Spaces:
Running
Running
yunusserhat
commited on
Commit
•
d93bc09
1
Parent(s):
b0b2255
Update app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,6 @@ def load_spacy_model(model_name="en_core_web_md"):
|
|
25 |
return spacy.load(model_name)
|
26 |
|
27 |
|
28 |
-
|
29 |
nlp = load_spacy_model()
|
30 |
|
31 |
IMAGE_SIZE = (224, 224)
|
@@ -63,9 +62,9 @@ def most_frequent_locations(text: str):
|
|
63 |
# Format the output to show location names along with their counts
|
64 |
common_locations_str = ', '.join([f"{loc[0]} ({loc[1]} occurrences)" for loc in most_common_locations])
|
65 |
|
66 |
-
return f"Most Mentioned Locations: {common_locations_str}"
|
67 |
else:
|
68 |
-
return "No locations found"
|
69 |
|
70 |
|
71 |
# Transform image for model prediction
|
@@ -78,6 +77,17 @@ def transform_image(image: Image) -> torch.Tensor:
|
|
78 |
return transform(image).unsqueeze(0)
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Fetch city GeoJSON data
|
82 |
def get_city_geojson(location_name: str) -> dict:
|
83 |
geolocator = Nominatim(user_agent="predictGeolocforImage")
|
@@ -119,6 +129,7 @@ def predict_location(image: Image, model: Geolocalizer) -> tuple:
|
|
119 |
st.error(f"Failed to predict the location: {e}")
|
120 |
return None
|
121 |
|
|
|
122 |
# Display map in Streamlit
|
123 |
def display_map(city_geojson: dict, gps_degrees: list) -> None:
|
124 |
map_view = pdk.Deck(
|
@@ -175,10 +186,8 @@ def scrape_webpage(url: str) -> tuple:
|
|
175 |
|
176 |
|
177 |
def main():
|
178 |
-
|
179 |
st.title('Welcome to Geolocation Guesstimation Demo 👋')
|
180 |
|
181 |
-
|
182 |
# Define page navigation using the sidebar
|
183 |
page = st.sidebar.selectbox(
|
184 |
"Choose your action:",
|
@@ -188,16 +197,16 @@ def main():
|
|
188 |
|
189 |
st.sidebar.success("Select a demo above.")
|
190 |
st.sidebar.info(
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
|
195 |
st.sidebar.title("Contact")
|
196 |
st.sidebar.info(
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
if page == "Home":
|
202 |
st.write("Welcome to the Geolocation Predictor. Please select an action from the sidebar dropdown.")
|
203 |
|
@@ -256,13 +265,15 @@ def social_media_page():
|
|
256 |
if result:
|
257 |
gps_degrees, location_query, city_geojson, processing_time = result
|
258 |
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
259 |
-
st.write(
|
|
|
260 |
if city_geojson:
|
261 |
display_map(city_geojson, gps_degrees)
|
262 |
st.write(f"Processing Time (seconds): {processing_time}")
|
263 |
# Check for match and notify
|
264 |
-
if location_query
|
265 |
-
st.success(
|
|
|
266 |
else:
|
267 |
st.error(f"Failed to fetch image at URL {media_url}: HTTP {response.status_code}")
|
268 |
|
@@ -271,20 +282,35 @@ def web_page_url_page():
|
|
271 |
st.header("Web Page Analyser")
|
272 |
web_page_url = st.text_input("Enter a web page URL to scrape:", key='web_page_url_input')
|
273 |
if web_page_url:
|
274 |
-
text, images = scrape_webpage(web_page_url)
|
275 |
if text:
|
276 |
-
st.subheader("Extracted Text First 500
|
277 |
st.write(text[:500])
|
278 |
-
most_used_location = most_frequent_locations(text)
|
279 |
st.subheader("Most Frequent Location")
|
280 |
st.write(most_used_location)
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
|
290 |
if __name__ == '__main__':
|
|
|
25 |
return spacy.load(model_name)
|
26 |
|
27 |
|
|
|
28 |
nlp = load_spacy_model()
|
29 |
|
30 |
IMAGE_SIZE = (224, 224)
|
|
|
62 |
# Format the output to show location names along with their counts
|
63 |
common_locations_str = ', '.join([f"{loc[0]} ({loc[1]} occurrences)" for loc in most_common_locations])
|
64 |
|
65 |
+
return f"Most Mentioned Locations: {common_locations_str}", [loc[0] for loc in most_common_locations]
|
66 |
else:
|
67 |
+
return "No locations found", []
|
68 |
|
69 |
|
70 |
# Transform image for model prediction
|
|
|
77 |
return transform(image).unsqueeze(0)
|
78 |
|
79 |
|
80 |
+
