Spaces:
Sleeping
Sleeping
File size: 14,277 Bytes
687d97d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import random
import torch
# TODO
# from transformers import LlamaTokenizer
# tokenizer=LlamaTokenizer.from_pretrained("/home/lyh/weights/hf/vicuna_v13/7B/")
TOPK = 10 # topk for sparse tree
from transformers.generation.logits_process import (
LogitsProcessorList,
RepetitionPenaltyLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
def prepare_logits_processor(
temperature=0.0, repetition_penalty=0.0, top_p=0.0, top_k=0
) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
if temperature >= 1e-5 and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if repetition_penalty > 1.0:
processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
if 1e-8 <= top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
if top_k > 0:
processor_list.append(TopKLogitsWarper(top_k))
return processor_list
# test_processor = prepare_logits_processor(
# 0.0, 0.0, -1, 1
# )
def pad_path(path, length, pad_value=-2):
"""
Pad the given path list with a specific value up to a specified length.
Parameters:
- path (list): The original list that needs padding.
- length (int): The desired length of the padded list.
- pad_value (optional, default=-2): The value to use for padding.
Returns:
- list: A new list based on the original path but padded to the desired length.
Example:
>>> pad_path([1,2,3], 5)
[1, 2, 3, -2, -2]
Note:
If the given path is already longer than the specified length,
then no padding occurs, and the original path is returned.
"""
# Calculate the number of padding values needed by subtracting the length
# of the path from the desired length.
# Append the padding values to the original path and return the new list.
return path + [pad_value] * (length - len(path))
def generate_tree_buffers(tree_choices, device="cuda"):
sorted_tree_choices = sorted(tree_choices, key=lambda x: (len(x), x))
tree_len = len(sorted_tree_choices) + 1
# Initialize depth_counts to keep track of how many choices have a particular depth
depth_counts = []
prev_depth = 0
for path in sorted_tree_choices:
depth = len(path)
if depth != prev_depth:
depth_counts.append(0)
depth_counts[depth - 1] += 1
prev_depth = depth
tree_attn_mask = torch.eye(tree_len, tree_len)
tree_attn_mask[:, 0] = 1
start = 0
for i in range(len(depth_counts)):
for j in range(depth_counts[i]):
cur_tree_choice = sorted_tree_choices[start + j]
# retrieve ancestor position
if len(cur_tree_choice) == 1:
continue
ancestor_idx = []
for c in range(len(cur_tree_choice) - 1):
ancestor_idx.append(sorted_tree_choices.index(cur_tree_choice[:c + 1]) + 1)
tree_attn_mask[j + start + 1, ancestor_idx] = 1
start += depth_counts[i]
tree_indices = torch.zeros(tree_len, dtype=torch.long)
tree_indices[0] = 0
start = 0
bias = 0
for i in range(len(depth_counts)):
for j in range(depth_counts[i]):
cur_tree_choice = sorted_tree_choices[start + j]
cur_parent = cur_tree_choice[:-1]
if j!=0:
if cur_parent!=parent:
bias+=1
parent=cur_parent
else:
parent=cur_parent
tree_indices[start + j + 1] = cur_tree_choice[-1] + TOPK * (i+bias) + 1
start += depth_counts[i]
tree_position_ids = torch.zeros(tree_len, dtype=torch.long)
start = 0
for i in range(len(depth_counts)):
tree_position_ids[start + 1: start + depth_counts[i] + 1] = i + 1
start += depth_counts[i]
retrieve_indices_nest = []
retrieve_paths = []
for i in range(len(sorted_tree_choices)):
cur_tree_choice = sorted_tree_choices[-i - 1]
retrieve_indice = []
if cur_tree_choice in retrieve_paths:
continue
else:
for c in range(len(cur_tree_choice)):
retrieve_indice.append(sorted_tree_choices.index(cur_tree_choice[:c + 1]))
retrieve_paths.append(cur_tree_choice[:c + 1])
retrieve_indices_nest.append(retrieve_indice)
max_length = max([len(x) for x in retrieve_indices_nest])
retrieve_indices = [pad_path(path, max_length) for path in retrieve_indices_nest]
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
retrieve_indices = retrieve_indices + 1
retrieve_indices = torch.cat([torch.zeros((retrieve_indices.shape[0], 1), dtype=torch.long), retrieve_indices],
dim=1)
# Aggregate the generated buffers into a dictionary
tree_buffers = {
"tree_attn_mask": tree_attn_mask.unsqueeze(0).unsqueeze(0),
"tree_indices": tree_indices,
"tree_position_ids": tree_position_ids,
"retrieve_indices": retrieve_indices,
}
# Move the tensors in the dictionary to the specified device
tree_buffers = {
k: v.clone().to(device)
if isinstance(v, torch.Tensor)
else torch.tensor(v, device=device)
for k, v in tree_buffers.items()
}
return tree_buffers
def initialize_tree(input_ids, model, tree_attn_mask, past_key_values,logits_processor):
tree_logits, outputs, logits,hidden_state,sample_token = model(
input_ids, past_key_values=past_key_values, output_orig=True,logits_processor=logits_processor
)
model.base_model.model.tree_mask = tree_attn_mask
return tree_logits, logits,hidden_state,sample_token
def reset_tree_mode(
model,
):
model.base_model.model.tree_mask = None
model.base_model.model.tree_mode = None
def reset_past_key_values(passed_key_values):
"""
Resets the current lengths in the passed key-values to zero.
