Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch LLaMA model.""" | |
import copy | |
import os | |
# os.environ["CUDA_VISIBLE_DEVICES"] = "5" | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \ | |
SequenceClassifierOutputWithPast | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
try: | |
from .configs import EConfig | |
from .choices import * | |
except: | |
from configs import EConfig | |
from choices import * | |
from utils import prepare_logits_processor | |
import time | |
class Timer: | |
def __init__(self, name): | |
self.name = name | |
def __enter__(self): | |
torch.cuda.synchronize() | |
self.start = time.perf_counter() | |
def __exit__(self, exc_type, exc_value, traceback): | |
torch.cuda.synchronize() | |
elapsed = time.perf_counter() - self.start | |
print(f'{self.name} took {elapsed} seconds') | |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2:] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them. | |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] | |
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] | |
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class LlamaRotaryEmbedding(torch.nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
) | |
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): | |
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
t = t / self.scaling_factor | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): | |
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
if seq_len > self.max_position_embeddings: | |
base = self.base * ( | |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | |
) ** (self.dim / (self.dim - 2)) | |
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
class LlamaAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self._init_rope() | |
def _init_rope(self): | |
if self.config.rope_scaling is None: | |
if hasattr(self.config, "rope_theta"): | |
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.config.rope_theta) | |
else: | |
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, | |
max_position_embeddings=self.max_position_embeddings) | |
else: | |
scaling_type = self.config.rope_scaling["type"] | |
scaling_factor = self.config.rope_scaling["factor"] | |
if scaling_type == "linear": | |
self.rotary_emb = LlamaLinearScalingRotaryEmbedding( | |
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor | |
) | |
elif scaling_type == "dynamic": | |
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( | |
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor | |
) | |
else: | |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
if self.config.pretraining_tp > 1: | |
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp | |
query_slices = self.q_proj.weight.split( | |
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 | |
) | |
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | |
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | |
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] | |
query_states = torch.cat(query_states, dim=-1) | |
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] | |
key_states = torch.cat(key_states, dim=-1) | |
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] | |
value_states = torch.cat(value_states, dim=-1) | |
else: | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
if self.config.pretraining_tp > 1: | |
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) | |
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) | |
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) | |
else: | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class LlamaMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x): | |
if self.config.pretraining_tp > 1: | |
slice = self.intermediate_size // self.config.pretraining_tp | |
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) | |
up_proj_slices = self.up_proj.weight.split(slice, dim=0) | |
down_proj_slices = self.down_proj.weight.split(slice, dim=1) | |
gate_proj = torch.cat( | |
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 | |
) | |
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) | |
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) | |
down_proj = [ | |
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) | |
] | |
down_proj = sum(down_proj) | |
else: | |
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
return down_proj | |
class LlamaRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
LlamaRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class LlamaDecoderLayer(nn.Module): | |
def __init__(self, config, index): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = LlamaAttention(config=config) | |
self.mlp = LlamaMLP(config) | |
self.index = index | |
if self.index != 0: | |
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
residual = hidden_states | |
if self.index != 0: | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class I(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.dummy = nn.Parameter(torch.ones(1, dtype=torch.float32)) | |
def forward(self, x): | |
return x + self.dummy - self.dummy # (also tried x+self.dummy) | |
def len_list(x, n): | |
return [i for i in x if len(i) <= n] | |
class Model(nn.Module): | |
def __init__(self, config, load_emb=False, path=None, bias=True, total_tokens=63, depth=5, top_k=8, threshold=1.0): | |
super().__init__() | |
self.gradient_checkpointing = True | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
if load_emb: | |
from safetensors import safe_open | |
import json | |
try: | |
with open(os.path.join(path, "model.safetensors.index.json"), "r") as f: | |
index_json = json.loads(f.read()) | |
emb_path = index_json["weight_map"]["model.embed_tokens.weight"] | |
with safe_open(os.path.join(path, emb_path), | |
framework="pt", | |
device="cpu") as f: | |
tensor_slice = f.get_slice("model.embed_tokens.weight") | |
vocab_size, hidden_dim = tensor_slice.get_shape() | |
tensor = tensor_slice[:, :hidden_dim].float() | |
except: | |
with open(os.path.join(path, "pytorch_model.bin.index.json"), "r") as f: | |
index_json = json.loads(f.read()) | |
emb_path = index_json["weight_map"]["model.embed_tokens.weight"] | |
weights = torch.load(os.path.join(path, emb_path)) | |
tensor = weights["model.embed_tokens.weight"].float() | |
self.embed_tokens.weight.data = tensor | |
self.top_k = top_k | |
self.total_tokens = total_tokens - 1 | |
self.depth = depth | |
self.threshold = math.log(threshold) | |
# print("total_tokens",total_tokens) | |
# print("depth",depth) | |
# print("top_k",top_k) | |
# print("threshold",threshold) | |
self.layers = nn.ModuleList([LlamaDecoderLayer(config, index) for index in range(config.num_hidden_layers)]) | |
self.fc = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=bias) | |
self.act = ACT2FN[config.hidden_act] | |
self.logsoftmax = nn.LogSoftmax(dim=-1) | |
for param in self.embed_tokens.parameters(): | |
param.requires_grad = False | |
def init_tree(self): | |
self.tree_mask_init = torch.eye(self.top_k, device=self.embed_tokens.weight.device)[None, None] | |
self.position_ids = torch.zeros(self.top_k, device=self.embed_tokens.weight.device, dtype=torch.long) | |
self.tree_mask_init = self.tree_mask_init.to(self.embed_tokens.weight.device) | |
def reset(self): | |
self.tree_mask = None | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
# inputs_embeds.dtype, | |
torch.float32, # [MODIFIED] force to cast to float32 | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, torch.float32, tgt_len=input_shape[-1]).to( | |
inputs_embeds.device | |
) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
# [MODIFIED] add tree mask | |
if hasattr(self, "tree_mask") and self.tree_mask is not None: | |
tree_mask = self.tree_mask | |
_, _, tree_shape0, tree_shape1 = tree_mask.shape | |
combined_attention_mask[:, :, -tree_shape0:, -tree_shape1:][ | |
tree_mask == 0 | |
] = torch.finfo(torch.float32).min | |
return combined_attention_mask | |
def forward( | |
self, | |
hidden_states, | |
input_ids, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
std=None | |
): | |
batch_size, seq_length, _ = hidden_states.shape | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
with torch.no_grad(): | |
inputs_embeds = self.embed_tokens(input_ids) | |
# inputs_embeds = inputs_embeds.detach() | |
# if std is not None: | |
# noise = torch.randn(inputs_embeds.size(),device=inputs_embeds.device) * std | |
# inputs_embeds=inputs_embeds+noise | |
if past_key_values is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if position_ids is None: | |
device = hidden_states.device if hidden_states is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length | |
) | |
# if self.gradient_checkpointing and self.training: | |
# if use_cache: | |
# use_cache = False | |
# hidden_states=self.act(self.fc(torch.cat((inputs_embeds,hidden_states),dim=-1))) | |
inputs_embeds = inputs_embeds.to(hidden_states.dtype) | |
