug"] = cond_aug with torch.no_grad(): with torch.autocast(device): batch, batch_uc = get_batch( get_unique_embedder_keys_from_conditioner(model.conditioner), value_dict, [1, num_frames], T=num_frames, device=device, ) c, uc = model.conditioner.get_unconditional_conditioning( batch, batch_uc=batch_uc, force_uc_zero_embeddings=[ "cond_frames", "cond_frames_without_noise", ], ) for k in ["crossattn", "concat"]: uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) randn = torch.randn(shape, device=device) additional_model_inputs = {} additional_model_inputs["image_only_indicator"] = torch.zeros( 2, num_frames ).to(device) additional_model_inputs["num_video_frames"] = batch["num_video_frames"] def denoiser(input, sigma, c): return model.denoiser( model.model, input, sigma, c, **additional_model_inputs ) samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) model.en_and_decode_n_samples_a_time = decoding_t samples_x = model.decode_first_stage(samples_z) samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) os.makedirs(output_folder, exist_ok=True) base_count = len(glob(os.path.join(output_folder, "*.mp4"))) video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") writer = cv2.VideoWriter( video_path, cv2.VideoWriter_fourcc(*"mp4v"), fps_id + 1, (samples.shape[-1], samples.shape[-2]), ) samples = embed_watermark(samples) samples = filter(samples) vid = ( (rearrange(samples, "t c h w -> t h w c") * 255) .cpu() .numpy() .astype(np.uint8) ) for frame in vid: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) writer.write(frame) writer.release() return video_path, seed def resize_image(image_path, output_size=(1024, 576)): image = Image.open(image_path) # Calculate aspect ratios target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size image_aspect = image.width / image.height # Aspect ratio of the original image # Resize then crop if the original image is larger if image_aspect > target_aspect: # Resize the image to match the target height, maintaining aspect ratio new_height = output_size[1] new_width = int(new_height * image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Calculate coordinates for cropping left = (new_width - output_size[0]) / 2 top = 0 right = (new_width + output_size[0]) / 2 bottom = output_size[1] else: # Resize the image to match the target width, maintaining aspect ratio new_width = output_size[0] new_height = int(new_width / image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Calculate coordinates for cropping left = 0 top = (new_height - output_size[1]) / 2 right = output_size[0] bottom = (new_height + output_size[1]) / 2 # Crop the image cropped_image = resized_image.crop((left, top, right, bottom)) return cropped_image with gr.Blocks() as demo: gr.Markdown( """# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets)) #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact). """ ) with gr.Row(): with gr.Column(): image = gr.Image(label="Upload your image", type="filepath") generate_btn = gr.Button("Generate") video = gr.Video() with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) motion_bucket_id = gr.Slider( label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255, ) fps_id = gr.Slider( label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30, ) image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) generate_btn.click( fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video", ) if __name__ == "__main__": demo.queue(max_size=20) demo.launch(share=True)