# -*- coding: utf-8 -*- # !pip -q uninstall gradio -y # !pip -q install gradio==3.50.2 # !pip -q install datasets import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device) processor = WhisperProcessor.from_pretrained( "openai/whisper-small") translator1 = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en") translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") from transformers import VitsModel, VitsTokenizer model = VitsModel.from_pretrained("facebook/mms-tts-rus") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") def translator_mul_ru(text): translation = translator2(translator1(text)[0]['translation_text']) return translation[0]['translation_text'] def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] def synthesise(text): translated_text = translator_mul_ru(text) inputs = tokenizer(translated_text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs["waveform"] return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) print(translated_text) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech[0] title = "Cascaded STST. Any language to russian" description = """ * В качестве ASR модели была выбрана - https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56, если поставить фильтры multilingual и wav2vec, то эта модель самая популярная после фейсбуковских - https://imgur.com/UNH5ym1 * Далее идет перевод с языка, на котором была запись, на английский, и после этого на русский * Потом переведенный текст воспроизводится на русском языке """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"]) demo.launch()