hidden_states = self.fc(torch.cat((inputs_embeds, hidden_states), dim=-1)) | |
all_hidden_states = () if output_hidden_states else None | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
position_ids, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if use_cache: | |
return hidden_states, next_decoder_cache | |
return hidden_states | |
def reset_kv(self): | |
self.stable_kv = None | |
def topK_genrate(self, hidden_states, input_ids, head, logits_processor): | |
input_ids = input_ids.to(hidden_states.device) | |
total_tokens = self.total_tokens | |
depth = self.depth | |
top_k = self.top_k | |
sample_token = input_ids[:, -1] | |
scores_list = [] | |
parents_list = [] | |
ss_token = [] | |
input_ids = input_ids[:, 1:] | |
input_ids = input_ids.to(hidden_states.device) | |
len_posi = input_ids.shape[1] | |
self.reset() | |
# with Timer("draft many"): | |
if hasattr(self, "stable_kv") and self.stable_kv is not None: | |
kv_len = self.stable_kv[0][0].shape[2] | |
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids[:, kv_len:], | |
past_key_values=self.stable_kv, use_cache=True) | |
else: | |
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids, use_cache=True) | |
self.stable_kv = past_key_values | |
last_hidden = out_hidden[:, -1] | |
last_headout = head(last_hidden) | |
last_p = self.logsoftmax(last_headout) | |
top = torch.topk(last_p, top_k, dim=-1) | |
topk_index, topk_p = top.indices, top.values | |
scores = topk_p[0] | |
scores_list.append(scores[None]) | |
parents_list.append(torch.zeros(1, dtype=torch.long, device=scores.device)) | |
ss_token.append(topk_index) | |
input_ids = topk_index | |
input_hidden = last_hidden[None].repeat(1, top_k, 1) | |
tree_mask = self.tree_mask_init | |
topk_cs_index = torch.arange(top_k, device=self.embed_tokens.weight.device) | |
# 4 | |
for i in range(depth): | |
self.tree_mask = tree_mask | |
position_ids = len_posi + self.position_ids | |
# with Timer("draft one"): | |
out_hidden, past_key_values = self(input_hidden, input_ids=input_ids, past_key_values=past_key_values, | |
position_ids=position_ids, use_cache=True) | |
len_posi += 1 | |
# with Timer("sort1"): | |
bias1 = top_k if i > 0 else 0 | |
bias2 = max(0, i - 1) | |
bias = 1 + top_k ** 2 * bias2 + bias1 | |
parents = (topk_cs_index + bias) | |
parents_list.append(parents) | |
last_headout = head(out_hidden[0]) | |
last_p = self.logsoftmax(last_headout) | |
top = torch.topk(last_p, top_k, dim=-1) | |
topk_index, topk_p = top.indices, top.values | |
cu_scores = topk_p + scores[:, None] | |
topk_cs = torch.topk(cu_scores.view(-1), top_k, dim=-1) | |
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values | |
scores = topk_cs_p | |
out_ids = topk_cs_index // top_k | |
input_hidden = out_hidden[:, out_ids] | |
# with Timer("2index"): | |
# in_ids = topk_cs_index % top_k | |
# input_ids = topk_index[out_ids, in_ids][None] | |
# with Timer("1index"): | |
input_ids = topk_index.view(-1)[topk_cs_index][None] | |
# print(input_ids.equal(input_ids0)) | |
ss_token.append(topk_index) | |
scores_list.append(cu_scores) | |
tree_mask = torch.cat((tree_mask[:, :, out_ids], self.tree_mask_init), dim=3) | |
# if self.threshold < 0 and cu_scores.max() < self.threshold: | |
# break | |
# del parents_list,scores_list,ss_token | |
# return draft_tokens, mask_index,tree_mask,tree_position_ids | |
# with Timer("post"): | |
scores_list = torch.cat(scores_list, dim=0).view(-1) | |
ss_token_list = torch.cat(ss_token, dim=0).view(-1) | |
top_scores = torch.topk(scores_list, total_tokens, dim=-1) | |
top_scores_index = top_scores.indices | |
top_scores_index = torch.sort(top_scores_index).values | |
draft_tokens = ss_token_list[top_scores_index] | |
draft_tokens = torch.cat((sample_token, draft_tokens), dim=0) | |
draft_parents = torch.cat(parents_list, dim=0)[top_scores_index // top_k].long() | |
mask_index = torch.searchsorted(top_scores_index, draft_parents - 1, right=False) | |
# mask_index[(top_scores_index[mask_index]!=draft_parents - 1)]=-1 | |
mask_index[draft_parents == 0] = -1 | |
mask_index = mask_index + 1 | |
mask_index_list = mask_index.tolist() | |
# with Timer("mask"): | |
tree_mask = torch.eye(total_tokens + 1).bool() | |
tree_mask[:, 0] = True | |
for i in range(total_tokens): | |
