|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch OpenAI GPT-2 model.""" |
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import collections |
|
import copy |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
import tarfile |
|
import tempfile |
|
import sys |
|
from io import open |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.nn.parameter import Parameter |
|
|
|
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME |
|
from .modeling import BertLayerNorm as LayerNorm |
|
from IPython import embed |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin"} |
|
PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json"} |
|
|
|
def load_tf_weights_in_gpt2(model, gpt2_checkpoint_path): |
|
""" Load tf checkpoints in a pytorch model |
|
""" |
|
try: |
|
import re |
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions.") |
|
raise |
|
tf_path = os.path.abspath(gpt2_checkpoint_path) |
|
print("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
print("Loading TF weight {} with shape {}".format(name, shape)) |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array.squeeze()) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name[6:] |
|
name = name.split('/') |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r'[A-Za-z]+\d+', m_name): |
|
l = re.split(r'(\d+)', m_name) |
|
else: |
|
l = [m_name] |
|
if l[0] == 'w' or l[0] == 'g': |
|
pointer = getattr(pointer, 'weight') |
|
elif l[0] == 'b': |
|
pointer = getattr(pointer, 'bias') |
|
elif l[0] == 'wpe' or l[0] == 'wte': |
|
pointer = getattr(pointer, l[0]) |
|
pointer = getattr(pointer, 'weight') |
|
else: |
|
pointer = getattr(pointer, l[0]) |
|
if len(l) >= 2: |
|
num = int(l[1]) |
|
pointer = pointer[num] |
|
try: |
|
assert pointer.shape == array.shape |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
print("Initialize PyTorch weight {}".format(name)) |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
def gelu(x): |
|
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) |
|
|
|
|
|
class GPT2Config(object): |
|
"""Configuration class to store the configuration of a `GPT2Model`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vocab_size_or_config_json_file=50257, |
|
n_positions=1024, |
|
n_ctx=1024, |
|
n_embd=768, |
|
n_layer=12, |
|
n_head=12, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
): |
|
"""Constructs GPT2Config. |
|
|
|
Args: |
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file. |
|
n_positions: Number of positional embeddings. |
|
n_ctx: Size of the causal mask (usually same as n_positions). |
|
n_embd: Dimensionality of the embeddings and hidden states. |
|
n_layer: Number of hidden layers in the Transformer encoder. |
|
n_head: Number of attention heads for each attention layer in |
|
the Transformer encoder. |
|
layer_norm_epsilon: epsilon to use in the layer norm layers |
|
initializer_range: The sttdev of the truncated_normal_initializer for |
|
initializing all weight matrices. |
|
""" |
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 |
|
and isinstance(vocab_size_or_config_json_file, unicode)): |
|
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader: |
|
json_config = json.loads(reader.read()) |
|
for key, value in json_config.items(): |
|
self.__dict__[key] = value |
|
elif isinstance(vocab_size_or_config_json_file, int): |
|
self.vocab_size = vocab_size_or_config_json_file |
|
self.n_ctx = n_ctx |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
else: |
|
raise ValueError( |
|
"First argument must be either a vocabulary size (int)" |
|
"or the path to a pretrained model config file (str)" |
|
) |
|
|
|
@classmethod |
|
def from_dict(cls, json_object): |
|
"""Constructs a `GPT2Config` from a Python dictionary of parameters.""" |
|
config = GPT2Config(vocab_size_or_config_json_file=-1) |
|
for key, value in json_object.items(): |
|
config.__dict__[key] = value |
|
return config |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file): |
|
"""Constructs a `GPT2Config` from a json file of parameters.""" |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return cls.from_dict(json.loads(text)) |
|
|
|
def __repr__(self): |
|
return str(self.to_json_string()) |
|
|
|
def to_dict(self): |
|
"""Serializes this instance to a Python dictionary.""" |
|
output = copy.deepcopy(self.__dict__) |
|
return output |
|
|
|
def to_json_string(self): |
|
"""Serializes this instance to a JSON string.""" |
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path): |
|
""" Save this instance to a json file.""" |
|
with open(json_file_path, "w", encoding='utf-8') as writer: |
|
writer.write(self.to_json_string()) |
|
|
|
|
|
class Conv1D(nn.Module): |
|
def __init__(self, nf, nx): |
|
super(Conv1D, self).__init__() |
|
self.nf = nf |
|
w = torch.empty(nx, nf) |
|
nn.init.normal_(w, std=0.02) |
|
self.weight = Parameter(w) |
|
self.bias = Parameter(torch.zeros(nf)) |
|
|
|
def forward(self, x): |
|
size_out = x.size()[:-1] + (self.nf,) |
|
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) |
|
x = x.view(*size_out) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, nx, n_ctx, config, scale=False): |
|
super(Attention, self).__init__() |
|
n_state = nx |
|
|
|
assert n_state % config.n_head == 0 |
|
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) |
|
self.n_head = config.n_head |
|
self.split_size = n_state |
|
self.scale = scale |
|
self.c_attn = Conv1D(n_state * 3, nx) |
|
self.c_proj = Conv1D(n_state, nx) |
|
|
|
def _attn(self, q, k, v): |
|
w = torch.matmul(q, k) |
|
if self.scale: |
|
w = w / math.sqrt(v.size(-1)) |
|
nd, ns = w.size(-2), w.size(-1) |
|
b = self.bias[:, :, ns-nd:ns, :ns] |
|
w = w * b - 1e4 * (1 - b) |
|
|
|
w = nn.Softmax(dim=-1)(w) |
|
return torch.matmul(w, v) |
|
|
|
def merge_heads(self, x): |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) |
|
return x.view(*new_x_shape) |
|
|
|
def split_heads(self, x, k=False): |
|
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) |
|
x = x.view(*new_x_shape) |
|
if k: |
|
return x.permute(0, 2, 3, 1) |
|
else: |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward(self, x, layer_past=None): |
|
x = self.c_attn(x) |
|
query, key, value = x.split(self.split_size, dim=2) |
|
query = self.split_heads(query) |
|
key = self.split_heads(key, k=True) |
|
value = self.split_heads(value) |
|
if layer_past is not None: |
|
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] |
|
key = torch.cat((past_key, key), dim=-1) |
|
value = torch.cat((past_value, value), dim=-2) |
|
present = torch.stack((key.transpose(-2, -1), value)) |
|
a = self._attn(query, key, value) |
|
a = self.merge_heads(a) |
|
a = self.c_proj(a) |
|
return a, present |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, n_state, config): |
|
super(MLP, self).__init__() |
|
nx = config.n_embd |
|
self.c_fc = Conv1D(n_state, nx) |
|
self.c_proj = Conv1D(nx, n_state) |
|
self.act = gelu |
|
|
|
def forward(self, x): |
|
h = self.act(self.c_fc(x)) |
|
h2 = self.c_proj(h) |
|
return h2 |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, n_ctx, config, scale=False): |
|
super(Block, self).__init__() |
|
nx = config.n_embd |
|
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) |
|
self.attn = Attention(nx, n_ctx, config, scale) |
|
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) |
|
self.mlp = MLP(4 * nx, config) |
|
|
|
def forward(self, x, layer_past=None): |
|
a, present = self.attn(self.ln_1(x), layer_past=layer_past) |
|
x = x + a |
|
m = self.mlp(self.ln_2(x)) |
|
x = x + m |
|
return x, present |
|
|
|
|
|
class GPT2LMHead(nn.Module): |
|
""" Language Model Head for the transformer """ |
|
|
|
def __init__(self, model_embeddings_weights, config): |
|
super(GPT2LMHead, self).__init__() |
|
self.n_embd = config.n_embd |
|
self.set_embeddings_weights(model_embeddings_weights) |
|
|
|
def set_embeddings_weights(self, model_embeddings_weights): |
|
embed_shape = model_embeddings_weights.shape |
|
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) |
|
self.decoder.weight = model_embeddings_weights |
|
|
|
def forward(self, hidden_state): |
|
|
|
|
|
lm_logits = self.decoder(hidden_state) |
|
return lm_logits |
|
|
|
|
|
class GPT2MultipleChoiceHead(nn.Module): |
|
""" Classifier Head for the transformer """ |
|
|
|
def __init__(self, config): |
|
super(GPT2MultipleChoiceHead, self).__init__() |
|
self.n_embd = config.n_embd |
|
self.linear = nn.Linear(config.n_embd, 1) |
|
|
|
nn.init.normal_(self.linear.weight, std=0.02) |
|
nn.init.normal_(self.linear.bias, 0) |
|
|
|
def forward(self, hidden_states, mc_token_ids): |
|
|
|
|
|
|
|
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1)) |
|
|
|
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2) |
|
|
|
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1) |
|
|
|
return multiple_choice_logits |
|
|
|
|
|
class GPT2PreTrainedModel(nn.Module): |
|
""" An abstract class to handle weights initialization and |
|
a simple interface for dowloading and loading pretrained models. |
|
""" |
|
|
|
def __init__(self, config, *inputs, **kwargs): |
|
super(GPT2PreTrainedModel, self).__init__() |
|
if not isinstance(config, GPT2Config): |
|
raise ValueError( |
|
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. " |
|
"To create a model from a pretrained model use " |
|
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( |
|
self.__class__.__name__, self.__class__.__name__ |
|
) |
|
) |
|
self.config = config |
|
|
|
def set_tied(self): |
|
pass |
|
|
|
def init_weights(self, module): |
|
""" Initialize the weights. |
|
""" |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs |
|
): |
|
""" |
|
Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict. |
|
Download and cache the pre-trained model file if needed. |
|
|
|
Params: |
|
pretrained_model_name_or_path: either: |
|
- a str with the name of a pre-trained model to load selected in the list of: |
|
. `gpt2` |
|
- a path or url to a pretrained model archive containing: |
|
. `gpt2_config.json` a configuration file for the model |
|
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance |
|
- a path or url to a pretrained model archive containing: |
|
. `gpt2_config.json` a configuration file for the model |
|
. a TensorFlow checkpoint with trained weights |
|
from_tf: should we load the weights from a locally saved TensorFlow checkpoint |
|
cache_dir: an optional path to a folder in which the pre-trained models will be cached. |
|
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models |
|
*inputs, **kwargs: additional input for the specific GPT class |
|
""" |
|
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: |
|
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
else: |
|
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) |
|
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) |
|
|
|
try: |
|
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) |
|
resolved_config_file = cached_path(config_file, cache_dir=cache_dir) |
|
except EnvironmentError: |
|
logger.error( |
|
"Model name '{}' was not found in model name list ({}). " |
|
"We assumed '{}' was a path or url but couldn't find files {} and {} " |
|
"at this path or url.".format( |
|
pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path, |
|
archive_file, config_file |
|
) |
|
) |
|
return None |
|
if resolved_archive_file == archive_file and resolved_config_file == config_file: |
|
logger.info("loading weights file {}".format(archive_file)) |
|
logger.info("loading configuration file {}".format(config_file)) |
|
else: |
|
logger.info("loading weights file {} from cache at {}".format( |
|
archive_file, resolved_archive_file)) |
|
logger.info("loading configuration file {} from cache at {}".format( |
|
config_file, resolved_config_file)) |
|
|
|
config = GPT2Config.from_json_file(resolved_config_file) |
|
logger.info("Model config {}".format(config)) |
|
|
|
model = cls(config, *inputs, **kwargs) |
|
if state_dict is None and not from_tf: |
|
state_dict = torch.load(resolved_archive_file, map_location='cpu') |
|
if from_tf: |
|
|
|
return load_tf_weights_in_gpt2(model, resolved_archive_file) |
|
|
|
old_keys = [] |
|
new_keys = [] |
|
for key in state_dict.keys(): |
|
new_key = None |
|
if key.endswith(".g"): |
|
new_key = key[:-2] + ".weight" |
|
elif key.endswith(".b"): |
|
new_key = key[:-2] + ".bias" |
|
elif key.endswith(".w"): |
|
new_key = key[:-2] + ".weight" |
|
if new_key: |
|
old_keys.append(key) |
|
new_keys.append(new_key) |
|
for old_key, new_key in zip(old_keys, new_keys): |
|
state_dict[new_key] = state_dict.pop(old_key) |
|
|
|
missing_keys = [] |
|
unexpected_keys = [] |
|
error_msgs = [] |
|
|
|
metadata = getattr(state_dict, "_metadata", None) |
|
state_dict = state_dict.copy() |
|
if metadata is not None: |
|
state_dict._metadata = metadata |
|
|
|
def load(module, prefix=""): |
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) |
|
module._load_from_state_dict( |
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs |
|
) |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
load(child, prefix + name + ".") |
|
|
|
start_model = model |
|
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()): |
|
start_model = model.transformer |
|
load(start_model, prefix="") |
|
|
|
if len(missing_keys) > 0: |
|
logger.info( |
|
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys) |
|
) |
|
if len(unexpected_keys) > 0: |
|
logger.info( |
|
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys) |
|
) |
|
if len(error_msgs) > 0: |
|
raise RuntimeError( |
|
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)) |
|
) |
|
|
|
|
|
model.set_tied() |
|
return model |
|
|
|
|
|
class GPT2Model(GPT2PreTrainedModel): |
|
"""OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners"). |
|
|
|
Params: |
|
config: a GPT2Config class instance with the configuration to build a new model |
|
|
|
Inputs: |
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] |
|
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[ |
|
`position_ids`: an optional torch.LongTensor with the same shape as input_ids |
|
with the position indices (selected in the range [0, config.n_positions - 1[. |
|
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids |
|
You can use it to add a third type of embedding to each input token in the sequence |
|
(the previous two being the word and position embeddings). |
|
The input, position and token_type embeddings are summed inside the Transformer before the first |
|
self-attention block. |
|
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states |
|
(key and values in the attention blocks) to speed up sequential decoding |
|
(this is the presents output of the model, cf. below). |
|
|
|
Outputs a tuple consisting of: |
|
`hidden_states`: the encoded-hidden-states at the top of the model |
|
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size] |
|
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids) |
|
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as |
|
torch.FloatTensors. They can be reused to speed up sequential decoding. |
|
|
|
Example usage: |
|
```python |
|
# Already been converted into BPE token ids |
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) |
|
|
|
config = modeling_gpt2.GPT2Config() |
|
|
|
model = modeling_gpt2.GPT2Model(config) |
|
hidden_states, presents = model(input_ids) |
|
``` |
|
""" |
|
|
|
def __init__(self, config): |
|
super(GPT2Model, self).__init__(config) |
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.wpe = nn.Embedding(config.n_positions, config.n_embd) |
|
block = Block(config.n_ctx, config, scale=True) |
|
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)]) |
|
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None): |
|
|
|
|
|
|
|
if past is None: |
|
past_length = 0 |
|
past = [None] * len(self.h) |
|
else: |
|
past_length = past[0][0].size(-2) |
|
if position_ids is None and input_ids.size(-1)<20000: |
|
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) |
|
elif position_ids is None and input_ids.size(-1)>20000: |
|
position_ids = torch.arange(past_length, input_ids.size(-2) + past_length, dtype=torch.long, device=input_ids.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids[:,:, 0]) |
|
input_shape = input_ids.size() |
|
|
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) |
|
flag_bb = 0 |
|
|
|
if input_shape[-1] < 20000: |
|
inputs_embeds = self.wte(input_ids) |
|
flag_bb = 0 |
|
else: |
|
input_shape = input_shape[:-1] |
|
inputs_embeds = torch.matmul(input_ids, self.wte.weight[:, :]) |
|
inputs_embeds = torch.unsqueeze(inputs_embeds, dim=1) |
|
flag_bb = 1 |
|
|
|
|
|
|
|
self.i_embeds = inputs_embeds |
|
position_embeds = self.wpe(position_ids) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) |
|
token_type_embeds = self.wte(token_type_ids) |
|
else: |
|
token_type_embeds = 0 |
|
|
|
hidden_states = inputs_embeds + position_embeds + token_type_embeds |
|
presents = [] |
|
hiddens = [] |
|
for block, layer_past in zip(self.h, past): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states, present = block(hidden_states, layer_past) |
|
hiddens.append(hidden_states) |
|
presents.append(present) |
|
hidden_states = self.ln_f(hidden_states) |
|
self.hiddens_list = hiddens |
|
self.hidden_states = hidden_states |
|
|
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
return hidden_states.view(*output_shape), presents |
|
|
|
|
|
def forward_embed(self, input_ids, position_ids=None, token_type_ids=None, past=None): |
|
if input_ids.dtype != torch.long: |
|
input_ids = input_ids.long() |
|
|
|
if past is None: |
|
past_length = 0 |
|
past = [None] * len(self.h) |
|
else: |
|
past_length = past[0][0].size(-2) |
|
if position_ids is None: |
|
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) |
|
|
|
self.input_shape = input_ids.size() |
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) |
|
|
|
inputs_embeds = self.wte(input_ids) |
|
|
|
self.i_embeds = inputs_embeds |
|
position_embeds = self.wpe(position_ids) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) |
|
token_type_embeds = self.wte(token_type_ids) |
|
else: |
|
token_type_embeds = 0 |
|
hidden_states = inputs_embeds + position_embeds + token_type_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return hidden_states |
|
|
|
def forward_transformer(self, hidden_states, past=None, add_one=False): |
|
if past is None: |
|
past = [None] * len(self.h) |
|
presents = [] |
|
hiddens = [] |
|
for block, layer_past in zip(self.h, past): |
|
hidden_states, present = block(hidden_states, layer_past) |
|
hiddens.append(hidden_states) |
|
presents.append(present) |
|
hidden_states = self.ln_f(hidden_states) |
|
self.hiddens_list = hiddens |
|
self.hidden_states = hidden_states |
|
if add_one: |
|
output_shape = (self.input_shape[0],) + (self.input_shape[1] + 1,) + (hidden_states.size(-1),) |
|
else: |
|
output_shape = (self.input_shape[0],) + (self.input_shape[1],) + (hidden_states.size(-1),) |
|
|
|
if add_one: |
|
present_shape = (self.input_shape[0],) + (self.input_shape[1] + 1,) + (2*hidden_states.size(-1),) |
|
else: |
|
present_shape = (self.input_shape[0],) + (self.input_shape[1],) + (2*hidden_states.size(-1),) |
|
|
|
presents = [p.view(*present_shape) for p in presents] |
|
|
|
return hidden_states.view(*output_shape), presents |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GPT2LMHeadModel(GPT2PreTrainedModel): |
|
"""OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners"). |
|
|
|
Params: |
|
config: a GPT2Config class instance with the configuration to build a new model |
|
|
|
Inputs: |
|
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] |
|
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[ |
|
`position_ids`: an optional torch.LongTensor with the same shape as input_ids |
|
with the position indices (selected in the range [0, config.n_positions - 1[. |
|
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids |
|
You can use it to add a third type of embedding to each input token in the sequence |
|
(the previous two being the word and position embeddings). |
|
The input, position and token_type embeddings are summed inside the Transformer before the first |
|
self-attention block. |
|
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] |
|
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss |
|
is only computed for the labels set in [0, ..., vocab_size] |
|
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states |
|
(key and values in the attention blocks) to speed up sequential decoding |
|
(this is the presents output of the model, cf. below). |
|
|
|
Outputs: |
|
if `lm_labels` is not `None`: |
|
Outputs the language modeling loss. |
|
else a tuple: |
|
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size] |
|
(or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids) |
|
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as |
|
torch.FloatTensors. They can be reused to speed up sequential decoding. |
|
|
|
Example usage: |
|
```python |
|
# Already been converted into BPE token ids |
|
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) |
|
|
|
config = modeling_gpt2.GPT2Config() |
|
|
|
model = modeling_gpt2.GPT2LMHeadModel(config) |
|
lm_logits, presents = model(input_ids) |
|
``` |
|
""" |
|
|
|
def __init__(self, config): |
|
super(GPT2LMHeadModel, self).__init__(config) |
|
self.transformer = GPT2Model(config) |
|
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config) |
|
self.apply(self.init_weights) |
|
|
|
def set_tied(self): |
|
""" Make sure we are sharing the embeddings |
|
""" |
|
self.lm_head.set_embeddings_weights(self.transformer.wte.weight) |
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None): |
|
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past) |
|
|
|
self.hidden_states = hidden_states |
|
lm_logits = self.lm_head(hidden_states) |
|
if lm_labels is not None: |
|
|
|
shift_logits = lm_logits[:, :-1].contiguous() |
|
shift_labels = lm_labels[:, 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=-1) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), |
|
shift_labels.view(-1)) |
|
return loss |
|
return lm_logits, presents |
|
|
|
|
|
def forward_embed(self, inputs_ids, position_ids=None, token_type_ids=None, past=None): |
|
hidden_states = self.transformer.forward_embed(inputs_ids, position_ids, token_type_ids, past) |
|
|
|
|
|
return hidden_states |
|
|
|
def forward_transformer_embed(self, hidden_states, past=None, add_one=False): |
|
|
|
hidden_states, presents = self.transformer.forward_transformer(hidden_states, past, add_one=add_one) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return hidden_states, presents |
|
|
|
def forward_hidden(self, hidden_states): |
|
|
|
|
|
'''Just runing the last MLP (LM head)''' |
|
lm_logits = self.lm_head(hidden_states) |
|
return lm_logits |
|
|
|
|
|
class GPT2DoubleHeadsModel(GPT2PreTrainedModel): |
|
"""OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners"). |
|
|
|
Params: |
|
config: a GPT2Config class instance with the configuration to build a new model |
|
|
|
Inputs: |
|
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token |
|
indices selected in the range [0, config.vocab_size[ |
|
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from |
|
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence) |
|
`position_ids`: an optional torch.LongTensor with the same shape as input_ids |
|
with the position indices (selected in the range [0, config.n_positions - 1[. |
|
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids |
|
You can use it to add a third type of embedding to each input token in the sequence |
|
(the previous two being the word and position embeddings). |
|
The input, position and token_type embeddings are summed inside the Transformer before the first |
|
self-attention block. |
|
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length] |
|
with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss |
|
is only computed for the labels set in [0, ..., config.vocab_size] |
|
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size] |
|
with indices selected in [0, ..., num_choices]. |
|
`past`: an optional list of torch.LongTensor that contains pre-computed hidden-states |
|
(key and values in the attention blocks) to speed up sequential decoding |
|
(this is the presents output of the model, cf. below). |
|
|
|
Outputs: |
|
if `lm_labels` and `multiple_choice_labels` are not `None`: |
|
Outputs a tuple of losses with the language modeling loss and the multiple choice loss. |
|
else: a tuple with |
|
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size] |
|
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices] |
|
`presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as |
|
torch.FloatTensors. They can be reused to speed up sequential decoding. |
|
|
|
Example usage: |
|
```python |
|
# Already been converted into BPE token ids |
|
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length) |
|
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice) |
|
|
|
config = modeling_gpt2.GPT2Config() |
|
|
|
model = modeling_gpt2.GPT2LMHeadModel(config) |
|
lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids) |
|
``` |
|
""" |
|
|
|
def __init__(self, config): |
|
super(GPT2DoubleHeadsModel, self).__init__(config) |
|
self.transformer = GPT2Model(config) |
|
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config) |
|
self.multiple_choice_head = GPT2MultipleChoiceHead(config) |
|
self.apply(self.init_weights) |
|
|
|
def set_tied(self): |
|
""" Make sure we are sharing the embeddings |
|
""" |
|
self.lm_head.set_embeddings_weights(self.transformer.wte.weight) |
|
|
|
def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, past=None): |
|
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past) |
|
lm_logits = self.lm_head(hidden_states) |
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids) |
|
losses = [] |
|
if lm_labels is not None: |
|
shift_logits = lm_logits[:, :-1].contiguous() |
|
shift_labels = lm_labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss(ignore_index=-1) |
|
losses.append(loss_fct(shift_logits.view(-1, |
|
shift_logits.size(-1)), shift_labels.view(-1))) |
|
if mc_labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))) |
|
if losses: |
|
return losses |
|
return lm_logits, mc_logits, presents |
|
|