def check_location_match(location_query, most_common_locations):
|
81 |
+
name = location_query['name']
|
82 |
+
admin1 = location_query['admin1']
|
83 |
+
cc = location_query['cc']
|
84 |
+
|
85 |
+
for loc in most_common_locations:
|
86 |
+
if name in loc and admin1 in loc and cc in loc:
|
87 |
+
return True
|
88 |
+
return False
|
89 |
+
|
90 |
+
|
91 |
# Fetch city GeoJSON data
|
92 |
def get_city_geojson(location_name: str) -> dict:
|
93 |
geolocator = Nominatim(user_agent="predictGeolocforImage")
|
|
|
129 |
st.error(f"Failed to predict the location: {e}")
|
130 |
return None
|
131 |
|
132 |
+
|
133 |
# Display map in Streamlit
|
134 |
def display_map(city_geojson: dict, gps_degrees: list) -> None:
|
135 |
map_view = pdk.Deck(
|
|
|
186 |
|
187 |
|
188 |
def main():
|
|
|
189 |
st.title('Welcome to Geolocation Guesstimation Demo 👋')
|
190 |
|
|
|
191 |
# Define page navigation using the sidebar
|
192 |
page = st.sidebar.selectbox(
|
193 |
"Choose your action:",
|
|
|
197 |
|
198 |
st.sidebar.success("Select a demo above.")
|
199 |
st.sidebar.info(
|
200 |
+
"""
|
201 |
+
- Web App URL: <https://yunusserhat-guesstimatelocation.hf.space/>
|
202 |
+
""")
|
203 |
|
204 |
st.sidebar.title("Contact")
|
205 |
st.sidebar.info(
|
206 |
+
"""
|
207 |
+
Yunus Serhat Bıçakçı at [yunusserhat.com](https://yunusserhat.com) | [GitHub](https://github.com/yunusserhat) | [Twitter](https://twitter.com/yunusserhat) | [LinkedIn](https://www.linkedin.com/in/yunusserhat)
|
208 |
+
""")
|
209 |
+
|
210 |
if page == "Home":
|
211 |
st.write("Welcome to the Geolocation Predictor. Please select an action from the sidebar dropdown.")
|
212 |
|
|
|
265 |
if result:
|
266 |
gps_degrees, location_query, city_geojson, processing_time = result
|
267 |
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
268 |
+
st.write(
|
269 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
270 |
if city_geojson:
|
271 |
display_map(city_geojson, gps_degrees)
|
272 |
st.write(f"Processing Time (seconds): {processing_time}")
|
273 |
# Check for match and notify
|
274 |
+
if check_location_match(location_query, most_common_locations):
|
275 |
+
st.success(
|
276 |
+
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
|
277 |
else:
|
278 |
st.error(f"Failed to fetch image at URL {media_url}: HTTP {response.status_code}")
|
279 |
|
|
|
282 |
st.header("Web Page Analyser")
|
283 |
web_page_url = st.text_input("Enter a web page URL to scrape:", key='web_page_url_input')
|
284 |
if web_page_url:
|
285 |
+
text, images = scrape_webpage(web_page_url)
|
286 |
if text:
|
287 |
+
st.subheader("Extracted Text First 500 Characters:")
|
288 |
st.write(text[:500])
|
289 |
+
most_used_location, most_common_locations = most_frequent_locations(text)
|
290 |
st.subheader("Most Frequent Location")
|
291 |
st.write(most_used_location)
|
292 |
+
if images:
|
293 |
+
selected_image_url = st.selectbox("Select an image to predict location:", images)
|
294 |
+
if selected_image_url:
|
295 |
+
response = requests.get(selected_image_url)
|
296 |
+
if response.status_code == 200:
|
297 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
298 |
+
st.image(image, caption=f'Selected Image from URL: {selected_image_url}', use_column_width=True)
|
299 |
+
model = load_geoloc_model()
|
300 |
+
if model:
|
301 |
+
result = predict_location(image, model)
|
302 |
+
if result:
|
303 |
+
gps_degrees, location_query, city_geojson, processing_time = result
|
304 |
+
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
305 |
+
st.write(
|
306 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
307 |
+
if city_geojson:
|
308 |
+
display_map(city_geojson, gps_degrees)
|
309 |
+
st.write(f"Processing Time (seconds): {processing_time}")
|
310 |
+
# Check for match and notify
|
311 |
+
if check_location_match(location_query, most_common_locations):
|
312 |
+
st.success(
|
313 |
+
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
|
314 |
|
315 |
|
316 |
if __name__ == '__main__':
|