EAGLE-2 / app.py
yuhuili's picture
init
8362bbb
raw
history blame
13.7 kB
import os
import time
import gradio as gr
import argparse
try:
from ..model.ea_model import EaModel
except:
from eagle.model.ea_model import EaModel
import torch
from fastchat.model import get_conversation_template
import re
def truncate_list(lst, num):
if num not in lst:
return lst
first_index = lst.index(num)
return lst[:first_index + 1]
def find_list_markers(text):
pattern = re.compile(r'(?m)(^\d+\.\s|\n)')
matches = pattern.finditer(text)
return [(match.start(), match.end()) for match in matches]
def checkin(pointer,start,marker):
for b,e in marker:
if b<=pointer<e:
return True
if b<=start<e:
return True
return False
def highlight_text(text, text_list,color="black"):
pointer = 0
result = ""
markers=find_list_markers(text)
for sub_text in text_list:
start = text.find(sub_text, pointer)
if start==-1:
continue
end = start + len(sub_text)
if checkin(pointer,start,markers):
result += text[pointer:start]
else:
result += f"<span style='color: {color};'>{text[pointer:start]}</span>"
result += sub_text
pointer = end
if pointer < len(text):
result += f"<span style='color: {color};'>{text[pointer:]}</span>"
return result
def warmup(model):
conv = get_conversation_template(args.model_type)
if args.model_type == "llama-2-chat":
sys_p = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
conv.system_message = sys_p
elif args.model_type == "mixtral":
conv = get_conversation_template("llama-2-chat")
conv.system_message = ''
conv.sep2 = "</s>"
conv.append_message(conv.roles[0], "Hello")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if args.model_type == "llama-2-chat":
prompt += " "
input_ids = model.tokenizer([prompt]).input_ids
input_ids = torch.as_tensor(input_ids).cuda()
for output_ids in model.ea_generate(input_ids):
ol=output_ids.shape[1]
def bot(history, temperature, top_p, use_EaInfer, highlight_EaInfer,session_state,):
if not history:
return history, "0.00 tokens/s", "0.00", session_state
pure_history = session_state.get("pure_history", [])
assert args.model_type == "llama-2-chat" or "vicuna"
conv = get_conversation_template(args.model_type)
if args.model_type == "llama-2-chat":
sys_p = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
conv.system_message = sys_p
elif args.model_type == "mixtral":
conv = get_conversation_template("llama-2-chat")
conv.system_message = ''
conv.sep2 = "</s>"
elif args.model_type == "llama-3-instruct":
messages = [
{"role": "system",
"content": "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."},
]
for query, response in pure_history:
if args.model_type == "llama-3-instruct":
messages.append({
"role": "user",
"content": query
})
if response!=None:
messages.append({
"role": "assistant",
"content": response
})
else:
conv.append_message(conv.roles[0], query)
if args.model_type == "llama-2-chat" and response:
response = " " + response
conv.append_message(conv.roles[1], response)
if args.model_type == "llama-3-instruct":
prompt = model.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
else:
prompt = conv.get_prompt()
if args.model_type == "llama-2-chat":
prompt += " "
input_ids = model.tokenizer([prompt]).input_ids
input_ids = torch.as_tensor(input_ids).cuda()
input_len = input_ids.shape[1]
naive_text = []
cu_len = input_len
totaltime=0
start_time=time.time()
total_ids=0
if use_EaInfer:
for output_ids in model.ea_generate(input_ids, temperature=temperature, top_p=top_p,
max_new_tokens=args.max_new_token,is_llama3=args.model_type=="llama-3-instruct"):
totaltime+=(time.time()-start_time)
total_ids+=1
decode_ids = output_ids[0, input_len:].tolist()
decode_ids = truncate_list(decode_ids, model.tokenizer.eos_token_id)
if args.model_type == "llama-3-instruct":
decode_ids = truncate_list(decode_ids, model.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
text = model.tokenizer.decode(decode_ids, skip_special_tokens=True, spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True, )
naive_text.append(model.tokenizer.decode(output_ids[0, cu_len], skip_special_tokens=True,
spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True, ))
cu_len = output_ids.shape[1]
colored_text = highlight_text(text, naive_text, "orange")
if highlight_EaInfer:
history[-1][1] = colored_text
else:
history[-1][1] = text
pure_history[-1][1] = text
session_state["pure_history"] = pure_history
new_tokens = cu_len-input_len
yield history,f"{new_tokens/totaltime:.2f} tokens/s",f"{new_tokens/total_ids:.2f}",session_state
start_time = time.time()
else:
for output_ids in model.naive_generate(input_ids, temperature=temperature, top_p=top_p,
max_new_tokens=args.max_new_token,is_llama3=args.model_type=="llama-3-instruct"):
totaltime += (time.time() - start_time)
total_ids+=1
decode_ids = output_ids[0, input_len:].tolist()
decode_ids = truncate_list(decode_ids, model.tokenizer.eos_token_id)
text = model.tokenizer.decode(decode_ids, skip_special_tokens=True, spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True, )
naive_text.append(model.tokenizer.decode(output_ids[0, cu_len], skip_special_tokens=True,
spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True, ))
cu_len = output_ids.shape[1]
colored_text = highlight_text(text, naive_text, "orange")
if highlight_EaInfer and use_EaInfer:
history[-1][1] = colored_text
else:
history[-1][1] = text
history[-1][1] = text
pure_history[-1][1] = text
new_tokens = cu_len - input_len
yield history,f"{new_tokens/totaltime:.2f} tokens/s",f"{new_tokens/total_ids:.2f}",session_state
start_time = time.time()
def user(user_message, history,session_state):
if history==None:
history=[]
pure_history = session_state.get("pure_history", [])
pure_history += [[user_message, None]]
session_state["pure_history"] = pure_history
return "", history + [[user_message, None]],session_state
def regenerate(history,session_state):
if not history:
return history, None,"0.00 tokens/s","0.00",session_state
pure_history = session_state.get("pure_history", [])
pure_history[-1][-1] = None
session_state["pure_history"]=pure_history
if len(history) > 1: # Check if there's more than one entry in history (i.e., at least one bot response)
new_history = history[:-1] # Remove the last bot response
last_user_message = history[-1][0] # Get the last user message
return new_history + [[last_user_message, None]], None,"0.00 tokens/s","0.00",session_state
history[-1][1] = None
return history, None,"0.00 tokens/s","0.00",session_state
def clear(history,session_state):
pure_history = session_state.get("pure_history", [])
pure_history = []
session_state["pure_history"] = pure_history
return [],"0.00 tokens/s","0.00",session_state
parser = argparse.ArgumentParser()
parser.add_argument(
"--ea-model-path",
type=str,
default="yuhuili/EAGLE-LLaMA3-Instruct-8B",
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
)
parser.add_argument("--base-model-path", type=str, default="meta-llama/Meta-Llama-3-8B-Instruct",
help="path of basemodel, huggingface project or local path")
parser.add_argument(
"--load-in-8bit", action="store_true", help="Use 8-bit quantization"
)
parser.add_argument(
"--load-in-4bit", action="store_true", help="Use 4-bit quantization"
)
parser.add_argument("--model-type", type=str, default="llama-3-instruct",choices=["llama-2-chat","vicuna","mixtral","llama-3-instruct"])
parser.add_argument(
"--total-token",
type=int,
default=59,
help="The maximum number of new generated tokens.",
)
parser.add_argument(
"--max-new-token",
type=int,
default=512,
help="The maximum number of new generated tokens.",
)
args = parser.parse_args()
model = EaModel.from_pretrained(
base_model_path=args.base_model_path,
ea_model_path=args.ea_model_path,
total_token=args.total_token,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
load_in_4bit=args.load_in_4bit,
load_in_8bit=args.load_in_8bit,
device_map="auto",
)
model.eval()
warmup(model)
custom_css = """
#speed textarea {
color: red;
font-size: 30px;
}"""
with gr.Blocks(css=custom_css) as demo:
gs = gr.State({"pure_history": []})
gr.Markdown('''## EAGLE-2 Chatbot''')
with gr.Row():
speed_box = gr.Textbox(label="Speed", elem_id="speed", interactive=False, value="0.00 tokens/s")
compression_box = gr.Textbox(label="Compression Ratio", elem_id="speed", interactive=False, value="0.00")
with gr.Row():
with gr.Column():
use_EaInfer = gr.Checkbox(label="Use EAGLE-2", value=True)
highlight_EaInfer = gr.Checkbox(label="Highlight the tokens generated by EAGLE-2", value=True)
temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="temperature", value=0.5)
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="top_p", value=0.9)
note=gr.Markdown(show_label=False,value='''The original LLM is LLaMA3-Instruct 8B, running on a single RTX 3090. The Compression Ratio is defined as the number of generated tokens divided by the number of forward passes in the original LLM. If "Highlight the tokens generated by EAGLE-2" is checked, the tokens correctly guessed by EAGLE-2
will be displayed in orange. Note: Checking this option may cause special formatting rendering issues in a few cases, especially when generating code''')
chatbot = gr.Chatbot(height=600,show_label=False)
msg = gr.Textbox(label="Your input")
with gr.Row():
send_button = gr.Button("Send")
stop_button = gr.Button("Stop")
regenerate_button = gr.Button("Regenerate")
clear_button = gr.Button("Clear")
enter_event=msg.submit(user, [msg, chatbot,gs], [msg, chatbot,gs], queue=True).then(
bot, [chatbot, temperature, top_p, use_EaInfer, highlight_EaInfer,gs], [chatbot,speed_box,compression_box,gs]
)
clear_button.click(clear, [chatbot,gs], [chatbot,speed_box,compression_box,gs], queue=True)
send_event=send_button.click(user, [msg, chatbot,gs], [msg, chatbot,gs],queue=True).then(
bot, [chatbot, temperature, top_p, use_EaInfer, highlight_EaInfer,gs], [chatbot,speed_box,compression_box,gs]
)
regenerate_event=regenerate_button.click(regenerate, [chatbot,gs], [chatbot, msg,speed_box,compression_box,gs],queue=True).then(
bot, [chatbot, temperature, top_p, use_EaInfer, highlight_EaInfer,gs], [chatbot,speed_box,compression_box,gs]
)
stop_button.click(fn=None, inputs=None, outputs=None, cancels=[send_event,regenerate_event,enter_event])
demo.queue()
demo.launch(share=True)