# Source: https://github.com/huggingface/transformers/blob/v4.31-release/src/transformers/models/llama/modeling_llama.py # Modifications are denoted by the symbol: [MODIFIED] """ PyTorch LLaMA model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss # [MODIFIED] Import from transformer library from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers import LlamaConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LlamaConfig" # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, ): """ Create a causal mask for bi-directional self-attention. Args: input_ids_shape (torch.Size): The shape of input_ids tensor, typically (batch_size, tgt_len). dtype (torch.dtype): The data type of the mask. device (torch.device): The device on which the mask will be placed. past_key_values_length (int, optional): The length of past key values. Default is 0. Returns: torch.Tensor: The causal mask tensor. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat( [ torch.zeros( tgt_len, past_key_values_length, dtype=dtype, device=device ), mask, ], dim=-1, ) return mask[None, None, :, :].expand( bsz, 1, tgt_len, tgt_len + past_key_values_length ) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expand attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. Args: mask (torch.Tensor): The attention mask tensor of shape `[bsz, seq_len]`. dtype (torch.dtype): The data type of the mask. tgt_len (Optional[int], optional): The target sequence length. If None, it defaults to the source sequence length. Returns: torch.Tensor: The expanded mask tensor. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(dtype).min ) import torch.nn as nn import torch class LlamaRMSNorm(nn.Module): """ LlamaRMSNorm is equivalent to T5LayerNorm. Args: hidden_size (int): The size of the hidden states. eps (float, optional): A small value to prevent division by zero. Default is 1e-6. """ def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): """ Apply LlamaRMSNorm to the input hidden states. Args: hidden_states (torch.Tensor): Input hidden states. Returns: torch.Tensor: The normalized and scaled hidden states. """ input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class LlamaRotaryEmbedding(nn.Module): """ Llama Rotary Positional Embedding Module. Args: dim (int): The dimension of the embedding. max_position_embeddings (int, optional): The maximum position for embeddings. Default is 2048. base (int, optional): The base value for rotational encoding. Default is 10000. device (str, optional): The device on which the computation will be performed. Default is None. """ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / ( self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) ) self.register_buffer("inv_freq", inv_freq) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(), ) def _set_cos_sin_cache(self, seq_len, device, dtype): """ Set the cosine and sine cache for positional embeddings. Args: seq_len (int): The sequence length. device (str): The device on which the cache tensors will be stored. dtype: The data type of the cache tensors. """ self.max_seq_len_cached = seq_len t = torch.arange( self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype ) freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer( "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False ) self.register_buffer( "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False ) def forward(self, x, seq_len=None): """ Forward pass of the LlamaRotaryEmbedding module. Args: x (torch.Tensor): Input tensor of shape [bs, num_attention_heads, seq_len, head_size]. seq_len (int): The sequence length. If greater than the cached length, the cache will be updated. Returns: tuple: A tuple containing two tensors, the cosine and sine embeddings, both of shape [1, 1, seq_len, dim]. """ if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), ) class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): """ LlamaRotaryEmbedding extended with linear scaling. This class adds linear scaling to LlamaRotaryEmbedding. Credits to the Reddit user /u/kaiokendev. Args: dim (int): The dimension of the embedding. max_position_embeddings (int, optional): The maximum number of position embeddings. Default is 2048. base (int, optional): The base value for the rotational embeddings. Default is 10000. device (str or torch.device, optional): The device where the embeddings should be stored. Default is None. scaling_factor (float, optional): The scaling factor for the embeddings. Default is 1.0. """ def __init__( self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, ): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): """ Set the cosine and sine cache for the rotary embeddings. Args: seq_len (int): The sequence length. device (str or torch.device): The device where the cache should be stored. dtype: The data type for the cache. """ self.max_seq_len_cached = seq_len t = torch.arange( self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype ) t = t / self.scaling_factor freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer( "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False ) self.register_buffer( "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False ) class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): """ LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla. """ def __init__( self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, ): """ Initialize the LlamaDynamicNTKScalingRotaryEmbedding. Args: dim (int): The dimensionality of the embedding. max_position_embeddings (int, optional): Maximum number of position embeddings. Default is 2048. base (int, optional): Base value for scaling calculations. Default is 10000. device: The device to place tensors on. If None, uses the default device. scaling_factor (float, optional): Scaling factor for NTK scaling. Default is 1.0. """ self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): """ Set the cached values for cosine and sine. Args: seq_len (int): The sequence length. device: The device to place tensors on. dtype: The data type of tensors. """ self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / ( base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) ) self.register_buffer("inv_freq", inv_freq) t = torch.arange( self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype ) freqs = torch.einsum("i,j->ij", t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer( "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False ) self.register_buffer( "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False ) def rotate_half(x): """ Rotates half the hidden dimensions of the input. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Tensor with half of its hidden dimensions rotated. """ x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids): """ Apply rotary position embeddings to query and key tensors. Args: q (torch.Tensor): Query tensor. k (torch.Tensor): Key tensor. cos (torch.Tensor): Cosine values. sin (torch.Tensor): Sine values. position_ids (torch.Tensor): Position IDs. Returns: torch.Tensor: Query and key tensors with rotary position embeddings applied. """ cos = cos.squeeze(1).squeeze(0) sin = sin.squeeze(1).squeeze(0) cos = cos[position_ids].unsqueeze(1) sin = sin[position_ids].unsqueeze(1) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class LlamaMLP(nn.Module): """ LlamaMLP is a multi-layer perceptron module used in the Llama model. Args: config: The configuration for the MLP. Attributes: pretraining_tp (int): The pretraining time periods. hidden_size (int): The size of the hidden layer. intermediate_size (int): The size of the intermediate layer. gate_proj (nn.Linear): The linear projection for gating. up_proj (nn.Linear): The linear projection for the up projection. down_proj (nn.Linear): The linear projection for the down projection. act_fn: The activation function. """ def __init__(self, config): super().__init__() self.pretraining_tp = config.pretraining_tp self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): """ Forward pass of the MLP. Args: x: Input tensor. Returns: torch.Tensor: Output tensor. """ if self.pretraining_tp > 1: slice = self.intermediate_size // self.pretraining_tp gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) up_proj_slices = self.up_proj.weight.split(slice, dim=0) down_proj_slices = self.down_proj.weight.split(slice, dim=1) gate_proj = torch.cat( [F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1, ) up_proj = torch.cat( [F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1, ) intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) down_proj = [ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp) ] down_proj = sum(down_proj) else: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ Repeat key and value tensors n times along the specified dimension. Args: hidden_states (torch.Tensor): Input tensor with shape (batch, num_key_value_heads, seqlen, head_dim). n_rep (int): Number of times to repeat. Returns: torch.Tensor: Repeated tensor with shape (batch, num_key_value_heads * n_rep, seqlen, head_dim). """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand( batch, num_key_value_heads, n_rep, slen, head_dim ) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class LlamaAttention(nn.Module): """ LlamaAttention is a multi-headed attention module based on the 'Attention Is All You Need' paper. Args: config (LlamaConfig): Configuration for the attention module. Attributes: config (LlamaConfig): Configuration for the attention module. hidden_size (int): The size of the hidden layer. num_heads (int): The number of attention heads. head_dim (int): The dimension of each attention head. num_key_value_heads (int): The number of key-value attention heads. num_key_value_groups (int): The number of key-value groups. pretraining_tp (int): The pretraining time periods. max_position_embeddings (int): The maximum position embeddings. """ def __init__(self, config: LlamaConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.pretraining_tp = config.pretraining_tp self.max_position_embeddings = config.max_position_embeddings if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear( self.hidden_size, self.num_heads * self.head_dim, bias=False ) self.k_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False ) self.v_proj = nn.Linear( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False ) self.o_proj = nn.Linear( self.num_heads * self.head_dim, self.hidden_size, bias=False ) self._init_rope() def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = LlamaRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = LlamaLinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, ) elif scaling_type == "dynamic": self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return ( tensor.view(bsz, seq_len, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() if self.pretraining_tp > 1: key_value_slicing = ( self.num_key_value_heads * self.head_dim ) // self.pretraining_tp query_slices = self.q_proj.weight.split( (self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 ) key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) query_states = [ F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp) ] query_states = torch.cat(query_states, dim=-1) key_states = [ F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp) ] key_states = torch.cat(key_states, dim=-1) value_states = [ F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp) ] value_states = torch.cat(value_states, dim=-1) else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view( bsz, q_len, self.num_heads, self.head_dim ).transpose(1, 2) key_states = key_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) value_states = value_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) # [MODIFIED] Using KVCache mechanism for preallocated GPU memory optimization # past_key_value is utilized to leverage previously computed key and value states. # If past_key_value is available, reuse the states for k, v, and self_attention. if past_key_value is not None: key_states = past_key_value[0].cat(key_states, dim=2) value_states = past_key_value[1].cat(value_states, dim=2) # Reset past_key_value to avoid return past_key_value. past_key_value = None # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul( query_states, key_states.transpose(2, 3) ) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax( attn_weights, dim=-1, dtype=torch.float32 ).