File size: 6,006 Bytes
056b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a514c1
056b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch

import transformers
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

from peft import (
    PeftModel,
    LoraConfig,
    get_peft_model,
    prepare_model_for_kbit_training
)

import bs4
import requests
from typing import List

import nltk
from nltk import sent_tokenize

from tqdm import tqdm

import numpy as np

import faiss

import re

import unicodedata

import gradio as gr
import asyncio

device = "cuda" if torch.cuda.is_available() else "cpu"
device

base_model_id = "microsoft/phi-2"

model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    device_map='auto',
    trust_remote_code=True
)

ft_model = PeftModel.from_pretrained(model, "yurezsml/phi2_chan", offload_dir="./")

def remove_accents(input_str):
    nfkd_form = unicodedata.normalize('NFKD', input_str)
    return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])

def preprocess(text):
    text = text.lower()
    temp = remove_accents(text)
    text = text.replace('\xa0', ' ')
    text = text.replace('\n\n', '\n')
    text = text.replace('()', '')
    text = text.replace('[]', '')
    text = re.sub("[\(\[].*?[\)\]]", "", text)
    text = text.replace('а́', 'а')
    return text

def split_text(text: str, n=2, character=" ") -> List[str]:
    text = preprocess(text)

    all_sentences = sent_tokenize(text)
    return [' '.join(all_sentences[i : i + n]) for i in range(0, len(all_sentences), 2)]


def split_documents(documents: List[str]) -> list:
    texts = []
    for text in documents:
        if text is not None:
            for passage in split_text(text):
                texts.append(passage)

    return texts


def embed(text, model, tokenizer):
    encoded_input = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt').to(model.device)
    with torch.no_grad():
        model_output = model(**encoded_input)
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = encoded_input['attention_mask'].unsqueeze(-1).expand(token_embeddings.size()).float()
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    return sum_embeddings / sum_mask
    
response = requests.get("https://en.wikipedia.org/wiki/Chandler_Bing")

base_text = ''

if response:
    html = bs4.BeautifulSoup(response.text, 'html.parser')

    title = html.select("#firstHeading")[0].text
    paragraphs = html.select("p")
    for para in paragraphs:
        base_text = base_text + para.text

fact_coh_tokenizer = AutoTokenizer.from_pretrained("DeepPavlov/bert-base-multilingual-cased-sentence")
fact_coh_model = AutoModel.from_pretrained("DeepPavlov/bert-base-multilingual-cased-sentence")
fact_coh_model.to(device)

nltk.download('punkt')
subsample_documents = split_documents([base_text])

batch_size = 8
total_batches = len(subsample_documents) // batch_size + (0 if len(subsample_documents) % batch_size == 0 else 1)

base = list()
for i in tqdm(range(0, len(subsample_documents), batch_size), total=total_batches, desc="Processing Batches"):
  batch_texts = subsample_documents[i:i + batch_size]
  base.extend(embed(batch_texts, fact_coh_model, fact_coh_tokenizer))

base = np.array([vector.cpu().numpy() for vector in base])

index = faiss.IndexFlatL2(base.shape[1])
index.add(base)

async def get_context(subsample_documents, query, index, model, tokenizer):
  k = 5
  xq = embed(query.lower(), model, tokenizer).cpu().numpy()
  D, I = index.search(xq.reshape(1, 768), k)
  return subsample_documents[I[0][0]]

async def get_prompt(question, use_rag, answers_history: list[str]):
  eval_prompt = '###system: answer the question as Chandler. '
  for idx, text in enumerate(answers_history):
    if idx % 2 == 0:
      eval_prompt = eval_prompt + f' ###question: {text}'
    else:
      eval_prompt = eval_prompt + f' ###answer: {text} '
  if use_rag:
    context = await asyncio.wait_for(get_context(subsample_documents, question, index, fact_coh_model, fact_coh_tokenizer), timeout=60)
    eval_prompt = eval_prompt + f' Chandler. {context}'
  eval_prompt = eval_prompt + f' ###question: {question} '
  eval_prompt = ' '.join(eval_prompt.split())
  return eval_prompt
  
async def get_answer(question, use_rag, answers_history: list[str]):
  eval_prompt = await asyncio.wait_for(get_prompt(question, use_rag, answers_history), timeout=60)
  model_input = tokenizer(eval_prompt, return_tensors="pt").to(device)
  ft_model.eval()
  with torch.no_grad():
    answer = tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=30, repetition_penalty=1.11)[0], skip_special_tokens=True) + '\n'
  answer = ' '.join(answer.split())
  if eval_prompt in answer:
    answer = answer.replace(eval_prompt,'')
  answer = answer.split('###answer')[1]

  dialog = ''
  for idx, text in enumerate(answers_history):
    if idx % 2 == 0:
      dialog = dialog + f'you: {text}\n'
    else:
      dialog = dialog + f'Chandler: {text}\n'
  dialog = dialog + f'you: {question}\n'
  dialog = dialog + f'Chandler: {answer}\n'

  answers_history.append(question)
  answers_history.append(answer)

  return dialog, answers_history
  
async def async_proc(question, use_rag, answers_history: list[str]):
  try:
    return await asyncio.wait_for(get_answer(question, use_rag, answers_history), timeout=60)
  except asyncio.TimeoutError:
    return "Processing timed out.", answers_history

gr.Interface(
    fn=async_proc,
    inputs=[
        gr.Textbox(
            label="Question",
        ),
        gr.Checkbox(label="Use RAG", info="Pick to RAG to improve factual coherence"),
        gr.State(value=[]),
    ],
    outputs=[
        gr.Textbox(
            label="Chat"
        ),
        gr.State(),
    ],
    title="Асинхронный сервис для чат-бота по сериалу Друзья",
    concurrency_limit=5
).queue().launch(share=True, debug=True)