tree_mask[i + 1].add_(tree_mask[mask_index_list[i]]) | |
# with Timer("mask1"): | |
# tree_mask0 = [[False for _ in range(total_tokens + 1)] for _ in range(total_tokens + 1)] | |
# tree_mask0[0][0] = True | |
# for i in range(total_tokens): | |
# #tree_mask0[i + 1][0]=True | |
# tree_mask0[i + 1][i + 1] = True | |
# p=mask_index_list[i] | |
# tree_mask0[i + 1][p] = True | |
# while p: | |
# p=mask_index_list[p-1] | |
# tree_mask0[i + 1][p] = True | |
# tree_mask0 = torch.tensor(tree_mask0, dtype=torch.bool) | |
# | |
# print(tree_mask0.equal(tree_mask)) | |
tree_position_ids = torch.sum(tree_mask, dim=1) - 1 | |
tree_mask = tree_mask.float()[None, None] | |
draft_tokens = draft_tokens[None] | |
del parents_list, scores_list, ss_token, ss_token_list, draft_parents | |
# with Timer("retrieve"): | |
max_depth = torch.max(tree_position_ids) + 1 | |
noleaf_index = torch.unique(mask_index).tolist() | |
noleaf_num = len(noleaf_index) - 1 | |
leaf_num = total_tokens - noleaf_num | |
retrieve_indices = torch.zeros(leaf_num, max_depth.item(), dtype=torch.long) - 1 | |
retrieve_indices = retrieve_indices.tolist() | |
rid = 0 | |
position_ids_list = tree_position_ids.tolist() | |
for i in range(total_tokens + 1): | |
if i not in noleaf_index: | |
cid = i | |
depth = position_ids_list[i] | |
for j in reversed(range(depth + 1)): | |
retrieve_indices[rid][j] = cid | |
cid = mask_index_list[cid - 1] | |
rid += 1 | |
if logits_processor is not None: | |
maxitem = total_tokens + 5 | |
def custom_sort(lst): | |
# sort_keys=[len(list)] | |
sort_keys = [] | |
for i in range(len(lst)): | |
sort_keys.append(lst[i] if lst[i] >= 0 else maxitem) | |
return sort_keys | |
retrieve_indices = sorted(retrieve_indices, key=custom_sort) | |
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long) | |
del mask_index, mask_index_list, noleaf_index, noleaf_num, leaf_num, max_depth, rid | |
tree_position_ids = tree_position_ids.to(hidden_states.device) | |
return draft_tokens, retrieve_indices, tree_mask, tree_position_ids | |
def acc(self, data, head, max_length=5): | |
hidden_states = data["hidden_states"] | |
input_ids = data["input_ids"] | |
# attention_mask=data["attention_mask"] | |
loss_mask = data["loss_mask"] | |
sample_mask = data["sample_mask"] | |
target = data["target"] | |
total = [0 for _ in range(max_length)] | |
correct = [0 for _ in range(max_length)] | |
bs, sl = hidden_states.shape[0], hidden_states.shape[1] | |
target_headout = head(target) | |
hidden_states_headout = head(hidden_states) | |
for i in range(bs): | |
for j in range(sl): | |
if loss_mask[i, j] == 0: | |
continue | |
single_hidden_states = hidden_states[i, :j] | |
single_input_ids = input_ids[i, :j] | |
single_hidden_states = single_hidden_states[None, :, :] | |
single_input_ids = single_input_ids[None, :] | |
for k in range(max_length): | |
tmp_in_target_headout = hidden_states_headout[i, single_hidden_states.shape[1] - 1] | |
tmp_out_target_headout = target_headout[i, single_hidden_states.shape[1] - 1] | |
target_in_token = torch.argmax(tmp_in_target_headout) | |
target_out_token = torch.argmax(tmp_out_target_headout) | |
tmp_token = input_ids[i, single_hidden_states.shape[1] - 1] | |
tmp_sample_mask = sample_mask[i, single_hidden_states.shape[1] - 1] | |
if not (target_in_token == tmp_token): | |
break | |
out_hidden = self(single_hidden_states, input_ids=single_input_ids) | |
last_hidden = out_hidden[:, -1] | |
last_headout = head(last_hidden) | |
token = torch.argmax(last_headout) | |
total[k] += 1 | |
if token == target_out_token: | |
correct[k] += 1 | |
else: | |
for kk in range(k, max_length): | |
total[kk] += 1 | |
break | |
single_hidden_states = torch.cat((single_hidden_states, out_hidden[:, -1:]), dim=1) | |
single_input_ids = torch.cat( | |
(single_input_ids, torch.tensor([[token]]).to(single_input_ids.device)), dim=1) | |
acc = [correct[i] / total[i] for i in range(len(correct))] | |
return acc | |
class Vhead(nn.Module): | |
def __init__(self, ins=6566, outs=32000): | |
super().__init__() | |
self.fc = nn.Linear(ins, outs, bias=False) | |
def forward(self, x): | |
return self.fc(x) | |
import torch | |
def count_parameters(model): | |
return sum(p.numel() for p in model.parameters()) | |
if __name__ == "__main__": | |
config = EConfig.from_pretrained('config.json') | |
model = Model(config, load_emb=True, path="/home/lyh/weights/hf/vicuna_v13/7B/") | |
print(model) | |