This function is designed to be used during the evaluation of a baseline model.
It iterates through each layer's key-values and sets their current lengths to zero,
effectively resetting their state.
Args:
- passed_key_values (list of torch.Tensor): Contains past hidden states and past attention values for each layer.
Returns:
- passed_key_values (list of torch.Tensor): Updated past hidden states and past attention values with reset lengths.
"""
for i in range(len(passed_key_values)):
for j in range(2):
passed_key_values[i][j].current_length.fill_(0)
return passed_key_values
def generate_candidates(tree_logits, tree_indices, retrieve_indices,sample_token,logits_processor):
candidates_logit = sample_token[0]
candidates_tree_logits = tree_logits[0]
candidates = torch.cat([candidates_logit, candidates_tree_logits.view(-1)], dim=-1)
tree_candidates = candidates[tree_indices]
tree_candidates_ext = torch.cat(
[tree_candidates, torch.zeros((1), dtype=torch.long, device=tree_candidates.device)], dim=0)
cart_candidates = tree_candidates_ext[retrieve_indices]
if logits_processor is not None:
candidates_tree_prob = tree_logits[1]
candidates_prob = torch.cat(
[torch.ones(1, device=candidates_tree_prob.device, dtype=torch.float32), candidates_tree_prob.view(-1)],
dim=-1)
tree_candidates_prob = candidates_prob[tree_indices]
tree_candidates_prob_ext = torch.cat(
[tree_candidates_prob, torch.ones((1), dtype=torch.float32, device=tree_candidates_prob.device)], dim=0)
cart_candidates_prob = tree_candidates_prob_ext[retrieve_indices]
else:
cart_candidates_prob=None
# Unsqueeze the tree candidates for dimension consistency.
tree_candidates = tree_candidates.unsqueeze(0)
return cart_candidates,cart_candidates_prob, tree_candidates
def tree_decoding(
model,
tree_candidates,
past_key_values,
tree_position_ids,
input_ids,
retrieve_indices,
):
position_ids = tree_position_ids + input_ids.shape[1]
outputs,tree_logits,hidden_state = model(
tree_candidates,
output_orig=True,
past_key_values=past_key_values,
position_ids=position_ids,
init=False,
)
logits = tree_logits[0, retrieve_indices]
return logits, hidden_state,outputs
def evaluate_posterior(
logits, candidates, logits_processor,cart_candidates_prob
):
"""
Evaluate the posterior probabilities of the candidates based on the provided logits and choose the best candidate.
Depending on the temperature value, the function either uses greedy decoding or evaluates posterior
probabilities to select the best candidate.
Args:
- logits (torch.Tensor): Predicted logits of shape (batch_size, sequence_length, vocab_size).
- candidates (torch.Tensor): Candidate token sequences.
- temperature (float): Softmax temperature for probability scaling. A value of 0 indicates greedy decoding.
- posterior_threshold (float): Threshold for posterior probability.
- posterior_alpha (float): Scaling factor for the threshold.
