Florence-2-DEMO / app.py
yuting89830's picture
Upload 3 files
f213fc3 verified
raw
history blame
2.49 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces
import torch
from PIL import Image
import subprocess
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
torch.set_num_threads(4)
model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cpu").eval()
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
TITLE = "# [Florence-2-DocVQA Demo]"
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
# @spaces.GPU
def run_example(task_prompt, image, text_input=None):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=64,
early_stopping=True,
do_sample=False,
num_beams=1,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def process_image(image, text_input=None):
image = Image.fromarray(image) # Convert NumPy array to PIL Image
task_prompt = '<DocVQA>'
results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "")
return results
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(TITLE)
with gr.Tab(label="Florence-2 Image Captioning"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
text_input = gr.Textbox(label="Text Input (optional)")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(process_image, [input_img, text_input], [output_text])
demo.launch(debug=True)