import torch import numpy as np from PIL import Image class NormalDetector: def __init__(self): self.model_path = "hugoycj/DSINE-hub" self.dsine = torch.hub.load(self.model_path, "DSINE", trust_repo=True) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") @torch.no_grad() def __call__(self, image): self.dsine.model.to(self.device) self.dsine.model.pixel_coords = self.dsine.model.pixel_coords.to(self.device) H, W, C = image.shape normal = self.dsine.infer_pil(image)[0] # Output shape: (H, W, 3) normal = (normal + 1.0) / 2.0 # Convert values to the range [0, 1] normal = (normal * 255).cpu().numpy().astype(np.uint8).transpose(1, 2, 0) normal_img = Image.fromarray(normal).resize((W, H)) self.dsine.model.to("cpu") self.dsine.model.pixel_coords = self.dsine.model.pixel_coords.to("cpu") return normal_img if __name__ == "__main__": from diffusers.utils import load_image image = load_image( "https://qhstaticssl.kujiale.com/image/jpeg/1716177580588/9AAA49344B9CE33512C4EBD0A287495F.jpg" ) image = np.asarray(image) normal_detector = NormalDetector() normal_image = normal_detector(image) normal_image.save("normal_image.jpg")