File size: 22,144 Bytes
de28f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import math
import torch
from torch import nn
from torch.nn import functional as F

import commons
import modules
import attentions
import monotonic_align

from torch.nn import Conv1d, ConvTranspose1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from commons import init_weights, get_padding


class StochasticDurationPredictor(nn.Module):
    def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
        super().__init__()
        filter_channels = in_channels  # it needs to be removed from future version.
        self.in_channels = in_channels
        self.filter_channels = filter_channels
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.log_flow = modules.Log()
        self.flows = nn.ModuleList()
        self.flows.append(modules.ElementwiseAffine(2))
        for i in range(n_flows):
            self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
            self.flows.append(modules.Flip())

        self.post_pre = nn.Conv1d(1, filter_channels, 1)
        self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
        self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
        self.post_flows = nn.ModuleList()
        self.post_flows.append(modules.ElementwiseAffine(2))
        for i in range(4):
            self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
            self.post_flows.append(modules.Flip())

        self.pre = nn.Conv1d(in_channels, filter_channels, 1)
        self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
        self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, filter_channels, 1)

    def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
        x = torch.detach(x)
        x = self.pre(x)
        if g is not None:
            g = torch.detach(g)
            x = x + self.cond(g)
        x = self.convs(x, x_mask)
        x = self.proj(x) * x_mask

        if not reverse:
            flows = self.flows
            assert w is not None

            logdet_tot_q = 0
            h_w = self.post_pre(w)
            h_w = self.post_convs(h_w, x_mask)
            h_w = self.post_proj(h_w) * x_mask
            e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
            z_q = e_q
            for flow in self.post_flows:
                z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
                logdet_tot_q += logdet_q
            z_u, z1 = torch.split(z_q, [1, 1], 1)
            u = torch.sigmoid(z_u) * x_mask
            z0 = (w - u) * x_mask
            logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
            logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q

            logdet_tot = 0
            z0, logdet = self.log_flow(z0, x_mask)
            logdet_tot += logdet
            z = torch.cat([z0, z1], 1)
            for flow in flows:
                z, logdet = flow(z, x_mask, g=x, reverse=reverse)
                logdet_tot = logdet_tot + logdet
            nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
            return nll + logq  # [b]
        else:
            flows = list(reversed(self.flows))
            flows = flows[:-2] + [flows[-1]]  # remove a useless vflow
            z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
            for flow in flows:
                z = flow(z, x_mask, g=x, reverse=reverse)
            z0, z1 = torch.split(z, [1, 1], 1)
            logw = z0
            return logw


class DurationPredictor(nn.Module):
    def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
        super().__init__()

        self.in_channels = in_channels
        self.filter_channels = filter_channels
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.gin_channels = gin_channels

        self.drop = nn.Dropout(p_dropout)
        self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
        self.norm_1 = modules.LayerNorm(filter_channels)
        self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
        self.norm_2 = modules.LayerNorm(filter_channels)
        self.proj = nn.Conv1d(filter_channels, 1, 1)

        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, in_channels, 1)

    def forward(self, x, x_mask, g=None):
        x = torch.detach(x)
        if g is not None:
            g = torch.detach(g)
            x = x + self.cond(g)
        x = self.conv_1(x * x_mask)
        x = torch.relu(x)
        x = self.norm_1(x)
        x = self.drop(x)
        x = self.conv_2(x * x_mask)
        x = torch.relu(x)
        x = self.norm_2(x)
        x = self.drop(x)
        x = self.proj(x * x_mask)
        return x * x_mask


class TextEncoder(nn.Module):
    def __init__(self,
                 n_vocab,
                 out_channels,
                 hidden_channels,
                 filter_channels,
                 n_heads,
                 n_layers,
                 kernel_size,
                 p_dropout,
                 emotion_embedding):
        super().__init__()
        self.n_vocab = n_vocab
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.emotion_embedding = emotion_embedding

        if self.n_vocab != 0:
            self.emb = nn.Embedding(n_vocab, hidden_channels)
            if emotion_embedding:
                self.emo_proj = nn.Linear(1024, hidden_channels)
            nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)

        self.encoder = attentions.Encoder(
            hidden_channels,
            filter_channels,
            n_heads,
            n_layers,
            kernel_size,
            p_dropout)
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, x, x_lengths, emotion_embedding=None):
        if self.n_vocab != 0:
            x = self.emb(x) * math.sqrt(self.hidden_channels)  # [b, t, h]
        if emotion_embedding is not None:
            x = x + self.emo_proj(emotion_embedding.unsqueeze(1))
        x = torch.transpose(x, 1, -1)  # [b, h, t]
        x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

        x = self.encoder(x * x_mask, x_mask)
        stats = self.proj(x) * x_mask

        m, logs = torch.split(stats, self.out_channels, dim=1)
        return x, m, logs, x_mask


class ResidualCouplingBlock(nn.Module):
    def __init__(self,
                 channels,
                 hidden_channels,
                 kernel_size,
                 dilation_rate,
                 n_layers,
                 n_flows=4,
                 gin_channels=0):
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.flows = nn.ModuleList()
        for i in range(n_flows):
            self.flows.append(
                modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
                                              gin_channels=gin_channels, mean_only=True))
            self.flows.append(modules.Flip())

    def forward(self, x, x_mask, g=None, reverse=False):
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x = flow(x, x_mask, g=g, reverse=reverse)
        return x


class PosteriorEncoder(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 hidden_channels,
                 kernel_size,
                 dilation_rate,
                 n_layers,
                 gin_channels=0):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, x, x_lengths, g=None):
        x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
        x = self.pre(x) * x_mask
        x = self.enc(x, x_mask, g=g)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
        return z, m, logs, x_mask


class Generator(torch.nn.Module):
    def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
                 upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
        super(Generator, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
        resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(weight_norm(
                ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
                                k, u, padding=(k - u) // 2)))

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
                self.resblocks.append(resblock(ch, k, d))

        self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups.apply(init_weights)

        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)

    def forward(self, x, g=None):
        x = self.conv_pre(x)
        if g is not None:
            x = x + self.cond(g)

        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            x = self.ups[i](x)
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        print('Removing weight norm...')
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()


class DiscriminatorP(torch.nn.Module):
    def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
        super(DiscriminatorP, self).__init__()
        self.period = period
        self.use_spectral_norm = use_spectral_norm
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList([
            norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
            norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
        ])
        self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def forward(self, x):
        fmap = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class DiscriminatorS(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(DiscriminatorS, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList([
            norm_f(Conv1d(1, 16, 15, 1, padding=7)),
            norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
            norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
            norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
            norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
            norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
        ])
        self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))

    def forward(self, x):
        fmap = []

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(MultiPeriodDiscriminator, self).__init__()
        periods = [2, 3, 5, 7, 11]

        discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
        discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
        self.discriminators = nn.ModuleList(discs)

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            y_d_gs.append(y_d_g)
            fmap_rs.append(fmap_r)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class SynthesizerTrn(nn.Module):
    """
    Synthesizer for Training
    """

    def __init__(self,
                 n_vocab,
                 spec_channels,
                 segment_size,
                 inter_channels,
                 hidden_channels,
                 filter_channels,
                 n_heads,
                 n_layers,
                 kernel_size,
                 p_dropout,
                 resblock,
                 resblock_kernel_sizes,
                 resblock_dilation_sizes,
                 upsample_rates,
                 upsample_initial_channel,
                 upsample_kernel_sizes,
                 n_speakers=0,
                 gin_channels=0,
                 use_sdp=True,
                 emotion_embedding=False,
                 **kwargs):

        super().__init__()
        self.n_vocab = n_vocab
        self.spec_channels = spec_channels
        self.inter_channels = inter_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.resblock = resblock
        self.resblock_kernel_sizes = resblock_kernel_sizes
        self.resblock_dilation_sizes = resblock_dilation_sizes
        self.upsample_rates = upsample_rates
        self.upsample_initial_channel = upsample_initial_channel
        self.upsample_kernel_sizes = upsample_kernel_sizes
        self.segment_size = segment_size
        self.n_speakers = n_speakers
        self.gin_channels = gin_channels

        self.use_sdp = use_sdp

        self.enc_p = TextEncoder(n_vocab,
                                 inter_channels,
                                 hidden_channels,
                                 filter_channels,
                                 n_heads,
                                 n_layers,
                                 kernel_size,
                                 p_dropout,
                                 emotion_embedding)
        self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
                             upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
        self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
                                      gin_channels=gin_channels)
        self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)

        if use_sdp:
            self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
        else:
            self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)

        if n_speakers > 1:
            self.emb_g = nn.Embedding(n_speakers, gin_channels)

    def forward(self, x, x_lengths, y, y_lengths, sid=None, emotion_embedding=None):

        x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding)
        if self.n_speakers > 1:
            g = self.emb_g(sid).unsqueeze(-1)  # [b, h, 1]
        else:
            g = None

        z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
        z_p = self.flow(z, y_mask, g=g)

        with torch.no_grad():
            # negative cross-entropy
            s_p_sq_r = torch.exp(-2 * logs_p)  # [b, d, t]
            neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True)  # [b, 1, t_s]
            neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
                                     s_p_sq_r)  # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
            neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r))  # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
            neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True)  # [b, 1, t_s]
            neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4

            attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
            attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()

        w = attn.sum(2)
        if self.use_sdp:
            l_length = self.dp(x, x_mask, w, g=g)
            l_length = l_length / torch.sum(x_mask)
        else:
            logw_ = torch.log(w + 1e-6) * x_mask
            logw = self.dp(x, x_mask, g=g)
            l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask)  # for averaging

        # expand prior
        m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
        logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)

        z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
        o = self.dec(z_slice, g=g)
        return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)

    def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
              emotion_embedding=None):
        x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding)
        if self.n_speakers > 1:
            g = self.emb_g(sid).unsqueeze(-1)  # [b, h, 1]
        else:
            g = None

        if self.use_sdp:
            logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
        else:
            logw = self.dp(x, x_mask, g=g)
        w = torch.exp(logw) * x_mask * length_scale
        w_ceil = torch.ceil(w)
        y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
        y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
        attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
        attn = commons.generate_path(w_ceil, attn_mask)

        m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)  # [b, t', t], [b, t, d] -> [b, d, t']
        logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
                                                                                 2)  # [b, t', t], [b, t, d] -> [b, d, t']

        z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
        z = self.flow(z_p, y_mask, g=g, reverse=True)
        o = self.dec((z * y_mask)[:, :, :max_len], g=g)
        return o, attn, y_mask, (z, z_p, m_p, logs_p)

    def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
        assert self.n_speakers > 1, "n_speakers have to be larger than 1."
        g_src = self.emb_g(sid_src).unsqueeze(-1)
        g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
        z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
        z_p = self.flow(z, y_mask, g=g_src)
        z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
        o_hat = self.dec(z_hat * y_mask, g=g_tgt)
        return o_hat, y_mask, (z, z_p, z_hat)