import os from os.path import abspath as abp import torch import hydra from hydra import initialize, compose from models.module import Geolocalizer from omegaconf import OmegaConf, open_dict from os.path import join from hydra.utils import instantiate def load_model_config(path): # given the directory of os.cwd() # compute the relative path to path path = abp(path) rel_path = os.path.relpath(path, start=os.path.split(__file__)[0]) with initialize(version_base=None, config_path=rel_path): cfg = compose(config_name="config", overrides=[]) checkpoint = torch.load(join(path, "last.ckpt")) del checkpoint["state_dict"][ "model.backbone.clip.vision_model.embeddings.position_ids" ] torch.save(checkpoint, join(path, "last2.ckpt")) with open_dict(cfg): cfg.checkpoint = join(path, "last2.ckpt") cfg.num_classes = 11399 cfg.model.network.mid.instance.final_dim = cfg.num_classes * 3 cfg.model.network.head.final_dim = cfg.num_classes * 3 cfg.model.network.head.instance.quadtree_path = join(path, "quadtree_10_1000.csv") cfg.dataset.train_dataset.path = "" cfg.dataset.val_dataset.path = "" cfg.dataset.test_dataset.path = "" cfg.logger.save_dir = "" cfg.data_dir = "" cfg.root_dir = "" cfg.mode = "test" cfg.model.network.backbone.instance.path = ( "laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K" ) return cfg.dataset.test_transform, cfg.model, join(path, "last2.ckpt"), True def load_model(path): transform_config, model_config, checkpoint_path, delete = load_model_config(path) transform = instantiate(transform_config) model = Geolocalizer.load_from_checkpoint(checkpoint_path, cfg=model_config) if delete: os.remove(checkpoint_path) return model, transform