File size: 5,534 Bytes
ad8d0c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

import os
from typing import Dict, List, Optional, Tuple, Union

import torch
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from transformers import AutoModel, AutoTokenizer

os.environ["TOKENIZERS_PARALLELISM"] = "false"

DEVICE = "cuda"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE


def torch_gc():
    if torch.cuda.is_available():
        with torch.cuda.device(CUDA_DEVICE):
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
    # transformer.word_embeddings 占用1层
    # transformer.final_layernorm 和 lm_head 占用1层
    # transformer.layers 占用 28 层
    # 总共30层分配到num_gpus张卡上
    num_trans_layers = 28
    per_gpu_layers = 30 / num_gpus

    # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
    # windows下 model.device 会被设置成 transformer.word_embeddings.device
    # linux下 model.device 会被设置成 lm_head.device
    # 在调用chat或者stream_chat时,input_ids会被放到model.device上
    # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
    # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
    device_map = {'transformer.word_embeddings': 0,
                  'transformer.final_layernorm': 0, 'lm_head': 0}

    used = 2
    gpu_target = 0
    for i in range(num_trans_layers):
        if used >= per_gpu_layers:
            gpu_target += 1
            used = 0
        assert gpu_target < num_gpus
        device_map[f'transformer.layers.{i}'] = gpu_target
        used += 1

    return device_map



class ChatLLM(LLM):
    max_token: int = 10000
    temperature: float = 0.1
    top_p = 0.9
    history = []
    tokenizer: object = None
    model: object = None

    def __init__(self):
        super().__init__()

    @property
    def _llm_type(self) -> str:
        return "ChatLLM"

    def _call(self,
              prompt: str,
              stop: Optional[List[str]] = None) -> str:
        
        if self.model == 'Minimax':
            import requests

            group_id = os.getenv('group_id')
            api_key = os.getenv('api_key')

            url = f'https://api.minimax.chat/v1/text/chatcompletion?GroupId={group_id}'
            headers = {
                "Authorization": f"Bearer {api_key}",
                "Content-Type": "application/json"
            }
            request_body = {
                "model": "abab5-chat",
                "tokens_to_generate": 512,
                'messages': []
            }

            for i in self.history:
                h_input = i[0]
                h_reply = i[1]
                request_body['messages'].append({
                    "sender_type": "USER",
                    "text": h_input
                })
                request_body['messages'].append({"sender_type": "BOT", "text": h_reply})

            request_body['messages'].append({"sender_type": "USER", "text": prompt})
            resp = requests.post(url, headers=headers, json=request_body)
            response = resp.json()['reply']
            #  将当次的ai回复内容加入messages
            request_body['messages'].append({"sender_type": "BOT", "text": response})
            self.history.append((prompt, response))
        
        else:

            response, _ = self.model.chat(
                self.tokenizer,
                prompt,
                history=self.history,
                max_length=self.max_token,
                temperature=self.temperature,
            )
            torch_gc()
            if stop is not None:
                response = enforce_stop_tokens(response, stop)
            self.history = self.history+[[None, response]]
        return response

    def load_model(self,
                   model_name_or_path: str = "THUDM/chatglm-6b-int4",
                   llm_device=DEVICE,
                   device_map: Optional[Dict[str, int]] = None,
                   **kwargs):
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name_or_path,
            trust_remote_code=True
        )
        if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
            # 根据当前设备GPU数量决定是否进行多卡部署
            num_gpus = torch.cuda.device_count()
            if num_gpus < 2 and device_map is None:
                self.model = (
                    AutoModel.from_pretrained(
                        model_name_or_path, 
                        trust_remote_code=True, 
                        **kwargs)
                    .half()
                    .cuda()
                )
            else:
                from accelerate import dispatch_model

                model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, **kwargs).half()
                # 可传入device_map自定义每张卡的部署情况
                if device_map is None:
                    device_map = auto_configure_device_map(num_gpus)

                self.model = dispatch_model(model, device_map=device_map)
        else:
            self.model = (
                AutoModel.from_pretrained(
                    model_name_or_path,
                    trust_remote_code=True)
                .float()
                .to(llm_device)
            )
        self.model = self.model.eval()