Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Mixtral model.""" | |
import inspect | |
import math | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
from .kv_cache import KVCache | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
# [MODIFIED] Import from transformer library | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import ( | |
MoeCausalLMOutputWithPast, | |
MoeModelOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers import MixtralConfig | |
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. | |
# It means that the function will not be traced through and simply appear as a node in the graph. | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "MixtralConfig" | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0, | |
): | |
""" | |
Create a causal mask for bi-directional self-attention. | |
Args: | |
input_ids_shape (torch.Size): The shape of input_ids tensor, typically (batch_size, tgt_len). | |
dtype (torch.dtype): The data type of the mask. | |
device (torch.device): The device on which the mask will be placed. | |
past_key_values_length (int, optional): The length of past key values. Default is 0. | |
Returns: | |
torch.Tensor: The causal mask tensor. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat( | |
[ | |
torch.zeros( | |
tgt_len, past_key_values_length, dtype=dtype, device=device | |
), | |
mask, | |
], | |
dim=-1, | |
) | |
return mask[None, None, :, :].expand( | |
bsz, 1, tgt_len, tgt_len + past_key_values_length | |
) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expand attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
Args: | |
mask (torch.Tensor): The attention mask tensor of shape `[bsz, seq_len]`. | |
dtype (torch.dtype): The data type of the mask. | |
tgt_len (Optional[int], optional): The target sequence length. If None, it defaults to the source sequence length. | |
Returns: | |
torch.Tensor: The expanded mask tensor. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), torch.finfo(dtype).min | |
) | |
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float: | |
r""" | |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | |
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | |
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | |
experts is too unbalanced. | |
Args: | |
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | |
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts]. | |
num_experts (`int`, *optional*): | |
Number of experts | |
Returns: | |
The auxiliary loss. | |
""" | |
if gate_logits is None: | |
return 0 | |
if isinstance(gate_logits, tuple): | |
# cat along the layers? | |
compute_device = gate_logits[0].device | |
gate_logits = torch.cat([gate.to(compute_device) for gate in gate_logits], dim=0) | |
routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1) | |
routing_weights = routing_weights.softmax(dim=-1) | |
# cast the expert indices to int64, otherwise one-hot encoding will fail | |
if selected_experts.dtype != torch.int64: | |
selected_experts = selected_experts.to(torch.int64) | |
if len(selected_experts.shape) == 2: | |
selected_experts = selected_experts.unsqueeze(2) | |
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | |
# For a given token, determine if it was routed to a given expert. | |
expert_mask = torch.max(expert_mask, axis=-2).values | |
# cast to float32 otherwise mean will fail | |
expert_mask = expert_mask.to(torch.float32) | |
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) | |
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1) | |
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)) * (num_experts**2) | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mixtral | |
class MixtralRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
MixtralRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mixtral | |
class MixtralRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
# Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Mixtral | |
class MixtralAttention(nn.Module): | |
""" | |
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
and "Generating Long Sequences with Sparse Transformers". | |
""" | |
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
self.attention_dropout = config.attention_dropout | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.rotary_emb = MixtralRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[KVCache]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
key_states = past_key_value[0].cat(key_states, dim=2) | |
value_states = past_key_value[1].cat(value_states, dim=2) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Mixtral | |
class MixtralBLockSparseTop2MLP(nn.Module): | |
def __init__(self, config: MixtralConfig): | |
super().__init__() | |
self.ffn_dim = config.intermediate_size | |
self.hidden_dim = config.hidden_size | |
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | |
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) | |
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, hidden_states, routing_weights): | |
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) | |
current_hidden_states = self.w2(current_hidden_states) | |
return routing_weights * current_hidden_states | |
MISTRAL_ATTENTION_CLASSES = { | |
"eager": MixtralAttention, | |
} | |
class MixtralSparseMoeBlock(nn.Module): | |
""" | |
This implementation is | |
strictly equivalent to standard MoE with full capacity (no | |
dropped tokens). It's faster since it formulates MoE operations | |
in terms of block-sparse operations to accomodate imbalanced | |
assignments of tokens to experts, whereas standard MoE either | |
(1) drop tokens at the cost of reduced performance or (2) set | |
capacity factor to number of experts and thus waste computation | |
and memory on padding. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_dim = config.hidden_size | |
self.ffn_dim = config.intermediate_size | |
self.num_experts = config.num_local_experts | |
self.top_k = config.num_experts_per_tok | |
# gating | |
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) | |
self.experts = nn.ModuleList([MixtralBLockSparseTop2MLP(config) for _ in range(self.num_experts)]) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
""" """ | |
batch_size, sequence_length, hidden_dim = hidden_states.shape | |
hidden_states = hidden_states.view(-1, hidden_dim) | |
# router_logits: (batch * sequence_length, n_experts) | |
router_logits = self.gate(hidden_states) | |
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | |
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | |
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | |
# we cast back to the input dtype | |
routing_weights = routing_weights.to(hidden_states.dtype) | |
final_hidden_states = torch.zeros( | |
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | |
) | |
# One hot encode the selected experts to create an expert mask | |
# this will be used to easily index which expert is going to be sollicitated | |
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | |
# Loop over all available experts in the model and perform the computation on each expert | |
for expert_idx in range(self.num_experts): | |
