Spaces:
Runtime error
Runtime error
File size: 6,006 Bytes
056b8c6 7a514c1 056b8c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
import transformers
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import (
PeftModel,
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training
)
import bs4
import requests
from typing import List
import nltk
from nltk import sent_tokenize
from tqdm import tqdm
import numpy as np
import faiss
import re
import unicodedata
import gradio as gr
import asyncio
device = "cuda" if torch.cuda.is_available() else "cpu"
device
base_model_id = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
device_map='auto',
trust_remote_code=True
)
ft_model = PeftModel.from_pretrained(model, "yurezsml/phi2_chan", offload_dir="./")
def remove_accents(input_str):
nfkd_form = unicodedata.normalize('NFKD', input_str)
return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])
def preprocess(text):
text = text.lower()
temp = remove_accents(text)
text = text.replace('\xa0', ' ')
text = text.replace('\n\n', '\n')
text = text.replace('()', '')
text = text.replace('[]', '')
text = re.sub("[\(\[].*?[\)\]]", "", text)
text = text.replace('а́', 'а')
return text
def split_text(text: str, n=2, character=" ") -> List[str]:
text = preprocess(text)
all_sentences = sent_tokenize(text)
return [' '.join(all_sentences[i : i + n]) for i in range(0, len(all_sentences), 2)]
def split_documents(documents: List[str]) -> list:
texts = []
for text in documents:
if text is not None:
for passage in split_text(text):
texts.append(passage)
return texts
def embed(text, model, tokenizer):
encoded_input = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt').to(model.device)
with torch.no_grad():
model_output = model(**encoded_input)
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = encoded_input['attention_mask'].unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
response = requests.get("https://en.wikipedia.org/wiki/Chandler_Bing")
base_text = ''
if response:
html = bs4.BeautifulSoup(response.text, 'html.parser')
title = html.select("#firstHeading")[0].text
paragraphs = html.select("p")
for para in paragraphs:
base_text = base_text + para.text
fact_coh_tokenizer = AutoTokenizer.from_pretrained("DeepPavlov/bert-base-multilingual-cased-sentence")
fact_coh_model = AutoModel.from_pretrained("DeepPavlov/bert-base-multilingual-cased-sentence")
fact_coh_model.to(device)
nltk.download('punkt')
subsample_documents = split_documents([base_text])
batch_size = 8
total_batches = len(subsample_documents) // batch_size + (0 if len(subsample_documents) % batch_size == 0 else 1)
base = list()
for i in tqdm(range(0, len(subsample_documents), batch_size), total=total_batches, desc="Processing Batches"):
batch_texts = subsample_documents[i:i + batch_size]
base.extend(embed(batch_texts, fact_coh_model, fact_coh_tokenizer))
base = np.array([vector.cpu().numpy() for vector in base])
index = faiss.IndexFlatL2(base.shape[1])
index.add(base)
async def get_context(subsample_documents, query, index, model, tokenizer):
k = 5
xq = embed(query.lower(), model, tokenizer).cpu().numpy()
D, I = index.search(xq.reshape(1, 768), k)
return subsample_documents[I[0][0]]
async def get_prompt(question, use_rag, answers_history: list[str]):
eval_prompt = '###system: answer the question as Chandler. '
for idx, text in enumerate(answers_history):
if idx % 2 == 0:
eval_prompt = eval_prompt + f' ###question: {text}'
else:
eval_prompt = eval_prompt + f' ###answer: {text} '
if use_rag:
context = await asyncio.wait_for(get_context(subsample_documents, question, index, fact_coh_model, fact_coh_tokenizer), timeout=60)
eval_prompt = eval_prompt + f' Chandler. {context}'
eval_prompt = eval_prompt + f' ###question: {question} '
eval_prompt = ' '.join(eval_prompt.split())
return eval_prompt
async def get_answer(question, use_rag, answers_history: list[str]):
eval_prompt = await asyncio.wait_for(get_prompt(question, use_rag, answers_history), timeout=60)
model_input = tokenizer(eval_prompt, return_tensors="pt").to(device)
ft_model.eval()
with torch.no_grad():
answer = tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=30, repetition_penalty=1.11)[0], skip_special_tokens=True) + '\n'
answer = ' '.join(answer.split())
if eval_prompt in answer:
answer = answer.replace(eval_prompt,'')
answer = answer.split('###answer')[1]
dialog = ''
for idx, text in enumerate(answers_history):
if idx % 2 == 0:
dialog = dialog + f'you: {text}\n'
else:
dialog = dialog + f'Chandler: {text}\n'
dialog = dialog + f'you: {question}\n'
dialog = dialog + f'Chandler: {answer}\n'
answers_history.append(question)
answers_history.append(answer)
return dialog, answers_history
async def async_proc(question, use_rag, answers_history: list[str]):
try:
return await asyncio.wait_for(get_answer(question, use_rag, answers_history), timeout=60)
except asyncio.TimeoutError:
return "Processing timed out.", answers_history
gr.Interface(
fn=async_proc,
inputs=[
gr.Textbox(
label="Question",
),
gr.Checkbox(label="Use RAG", info="Pick to RAG to improve factual coherence"),
gr.State(value=[]),
],
outputs=[
gr.Textbox(
label="Chat"
),
gr.State(),
],
title="Асинхронный сервис для чат-бота по сериалу Друзья",
concurrency_limit=5
).queue().launch(share=True, debug=True) |