File size: 7,552 Bytes
bf64851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
import pickle
import cv2
import os
import numpy as np
from PIL import Image
from transformers import ViTForImageClassification, AutoImageProcessor, AdamW, ViTImageProcessor, VisionEncoderDecoderModel, AutoTokenizer
from torch.utils.data import DataLoader, TensorDataset

model_path = 'model'
train_pickle_path = 'train_data.pickle'
valid_pickle_path = 'valid_data.pickle'
image_directory = 'images' 
test_image_path = 'test.jpg'
num_epochs = 5    # Fine-tune the model
label_list = ["小白", "巧巧", "冏媽", "乖狗", "花捲", "超人", "黑胖", "橘子"]
label_dictionary = {"小白": 0, "巧巧": 1, "冏媽": 2, "乖狗": 3, "花捲": 4, "超人": 5, "黑胖": 6, "橘子": 7}
num_classes = len(label_dictionary)  # Adjust according to your classification task
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device("mps")

def data_generate(dataset):
    images = []
    labels = []
    image_processor = AutoImageProcessor.from_pretrained('google/vit-large-patch16-224-in21k')
    for folder_name in os.listdir(image_directory):
        folder_path = os.path.join(image_directory, folder_name)
        if os.path.isdir(folder_path):
            for image_file in os.listdir(folder_path):
                if image_file.startswith(dataset):
                    image_path = os.path.join(folder_path, image_file)
                    # print(image_path)

                    img = cv2.imread(image_path)
                    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

                    img = Image.fromarray(img)
                    img = img.resize((224, 224))
                    inputs = image_processor(images=img, return_tensors="pt")
                    images.append(inputs['pixel_values'].squeeze(0).numpy())
                    labels.append(int(folder_name.split('_')[0]))

    images = np.array(images)
    labels = np.array(labels)

    # Now you can pickle this data
    train_data = {'img': images, 'label': labels}
    with open(f'{dataset}_data.pickle', 'wb') as f:
        pickle.dump(train_data, f)

def train_model():
    
    if not os.path.exists(valid_pickle_path):
        data_generate('valid')
    if not os.path.exists(train_pickle_path):
        data_generate('train')

    # Load the train and vaild
    with open("train_data.pickle", "rb") as f:
        train_data = pickle.load(f)

    with open("valid_data.pickle", "rb") as f:
        valid_data = pickle.load(f)

    # Convert the dataset into torch tensors
    train_inputs = torch.tensor(train_data["img"])
    train_labels = torch.tensor(train_data["label"])
    valid_inputs = torch.tensor(valid_data["img"])
    valid_labels = torch.tensor(valid_data["label"])

    # Create the TensorDataset
    train_dataset = TensorDataset(train_inputs, train_labels)
    valid_dataset = TensorDataset(valid_inputs, valid_labels)

    # Create the DataLoader
    train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
    valid_loader = DataLoader(valid_dataset, batch_size=16, shuffle=True)

    # Define the model and move it to the GPU
    
    model = ViTForImageClassification.from_pretrained('google/vit-large-patch16-224-in21k', num_labels=num_classes)
    model.to(device)

    # Define the optimizer
    optimizer = AdamW(model.parameters(), lr=1e-4)

    for epoch in range(num_epochs):

        model.train()
        total_loss = 0

        for i, batch in enumerate(train_loader):

            # Move batch to the GPU
            batch = [r.to(device) for r in batch]

            # Unpack the inputs from our dataloader
            inputs, labels = batch

            # Clear out the gradients (by default they accumulate)
            optimizer.zero_grad()

            # Forward pass
            outputs = model(inputs, labels=labels)

            # Compute loss
            loss = outputs.loss

            # Backward pass
            loss.backward()


            # Update parameters and take a step using the computed gradient
            optimizer.step()

            # Update the loss
            total_loss += loss.item()

            # print(f'{i}/{len(train_loader)} ')
            
        # Get the average loss for the entire epoch
        avg_loss = total_loss / len(train_loader)
        
        # Print the loss
        print('Epoch:', epoch + 1, 'Training Loss:', avg_loss)
        
        
    # Evaluate the model on the validation set
    model.eval()
    total_correct = 0

    for batch in valid_loader:
        # Move batch to the GPU
        batch = [t.to(device) for t in batch]

        # Unpack the inputs from our dataloader
        inputs, labels = batch

        # Forward pass
        with torch.no_grad():
            outputs = model(inputs)

        # Get the predictions
        predictions = torch.argmax(outputs.logits, dim=1)

        # Update the total correct
        total_correct += torch.sum(predictions == labels)
        
    # Calculate the accuracy
    accuracy = total_correct / len(valid_dataset)
    print('Validation accuracy:', accuracy.item())

    model.save_pretrained("model")

def predict():
    # Load the model
    model = ViTForImageClassification.from_pretrained(model_path, num_labels=num_classes)

    image_processor = AutoImageProcessor.from_pretrained('google/vit-large-patch16-224-in21k')


    # Load the test data
    # Load the image

    img = cv2.imread(test_image_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Resize the image to 224x224 pixels
    img = Image.fromarray(img)
    img = img.resize((224, 224))

    # img to tensor
    # Preprocess the image and generate features
    inputs = image_processor(images=img, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits

    probabilities = torch.nn.functional.softmax(logits, dim=-1)
    predicted_class_idx = logits.argmax(-1).item()

    return label_list[predicted_class_idx] if probabilities.max().item() > 0.90 else '不是校狗'

def captioning():
    
    model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
    feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
    tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

    max_length = 16
    num_beams = 4
    gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

    images = []
    for image_path in [test_image_path]:
        i_image = Image.open(image_path)
        if i_image.mode != "RGB":
            i_image = i_image.convert(mode="RGB")

        images.append(i_image)

    pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
    pixel_values = pixel_values.to(device)

    output_ids = model.generate(pixel_values, **gen_kwargs)

    preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
    preds = [pred.strip() for pred in preds]
    return preds[-1]

def output(predict_class, caption):
    conj = ['are', 'is', 'dog']
    if predict_class == '不是校狗' or caption.find('dog') == -1:
        print(f'{caption} ({predict_class})')
    else:
        for c in conj:
            if caption.find(c) != -1:
                print(f'{predict_class} is{caption[caption.find(c) + len(c):]}')
                return
        print(f'{caption} ({predict_class})')


if __name__ == '__main__':

    if not os.path.exists(model_path):
        train_model()
    output(predict(), captioning())