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) if self.pretraining_tp > 1: attn_output = attn_output.split( self.hidden_size // self.pretraining_tp, dim=2 ) o_proj_slices = self.o_proj.weight.split( self.hidden_size // self.pretraining_tp, dim=1 ) attn_output = sum( [ F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp) ] ) else: attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class LlamaDecoderLayer(nn.Module): """ LlamaDecoderLayer represents a single layer of the Llama decoder. Args: config (LlamaConfig): Configuration for the decoder layer. Attributes: hidden_size (int): The size of the hidden layer. self_attn (LlamaAttention): Multi-headed self-attention module. mlp (LlamaMLP): Multi-layer perceptron module. input_layernorm (LlamaRMSNorm): Layer normalization for input. post_attention_layernorm (LlamaRMSNorm): Layer normalization after self-attention. """ def __init__(self, config: LlamaConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = LlamaAttention(config=config) self.mlp = LlamaMLP(config) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: """ Forward pass for the LlamaDecoderLayer. Args: hidden_states (torch.FloatTensor): Input tensor of shape `(batch, seq_len, embed_dim)`. attention_mask (torch.FloatTensor, optional): Attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. position_ids (torch.LongTensor, optional): Positional IDs tensor. past_key_value (Tuple[torch.FloatTensor], optional): Cached past key and value projection states. output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. use_cache (bool, optional): If set to `True`, `past_key_values` key-value states are returned and can be used to speed up decoding. Returns: Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: Tuple containing: - hidden_states (torch.FloatTensor): Output tensor. - self_attn_weights (Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]): Self-attention weights if `output_attentions` is `True`. - present_key_value (Optional[Tuple[torch.FloatTensor]]): Cached key and value projection states if `use_cache` is `True`. """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs LLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LlamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class LlamaPreTrainedModel(PreTrainedModel): config_class = LlamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlamaDecoderLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LlamaModel): module.gradient_checkpointing = value LLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class LlamaModel(LlamaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] Args: config: LlamaConfig """ def __init__(self, config: LlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding( config.vocab_size, config.hidden_size, self.padding_idx ) self.layers = nn.ModuleList( [LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)] ) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length ): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, # inputs_embeds.dtype, torch.float32, # [MODIFIED] force to cast to float32 device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ).to(inputs_embeds.device) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) if hasattr(self, "tree_mask") and self.tree_mask is not None: tree_mask = self.tree_mask tree_len = tree_mask.size(-1) combined_attention_mask[:, :, -tree_len:, -tree_len:][ tree_mask == 0 ] = combined_attention_mask.min() return combined_attention_mask @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values=None, # [MODIFIED] past_key_value is KVCache class inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): # if idx==16: # print(idx) if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = ( past_key_values[idx] if past_key_values is not None else None ) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, None) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class LlamaForCausalLM(LlamaPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = LlamaModel(config) self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values=None, # [MODIFIED] past_key_value is KVCache class inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.pretraining_tp > 1: lm_head_slices = self.lm_head.weight.split( self.vocab_size // self.pretraining_tp, dim=0 ) logits = [ F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp) ] logits = torch.cat(logits, dim=-1) else: logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): if past_key_values: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past ), ) return reordered_past @add_start_docstrings( """ The LLaMa Model transformer with a sequence classification head on top (linear layer). [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, LLAMA_START_DOCSTRING, ) class LlamaForSequenceClassification(LlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = LlamaModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError( "Cannot handle batch sizes > 1 if no padding token is defined." ) if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 ).to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[ torch.arange(batch_size, device=logits.device), sequence_lengths ] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and ( labels.dtype == torch.long or labels.dtype == torch.int ): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct( pooled_logits.view(-1, self.num_labels), labels.view(-1) ) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )