Spaces:
Runtime error
Runtime error
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import torch | |
from resources import set_start, audit_elapsedtime | |
#Speech to text transcription model | |
def init_model_trans (): | |
print("Initiating transcription model...") | |
start = set_start() | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
print(f'Init model successful') | |
return pipe | |
def transcribe (audio_sample: bytes, pipe) -> str: | |
print("Initiating transcription...") | |
start = set_start() | |
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
# sample = dataset[0]["audio"] | |
#result = pipe(audio_sample) | |
result = pipe(audio_sample) | |
audit_elapsedtime(function="Transcription", start=start) | |
print("transcription result",result) | |
#st.write('trancription: ', result["text"]) | |
return result["text"] | |
# def translate (audio_sample: bytes, pipe) -> str: | |
# print("Initiating Translation...") | |
# start = set_start() | |
# # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
# # sample = dataset[0]["audio"] | |
# #result = pipe(audio_sample) | |
# result = pipe(audio_sample, generate_kwargs={"task": "translate"}) | |
# audit_elapsedtime(function="Translation", start=start) | |
# print("Translation result",result) | |
# #st.write('trancription: ', result["text"]) | |
# return result["text"] |