Spaces:
Sleeping
Sleeping
File size: 31,525 Bytes
83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 83cb3c8 13f64cc 120df80 83cb3c8 13f64cc 83cb3c8 13f64cc 120df80 13f64cc 120df80 13f64cc 83cb3c8 120df80 13f64cc 120df80 13f64cc 120df80 13f64cc 120df80 13f64cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import copy
import re
from typing import List, Dict, Union, Callable
import numpy as np
import datasets
import evaluate
from rouge_chinese import Rouge
from scipy.optimize import linear_sum_assignment
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {quad match score},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
evaluate sentiment quadruples.
评估生成模型的情感四元组
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
score: sentiment quadruple match score
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> import evaluate
>>> module = evaluate.load("yuyijiong/quad_match_score")
>>> predictions=["food | good | food#taste | pos"]
>>> references=["food | good | food#taste | pos & service | bad | service#general | neg"]
>>> result=module.compute(predictions=predictions, references=references)
>>> print(result)
result={'ave match score of weight (1, 1, 1, 1)': 0.375,
'f1 score of exact match': 0.0,
'f1 score of optimal match of weight (1, 1, 1, 1)': 0.5}
"""
# 计算rougel的f1值
def get_rougel_f1(text_pred_list: List[str], text_true_list: List[str]) -> float:
assert len(text_pred_list) == len(text_true_list), "文本数量不一致"
# 如果text_pred_list[0]为空字符串或空格,则返回0
if not text_pred_list[0].strip():
return 0
rouge = Rouge()
# 判断text_true[0]是否有中文,有中文则要用空格分割
if re.search(u"[\u4e00-\u9fa5]+", text_pred_list[0]):
text_pred_list = [' '.join(list(text_pred)) for text_pred in text_pred_list]
text_true_list = [' '.join(list(text_true)) for text_true in text_true_list]
rouge_l_f1 = rouge.get_scores(text_pred_list, text_true_list, avg=True)['rouge-l']['f']
return rouge_l_f1
# 记录四元组的函数
class CommentUnitsSim:
def __init__(self, data: List[Dict[str, str]], data_source: any = None, abnormal=False, language=None):
self.data_source = data_source
self.abnormal = abnormal
data = copy.deepcopy(data)
# 如果字典有target,则改名为target_text
for quad_dict in data:
if 'target' in quad_dict:
quad_dict['target_text'] = quad_dict['target']
del quad_dict['target']
if 'opinion' in quad_dict:
quad_dict['opinion_text'] = quad_dict['opinion']
del quad_dict['opinion']
self.data = data
self.polarity_en2zh = {'positive': '积极', 'negative': '消极', 'neutral': '中性', 'pos': '积极', 'neg': '消极',
'neu': '中性', '积极': '积极', '消极': '消极', '中性': '中性'}
self.polarity_zh2en = {'积极': 'pos', '消极': 'neg', '中性': 'neu', 'pos': 'pos', 'neg': 'neg', 'neu': 'neu',
'positive': 'pos', 'negative': 'neg', 'neutral': 'neu'}
self.language = language if language is not None else 'zh' if self.check_zh() else 'en'
self.none_sign = 'null'
@property
def num(self):
return len(self.data)
# 检查四元组中是否有中文
def check_zh(self):
for quad_dict in self.data:
if re.search('[\u4e00-\u9fa5]', quad_dict['target_text']) or re.search('[\u4e00-\u9fa5]',
quad_dict['opinion_text']):
return True
return False
# 检测极性是否正确
def check_polarity(self):
# 若有某个四元组的极性不是positive、negative、neutral,则返回False
for quad_dict in self.data:
if quad_dict['polarity'] not in ['positive', 'negative', 'neutral', 'pos', 'neg', 'neu', '积极', '消极',
'中性']:
self.abnormal = True
return False
# 将极性由英文转为中文
def convert_polarity_en2zh(self):
for quad_dict in self.data:
quad_dict['polarity'] = self.polarity_en2zh[quad_dict['polarity']]
return self
# 将极性由中文转为英文
def convert_polarity_zh2en(self):
for quad_dict in self.data:
quad_dict['polarity'] = self.polarity_zh2en[quad_dict['polarity']]
return self
# 检查是否有重复的四元组,若有则删除重复的
def del_duplicate(self):
new_data = []
for quad_dict in self.data:
if quad_dict not in new_data:
new_data.append(quad_dict)
self.data = new_data
return self
# 检查是否有target和opinion都为null的四元组,若有则返回True
def check_target_opinion_null(self):
for quad_dict in self.data:
if quad_dict['target_text'] == 'null' and quad_dict['opinion_text'] == 'null':
return True
return False
# 检查是否有target或opinion为null的四元组,若有则返回True
def check_any_null(self):
for quad_dict in self.data:
if quad_dict['target_text'] == 'null' or quad_dict['opinion_text'] == 'null':
return True
return False
@classmethod
def from_str(cls, quadruple_str: str, tuple_len: Union[int, list, str] = 4, format_code=0, sep_token1=' & ',
sep_token2=' | '):
data = []
abnormal = False
# 确保分隔符后面一定是空格
for i in range(len(quadruple_str) - 1):
if (quadruple_str[i] == sep_token1.strip() or quadruple_str[i] == sep_token2.strip()) and quadruple_str[
i + 1] != ' ':
quadruple_str = quadruple_str[:i + 1] + ' ' + quadruple_str[i + 1:]
# 选择几元组,即创建列表索引,从四元组中抽出n元
if isinstance(tuple_len, int):
tuple_index = list(range(tuple_len))
elif isinstance(tuple_len, list):
tuple_index = tuple_len
elif isinstance(tuple_len, str):
# 例如将‘012’转换为[0,1,2]
tuple_index = [int(i) for i in tuple_len]
else:
raise Exception('tuple_len参数错误')
for quadruple in quadruple_str.split(sep_token1):
if format_code == 0:
# quadruple可能是target|opinion|aspect|polarity,也可能是target|opinion|aspect,也可能是target|opinion,若没有则为“None”
quadruple_split = [unit.strip() for unit in quadruple.split(sep_token2)]
if len(quadruple_split) > len(tuple_index):
print('quadruple格式错误,过多元素', quadruple_str)
abnormal = True
quadruple_split = quadruple_split[0:len(tuple_index)] # 过长则截断
elif len(quadruple_split) < len(tuple_index):
print('quadruple格式错误,过少元素', quadruple_str)
abnormal = True
quadruple_split = ["None"] * (
len(tuple_index) - len(quadruple_split)) + quadruple_split # 过短则补'None'
quadruple_keys = [["target_text", "opinion_text", "aspect", "polarity"][i] for i in tuple_index]
quadruple_dict = dict(zip(quadruple_keys, quadruple_split))
q = {"target_text": 'None', "opinion_text": 'None', "aspect": 'None', "polarity": 'None'}
q.update(quadruple_dict)
# 检查极性是否合法
if q['polarity'] not in ['pos', 'neg', 'neu', 'None', '积极', '消极', '中性']:
print('quadruple格式错误,极性格式不对', quadruple_str)
else:
raise Exception('answer_format参数错误')
data.append(q)
return CommentUnitsSim(data, quadruple_str, abnormal)
@classmethod
def from_list(cls, quadruple_list: List[List[str]], **kwargs):
data = []
for quadruple in quadruple_list:
# #format_code='013'代表list只有四元组的第0、1、3个元素,需要扩充为4元组,空缺位置补上None
# if format_code=='013':
# quadruple.insert(2,None)
data.append(
{"target_text": quadruple[0], "opinion_text": quadruple[1], "aspect": quadruple[2],
"polarity": quadruple[3]})
return CommentUnitsSim(data, quadruple_list, **kwargs)
@classmethod
def from_list_dict(cls, quadruple_list: List[dict], **kwargs):
for quad_dict in quadruple_list:
if 'target' in quad_dict:
quad_dict['target_text'] = quad_dict['target']
del quad_dict['target']
if 'opinion' in quad_dict:
quad_dict['opinion_text'] = quad_dict['opinion']
del quad_dict['opinion']
data = []
for quadruple in quadruple_list:
# 如果quadruple缺少某个key,则补上None
q = {"target_text": 'None', "opinion_text": 'None', "aspect": 'None', "polarity": 'None'}
q.update(quadruple)
data.append(q)
return CommentUnitsSim(data, quadruple_list, **kwargs)
# 转化为list,即只保留字典的value
def to_list(self):
data = []
for quad_dict in self.data:
data.append(
[quad_dict['target_text'], quad_dict['opinion_text'], quad_dict['aspect'], quad_dict['polarity']])
return data
# 将data转换为n元组字符串
def get_quadruple_str(self, format_code=0, tuple_len: Union[int, list, str] = 4, sep_token1=' & ',
sep_token2=' | '):
new_text_list = []
# 选择几元组,即创建列表索引,从四元组中抽出n元
if isinstance(tuple_len, int):
tuple_index = list(range(tuple_len))
elif isinstance(tuple_len, list):
tuple_index = tuple_len
elif isinstance(tuple_len, str):
# 例如将‘012’转换为[0,1,2]
tuple_index = [int(i) for i in tuple_len]
else:
raise Exception('tuple_len参数错误')
try:
# 若语言为中文,则使用中文极性
if self.language == 'zh':
self.convert_polarity_en2zh()
else:
self.convert_polarity_zh2en()
except:
print('语言参数错误', self.data)
print(self.language)
raise Exception('语言参数错误')
# 若tuple_index==[3],则返回综合情感极性
if tuple_index == [3]:
return self.merge_polarity()
for quad_dict in self.data:
# 提取target_text,如果空列表则为'',如果列表长度大于1则为','.join(list)
target_text = quad_dict['target_text']
# 提取opinion_text,如果空列表则为'',如果列表长度大于1则为','.join(list)
opinion_text = quad_dict['opinion_text']
# 提取aspect
aspect = quad_dict['aspect']
# 提取polarity
polarity = quad_dict['polarity']
# 拼接,‘|’分割
if format_code == 0:
# 根据tuple_len拼接
new_text = sep_token2.join([[target_text, opinion_text, aspect, polarity][i] for i in tuple_index])
else:
raise Exception('answer_format参数错误')
new_text_list.append(new_text)
# 如果tuple_index为[2,3],则需要去除new_text_list中重复的元素,不要改变顺序。因为可能有重复的方面
if tuple_index == [2, 3]:
res = []
for t in new_text_list:
if t not in res:
res.append(t)
new_text_list = res
# 如果tuple_index为[3],则只保留new_text_list的第一个元素。因为只有一个情感极性
elif tuple_index == [3]:
new_text_list = new_text_list[:1]
if format_code == 0:
# 根据tuple_len拼接
return sep_token1.join(new_text_list)
# 与另一个CommentUnits对象对比,检测有几个相同的四元组
def compare_same(self, other) -> int:
count = 0
for quad_dict in self.data:
if quad_dict in other.data:
count += 1
return count
# 检查自身数据的四元组中target是否有重复
def check_target_repeat(self):
target_list = []
for quad_dict in self.data:
target_list.append(quad_dict['target_text'])
return len(target_list) != len(set(target_list))
# 检查自身数据的四元组中opinion是否有重复
def check_opinion_repeat(self):
opinion_list = []
for quad_dict in self.data:
opinion_list.append(quad_dict['opinion_text'])
return len(opinion_list) != len(set(opinion_list))
# 检查自身数据的四元组中aspect是否有重复
def check_aspect_repeat(self):
aspect_list = []
for quad_dict in self.data:
aspect_list.append(quad_dict['aspect'])
return len(aspect_list) != len(set(aspect_list))
# 输出所有aspect的列表
def get_aspect_list(self):
aspect_list = []
for quad_dict in self.data:
aspect_list.append(quad_dict['aspect'])
return aspect_list
# 输出所有target的列表
def get_target_list(self):
target_list = []
for quad_dict in self.data:
target_list.append(quad_dict['target_text'])
return target_list
# 输出所有opinion的列表
def get_opinion_list(self):
opinion_list = []
for quad_dict in self.data:
opinion_list.append(quad_dict['opinion_text'])
return opinion_list
# 输出所有polarity的列表
def get_polarity_list(self):
polarity_list = []
for quad_dict in self.data:
polarity_list.append(quad_dict['polarity'])
return polarity_list
# 对所有polarity进行综合
def merge_polarity(self):
polarity_list = self.get_polarity_list()
# 判断是英文还是中文
if self.language == 'en':
if 'pos' in polarity_list and 'neg' in polarity_list:
return 'neu'
elif 'pos' in polarity_list:
return 'pos'
elif 'neg' in polarity_list:
return 'neg'
else:
return 'neu'
else:
if '积极' in polarity_list and '消极' in polarity_list:
return '中性'
elif '积极' in polarity_list:
return '积极'
elif '消极' in polarity_list:
return '消极'
else:
return '中性'
# 检测是否有不合法opinion
def check_opinion_in_comment(self, comment_text):
for quad_dict in self.data:
if quad_dict['opinion_text'] != '*' and (not quad_dict['opinion_text'] in comment_text):
return False
return True
# 检测是否有不合法target
def check_target_in_comment(self, comment_text):
for quad_dict in self.data:
if quad_dict['target_text'] != '*' and (not quad_dict['target_text'] in comment_text):
return False
return True
# 计算两个四元组的相似度
@staticmethod
def get_similarity(units1, units2: 'CommentUnitsSim'):
pass
# 对自身数据进行操作
def apply(self, func: Callable, field: str):
for quad_dict in self.data:
quad_dict[field] = func(quad_dict[field])
return self
# 四元组匹配函数
class CommentUnitsMatch:
def __init__(self, target_weight=0.5, opinion_weight=0.5, aspect_weight=0.5, polarity_weight=0.5, one_match=True):
# 归一化权重
weight_sum = target_weight + opinion_weight + aspect_weight + polarity_weight
self.target_weight = target_weight / weight_sum
self.opinion_weight = opinion_weight / weight_sum
self.aspect_weight = aspect_weight / weight_sum
self.polarity_weight = polarity_weight / weight_sum
# 是否一对一匹配
self.one_match = one_match
# 特定feature置零
def set_zero(self, feature: str = 'polarity'):
if feature == 'polarity':
self.polarity_weight = 0
elif feature == 'aspect':
self.aspect_weight = 0
elif 'opinion' in feature:
self.opinion_weight = 0
elif 'target' in feature:
self.target_weight = 0
else:
raise Exception('feature参数错误')
def re_normalize(self):
weight_sum = self.target_weight + self.opinion_weight + self.aspect_weight + self.polarity_weight
self.target_weight = self.target_weight / weight_sum
self.opinion_weight = self.opinion_weight / weight_sum
self.aspect_weight = self.aspect_weight / weight_sum
self.polarity_weight = self.polarity_weight / weight_sum
# 计算cost矩阵,完全匹配为0,不匹配为1
def get_cost_matrix(self, units1: 'CommentUnitsSim', units2: 'CommentUnitsSim', feature: str = 'polarity'):
pass
# 检查此feature是否存在,不存在则返回全0矩阵
if units1.data[0].get(feature) is None or units2.data[0].get(feature) is None \
or units1.data[0].get(feature) == 'None' or units2.data[0].get(feature) == 'None':
cost_matrix = np.zeros((len(units1.data), len(units2.data)))
# 对应feature的weight也为0
self.set_zero(feature)
# 并再次归一化
self.re_normalize()
return cost_matrix
# 检查两个四元组的极性是否相同,生成cost矩阵,用于匈牙利算法。不相同则cost为1,相同则cost为0
cost_matrix = []
for quad_dict1 in units1.data:
cost_list = []
for quad_dict2 in units2.data:
if quad_dict1[feature] == quad_dict2[feature]:
cost_list.append(0)
else:
cost_list.append(1)
cost_matrix.append(cost_list)
# cost矩阵转换为numpy数组,大小为(len(units1.data),len(units2.data))
cost_matrix = np.array(cost_matrix)
return cost_matrix
# 计算cost矩阵,使用rougel指标
def get_cost_matrix_rouge(self, units1: 'CommentUnitsSim', units2: 'CommentUnitsSim', feature: str = 'target_text'):
# 检查此feature是否存在,不存在则返回全0矩阵
if units1.data[0].get(feature) is None or units2.data[0].get(feature) is None \
or units1.data[0].get(feature) == 'None' or units2.data[0].get(feature) == 'None':
cost_matrix = np.zeros((len(units1.data), len(units2.data)))
# 对应feature的weight也为0
self.set_zero(feature)
# 并再次归一化
self.re_normalize()
return cost_matrix
# 检查两个四元组的极性是否相同,生成cost矩阵,用于匈牙利算法。相同则cost为0,不相同则cost为1-rougel
cost_matrix = []
for quad_dict1 in units1.data:
cost_list = []
for quad_dict2 in units2.data:
if quad_dict1[feature] == quad_dict2[feature]:
cost_list.append(0)
else:
cost_list.append(1 - get_rougel_f1([quad_dict1[feature]], [quad_dict2[feature]]))
cost_matrix.append(cost_list)
# cost矩阵转换为numpy数组,大小为(len(units1.data),len(units2.data))
cost_matrix = np.array(cost_matrix)
return cost_matrix
# 匹配四元组并计算cost
def match_units(self, units1: 'CommentUnitsSim', units2: 'CommentUnitsSim') -> tuple:
# 计算极性的cost矩阵,矩阵元素在0-1之间
cost_matrix_polarity = self.get_cost_matrix(units1, units2, feature='polarity')
# 计算aspect的cost矩阵
cost_matrix_aspect = self.get_cost_matrix(units1, units2, feature='aspect')
# 计算target的cost矩阵
cost_matrix_target = self.get_cost_matrix_rouge(units1, units2, feature='target_text')
# 计算opinion的cost矩阵
cost_matrix_opinion = self.get_cost_matrix_rouge(units1, units2, feature='opinion_text')
# 计算总的cost矩阵,矩阵元素在0-1之间。矩阵的行数为units1即pred的数量,列数为units2即true的数量
cost_matrix = self.target_weight * cost_matrix_target + self.opinion_weight * cost_matrix_opinion + \
self.aspect_weight * cost_matrix_aspect + self.polarity_weight * cost_matrix_polarity
score_matrix = 1 - cost_matrix
cost = 0
# 使用匈牙利算法进行匹配
if self.one_match:
# 只允许一对一的匹配,这种情况下row_ind和col_ind的长度一定相等且等于units1和units2的数量中的较小值
row_ind, col_ind = linear_sum_assignment(cost_matrix)
else:
# 允许一对多的匹配。这种情况下每个四元组都一定匹配上,这种情况下row_ind和col_ind的长度一定相等且等于units1和units2的数量中的较大值
if units1.num > units2.num:
row_ind = np.arange(units1.num)
col_ind = np.argmin(cost_matrix, axis=1)
else:
row_ind = np.argmin(cost_matrix, axis=0)
col_ind = np.arange(units2.num)
# 计算这种匹配的cost
for i in range(len(row_ind)):
cost += cost_matrix[row_ind[i]][col_ind[i]]
# 计算这种匹配下的TP\FP\FN
TP = 0
for i in range(len(row_ind)):
TP += score_matrix[row_ind[i]][col_ind[i]]
# len(row_ind)为pred的数量,TP为匹配上的数量
FP = units1.num - TP
FN = units2.num - TP
# 如果一对一匹配,会有匹配不上的四元组,这些四元组cost为1
max_units_num = max(units1.num, units2.num)
if self.one_match:
cost += (max_units_num - len(row_ind))
# 对cost进行归一化,使其在0-1之间
cost_per_quadruple = cost / max_units_num
if cost_per_quadruple > 1 or cost_per_quadruple < 0:
print('cost错误', cost_per_quadruple, 'pred:', units1.data, 'true:', units2.data)
print(self.target_weight, self.opinion_weight, self.aspect_weight, self.polarity_weight)
# 返回的cost在0-1之间
return cost_per_quadruple, TP, FP, FN
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class QuadMatch(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence")),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self,
predictions: List[str],
references: Union[List[str], List[List[str]]],
quad_weights: tuple = (1, 1, 1, 1),
**kwargs) -> dict:
'''
:param predictions: list of predictions of sentiment quads
:param references: list of references of sentiment quads
:param quad_weights: weight of target,opinion,aspect,polarity for cost compute
:param kwargs:
:param tuple_len: indicate the format of the quad, see the following mapping
:param sep_token1: the token to seperate quads
:param sep_token2: the token to seperate units of one quad
:return:average matching score
#mapping
id2prompt={'0123':"quadruples (target | opinion | aspect | polarity)",
'':"quadruples (target | opinion | aspect | polarity)",
'01':'pairs (target | opinion)',
'012':'triples (target | opinion | aspect)',
'013':'triples (target | opinion | polarity)',
'023':'triples (target | aspect | polarity)',
'23':'pairs (aspect | polarity)',
'03':'pairs (target | polarity)',
'13':'pairs (opinion | polarity)',
'3':'single (polarity)'}
#中文版映射
id2prompt_zh={'0123': "四元组(对象 | 观点 | 方面 | 极性)",
'':"四元组(对象 | 观点 | 方面 | 极性)",
'01':'二元组(对象 | 观点)',
'012':'三元组(对象 | 观点 | 方面)',
'013':'三元组(对象 | 观点 | 极性)',
'023':'三元组(对象 | 方面 | 极性)',
'23':'二元组(方面 | 极性)',
'03':'二元组(对象 | 极性)',
'13':'二元组(观点 | 极性)',
'3':'单元素(极性)'}
'''
f1_of_optimal_match, score_of_optimal_match = self.quad_f1_of_optimal_match(predictions, references,
quad_weights, **kwargs)
f1 = self.quad_f1_of_exact_match(predictions=predictions, references=references, **kwargs)
# 取1-cost为得分
return {'score of optimal match of weight ' + str(quad_weights): score_of_optimal_match,
'f1 of optimal match of weight ' + str(quad_weights): f1_of_optimal_match,
'f1 of exact match': f1}
@staticmethod
def quad_f1_of_exact_match(predictions: List[str], references: Union[List[str], List[List[str]]],
return_dict=False, **kwargs) -> Union[Dict[str, float], float]:
assert len(predictions) == len(references), "文本数量不一致"
correct, pred_num, true_num = 0, 0, 0
for pred, refer in zip(predictions, references):
pred = CommentUnitsSim.from_str(pred, **kwargs)
# refer转换为list
if isinstance(refer, str):
refer =[refer]
# refer转换为CommentUnitsSim
refer = [CommentUnitsSim.from_str(t, **kwargs) for t in refer]
# 如果refer是list,说明有多个正确答案,取最高分的那个
#计算每个refer的TP的个数
correct_list = [pred.compare_same(t) for t in refer]
#计算每个refer的f1
f1_list=[2 * correct_list[i] / (pred.num + refer[i].num) for i in range(len(refer))]
# 获取f1得分最高的索引
best_index = f1_list.index(max(f1_list))
pred_num += pred.num
true_num += refer[best_index].num
correct += correct_list[best_index]
# 以下结果保留4位小数
precision = round(correct / pred_num, 4) + 1e-8
recall = round(correct / true_num, 4) + 1e-8
f1 = round(2 * precision * recall / (precision + recall), 4)
if return_dict:
return {"precision": precision, "recall": recall, "f1": f1}
else:
return f1
# 计算最优匹配f1
@staticmethod
def quad_f1_of_optimal_match(
predictions: List[str],
references: Union[List[str], List[List[str]]],
quad_weights: tuple = (1, 1, 1, 1),
one_match=True,
**kwargs):
assert len(predictions) == len(references)
if isinstance(predictions, str):
predictions = [predictions]
references = [references]
cost = 0
TP, FP, FN = 0, 0, 0
matcher = CommentUnitsMatch(*quad_weights, one_match=one_match)
for pred, refer in zip(predictions, references):
pred = CommentUnitsSim.from_str(pred, **kwargs)
# 将refer转换为list形式
if isinstance(refer, str):
refer = [refer]
# 将refer中的每个元素转换为CommentUnitsSim
refer = [CommentUnitsSim.from_str(t, **kwargs) for t in refer]
# 如果true是多个正确答案,取最高分
cost_list = [matcher.match_units(pred, t) for t in refer]
# 获取cost最小的值的索引,按元组中第一个元素大小排序
# 计算每一对样本的cost,TP,FP,FN
cost_, TP_, FP_, FN_ = cost_list[np.argmin([c[0] for c in cost_list])]
cost += cost_
TP += TP_
FP += FP_
FN += FN_
# 平均cost
cost = cost / len(predictions)
# 由TP\FP\FN计算最优匹配F1
precision_match = TP / (TP + FP)
recall_match = TP / (TP + FN)
f1_match = 2 * precision_match * recall_match / (precision_match + recall_match)
return f1_match, 1 - cost
|