Returns:
- best_candidate (torch.Tensor): Index of the chosen best candidate.
- accept_length (int): Length of the accepted candidate sequence.
"""
# Greedy decoding based on temperature value
if logits_processor is None:
# Find the tokens that match the maximum logits for each position in the sequence
posterior_mask = (
candidates[:, 1:] == torch.argmax(logits[:, :-1], dim=-1)
).int()
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
accept_length = candidates_accept_length.max()
# Choose the best candidate
if accept_length == 0:
# Default to the first candidate if none are accepted
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
else:
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
return best_candidate, accept_length,logits[best_candidate, accept_length]
else:
accept_length=1
accept_cand=candidates[0][:1]
best_candidate=0
#breakflag=False
for i in range(1,candidates.shape[1]):
is_eq=(candidates[:,:accept_length]==accept_cand).all(dim=1)
if i!=accept_length:
#breakflag=True
break
fi=torch.nonzero(is_eq, as_tuple=True)[0][0]
gt_logits=logits[fi,i-1][None]
gt_logits=logits_processor(None,gt_logits)[0]
gtp=torch.softmax(gt_logits,dim=0)
adjustflag=False
for j in range(candidates.shape[0]):
if is_eq[j]:
r=random.random()
x=candidates[j,i]
if x==0:
continue
px=gtp[x]
qx=cart_candidates_prob[j,i]
acp=px/qx
if r<=acp:
accept_cand=torch.cat((accept_cand,x[None]),dim=0)
accept_length+=1
best_candidate=j
break
else:
gtp[x]=max(px-qx,0)
gtp=gtp/gtp.sum()
adjustflag=True
if adjustflag:
sample_p=gtp
else:
gt_logits = logits[best_candidate, accept_length-1]
sample_p=torch.softmax(gt_logits,dim=0)
return torch.tensor(best_candidate), accept_length-1,sample_p
@torch.no_grad()
def update_inference_inputs(
input_ids,
candidates,
best_candidate,
accept_length,
retrieve_indices,
logits_processor,
logits,
tree_logits,
new_token,
past_key_values_data_list,
current_length_data,
model,
hidden_state,
hidden_state_new,
sample_p
):
prev_input_len = input_ids.shape[1]
# Map the best candidate indices to the original indices in the sequence
select_indices = (
retrieve_indices[best_candidate, : accept_length + 1] + prev_input_len
)
# Append the tokens from the best candidate to the input sequence
input_ids = torch.cat(
[input_ids, candidates[None, best_candidate, : accept_length + 1].to(input_ids.device)], dim=-1
)
# Update the past key values based on the selected tokens
# Source tensor that contains relevant past information based on the selected candidate
for past_key_values_data in past_key_values_data_list:
tgt = past_key_values_data[..., select_indices.to(past_key_values_data.device), :]
# Destination tensor where the relevant past information will be stored
dst = past_key_values_data[..., prev_input_len : prev_input_len + tgt.shape[-2], :]
# Copy relevant past information from the source to the destination
dst.copy_(tgt, non_blocking=True)
# Update the current length tensor (currently only support batch size is 1)
current_length_data.fill_(prev_input_len + tgt.shape[-2])
retrieve_hidden_state_new=hidden_state_new[:,retrieve_indices]
accept_hidden_state_new=retrieve_hidden_state_new[:,best_candidate, : accept_length + 1]
#token=model.base_model.lm_head(accept_hidden_state_new[:,-1]).argmax()
#token=token[None,None]
prob = sample_p
if logits_processor is not None:
token = torch.multinomial(prob, 1)
token=token[None]
else:
token=torch.argmax(prob)
token=token[None,None]
hidden_state=torch.cat((hidden_state,accept_hidden_state_new),dim=1)
tree_logits=model.ea_layer.topK_genrate(hidden_state,input_ids=torch.cat((input_ids,token.to(input_ids.device)),dim=1),head=model.base_model.lm_head,logits_processor=logits_processor)
new_token += accept_length + 1
return input_ids, tree_logits, new_token,hidden_state,token
if __name__=="__main__":
logits=torch.randn(1,5)
tp = prepare_logits_processor(0.9, 0, 0.9, 0)
l=tp(None,logits)
if tp is None:
print(tp) |