expert_layer = self.experts[expert_idx] | |
idx, top_x = torch.where(expert_mask[expert_idx]) | |
if top_x.shape[0] == 0: | |
continue | |
# in torch it is faster to index using lists than torch tensors | |
top_x_list = top_x.tolist() | |
idx_list = idx.tolist() | |
# Index the correct hidden states and compute the expert hidden state for | |
# the current expert. We need to make sure to multiply the output hidden | |
# states by `routing_weights` on the corresponding tokens (top-1 and top-2) | |
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) | |
current_hidden_states = expert_layer(current_state, routing_weights[top_x_list, idx_list, None]) | |
# However `index_add_` only support torch tensors for indexing so we'll use | |
# the `top_x` tensor here. | |
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | |
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | |
return final_hidden_states, router_logits | |
class MixtralDecoderLayer(nn.Module): | |
def __init__(self, config: MixtralConfig, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
self.block_sparse_moe = MixtralSparseMoeBlock(config) | |
self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[KVCache]] = None, | |
output_attentions: Optional[bool] = False, | |
output_router_logits: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_router_logits (`bool`, *optional*): | |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | |
should not be returned during inference. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states, router_logits = self.block_sparse_moe(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
if output_router_logits: | |
outputs += (router_logits,) | |
return outputs | |
MIXTRAL_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`MixtralConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Mixtral | |
class MixtralPreTrainedModel(PreTrainedModel): | |
config_class = MixtralConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["MixtralDecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
MIXTRAL_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
output_router_logits (`bool`, *optional*): | |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | |
should not be returned during inference. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral | |
class MixtralModel(MixtralPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`] | |
Args: | |
config: MixtralConfig | |
""" | |
def __init__(self, config: MixtralConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.layers = nn.ModuleList( | |
[MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def _prepare_decoder_attention_mask( | |
self, attention_mask, input_shape, inputs_embeds, past_key_values_length | |
): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
# inputs_embeds.dtype, | |
torch.float32, # [MODIFIED] force to cast to float32 | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask( | |
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
).to(inputs_embeds.device) | |
combined_attention_mask = ( | |
expanded_attn_mask | |
if combined_attention_mask is None | |
else expanded_attn_mask + combined_attention_mask | |
) | |
if hasattr(self, "tree_mask") and self.tree_mask is not None: | |
tree_mask = self.tree_mask | |
tree_len = tree_mask.size(-1) | |
combined_attention_mask[:, :, -tree_len:, -tree_len:][ | |
tree_mask == 0 | |
] = combined_attention_mask.min() | |
return combined_attention_mask | |
# Ignore copy | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[Tuple[KVCache]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MoeModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else self.config.output_router_logits | |
) | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
past_key_values_length = 0 | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
if past_key_values is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if attention_mask is not None and self._use_flash_attention_2 and use_cache: | |
is_padding_right = attention_mask[:, -1].sum().item() != batch_size | |
if is_padding_right: | |
raise ValueError( | |
"You are attempting to perform batched generation with padding_side='right'" | |
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " | |
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " | |
) | |
# if self._use_flash_attention_2: | |
# # 2d mask is passed through the layers | |
# attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | |
# else: | |
# 4d mask is passed through the layers | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_router_logits = () if output_router_logits else None | |
next_decoder_cache = None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
past_key_value = ( | |
past_key_values[idx] if past_key_values is not None else None | |
) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_value, | |
output_attentions, | |
output_router_logits, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
output_router_logits=output_router_logits, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if output_router_logits: | |
all_router_logits += (layer_outputs[-1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
# if use_cache: | |
# next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] | |
if v is not None | |
) | |
return MoeModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
router_logits=all_router_logits, | |
) | |
class MixtralForCausalLM(MixtralPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = MixtralModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.router_aux_loss_coef = config.router_aux_loss_coef | |
self.num_experts = config.num_local_experts | |
self.num_experts_per_tok = config.num_experts_per_tok | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
# Ignore copy | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MoeCausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, MixtralForCausalLM | |
>>> model = MixtralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | |
>>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else self.config.output_router_logits | |
) | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
output_router_logits=output_router_logits, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
aux_loss = None | |
if output_router_logits: | |
aux_loss = load_balancing_loss_func( | |
outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok | |
) | |
if labels is not None: | |
loss += self.router_aux_loss_coef * aux_loss | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
if output_router_logits: | |
output = (aux_loss,) + output | |
return (loss,) + output if loss is not None else output | |
return MoeCausalLMOutputWithPast( | |
loss=loss, | |
aux_loss=aux_loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
router_logits=outputs.router_logits, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mixtral, LLAMA->MIXTRAL | |
class MixtralForSequenceClassification(MixtralPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = MixtralModel(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( | |
logits.device | |
) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |