Spaces:
Running
Running
File size: 6,905 Bytes
abd15df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
"""
Adapted from https://github.com/nv-nguyen/template-pose/blob/main/src/utils/augmentation.py
"""
from torchvision import transforms
from PIL import ImageEnhance, ImageFilter, Image
import numpy as np
import random
import logging
from torchvision.transforms import RandomResizedCrop, ToTensor
class PillowRGBAugmentation:
def __init__(self, pillow_fn, p, factor_interval):
self._pillow_fn = pillow_fn
self.p = p
self.factor_interval = factor_interval
def __call__(self, PIL_image):
if random.random() <= self.p:
factor = random.uniform(*self.factor_interval)
if PIL_image.mode != "RGB":
logging.warning(
f"Error when apply data aug, image mode: {PIL_image.mode}"
)
imgs = imgs.convert("RGB")
logging.warning(f"Success to change to {PIL_image.mode}")
PIL_image = (self._pillow_fn(PIL_image).enhance(factor=factor)).convert(
"RGB"
)
return PIL_image
class PillowSharpness(PillowRGBAugmentation):
def __init__(
self,
p=0.3,
factor_interval=(0, 40.0),
):
super().__init__(
pillow_fn=ImageEnhance.Sharpness,
p=p,
factor_interval=factor_interval,
)
class PillowContrast(PillowRGBAugmentation):
def __init__(
self,
p=0.3,
factor_interval=(0.5, 1.6),
):
super().__init__(
pillow_fn=ImageEnhance.Contrast,
p=p,
factor_interval=factor_interval,
)
class PillowBrightness(PillowRGBAugmentation):
def __init__(
self,
p=0.5,
factor_interval=(0.5, 2.0),
):
super().__init__(
pillow_fn=ImageEnhance.Brightness,
p=p,
factor_interval=factor_interval,
)
class PillowColor(PillowRGBAugmentation):
def __init__(
self,
p=1,
factor_interval=(0.0, 20.0),
):
super().__init__(
pillow_fn=ImageEnhance.Color,
p=p,
factor_interval=factor_interval,
)
class PillowBlur:
def __init__(self, p=0.4, factor_interval=(1, 3)):
self.p = p
self.k = random.randint(*factor_interval)
def __call__(self, PIL_image):
if random.random() <= self.p:
PIL_image = PIL_image.filter(ImageFilter.GaussianBlur(self.k))
return PIL_image
class NumpyGaussianNoise:
def __init__(self, p, factor_interval=(0.01, 0.3)):
self.noise_ratio = random.uniform(*factor_interval)
self.p = p
def __call__(self, img):
if random.random() <= self.p:
img = np.copy(img)
noisesigma = random.uniform(0, self.noise_ratio)
gauss = np.random.normal(0, noisesigma, img.shape) * 255
img = img + gauss
img[img > 255] = 255
img[img < 0] = 0
return Image.fromarray(np.uint8(img))
class StandardAugmentation:
def __init__(
self, names, brightness, contrast, sharpness, color, blur, gaussian_noise
):
self.brightness = brightness
self.contrast = contrast
self.sharpness = sharpness
self.color = color
self.blur = blur
self.gaussian_noise = gaussian_noise
# define a dictionary of augmentation functions to be applied
self.names = names.split(",")
self.augmentations = {
"brightness": self.brightness,
"contrast": self.contrast,
"sharpness": self.sharpness,
"color": self.color,
"blur": self.blur,
"gaussian_noise": self.gaussian_noise,
}
def __call__(self, img):
for name in self.names:
img = self.augmentations[name](img)
return img
class GeometricAugmentation:
def __init__(
self,
names,
random_resized_crop,
random_horizontal_flip,
random_vertical_flip,
random_rotation,
):
self.random_resized_crop = random_resized_crop
self.random_horizontal_flip = random_horizontal_flip
self.random_vertical_flip = random_vertical_flip
self.random_rotation = random_rotation
self.names = names.split(",")
self.augmentations = {
"random_resized_crop": self.random_resized_crop,
"random_horizontal_flip": self.random_horizontal_flip,
"random_vertical_flip": self.random_vertical_flip,
"random_rotation": self.random_rotation,
}
def __call__(self, img):
for name in self.names:
img = self.augmentations[name](img)
return img
class ImageAugmentation:
def __init__(
self, names, clip_transform, standard_augmentation, geometric_augmentation
):
self.clip_transform = clip_transform
self.standard_augmentation = standard_augmentation
self.geometric_augmentation = geometric_augmentation
self.names = names.split(",")
self.transforms = {
"clip_transform": self.clip_transform,
"standard_augmentation": self.standard_augmentation,
"geometric_augmentation": self.geometric_augmentation,
}
print(f"Image augmentation: {self.names}")
def __call__(self, img):
for name in self.names:
img = self.transforms[name](img)
return img
if __name__ == "__main__":
# sanity check
import glob
import torchvision.transforms as transforms
from torchvision.utils import save_image
from omegaconf import DictConfig, OmegaConf
from hydra.utils import instantiate
import torch
from PIL import Image
augmentation_config = OmegaConf.load(
"./configs/dataset/train_transform/augmentation.yaml"
)
augmentation_config.names = "standard_augmentation,geometric_augmentation"
augmentation_transform = instantiate(augmentation_config)
img_paths = glob.glob("./datasets/osv5m/test/images/*.jpg")
num_try = 20
num_try_per_image = 8
num_imgs = 8
for idx in range(num_try):
imgs = []
for idx_img in range(num_imgs):
img = Image.open(img_paths[idx_img])
for idx_try in range(num_try_per_image):
if idx_try == 0:
imgs.append(ToTensor()(img.resize((224, 224))))
img_aug = augmentation_transform(img.copy())
img_aug = ToTensor()(img_aug)
imgs.append(img_aug)
imgs = torch.stack(imgs)
save_image(imgs, f"augmentation_{idx:03d}.png", nrow=9)
|